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A neural-fuzzy model has been developed to represent machinability data selection 

in turning process. Turning process is a branch of machining process, which is used 

to produce cylindrical parts. Considerable efforts have been done to automate such 

machining process in order to increase the efficiency and precision of manufacturing. 

One of the issues is machinability data selection, which is always referred as the 

proper selection of cutting tools and machining parameters. This task is a complex 

process; and usually depends on the experience and skill of a machinist. Although 

sources like machining data handbooks and tool catalogues are available for 

reference, the process is still very much depending on a skilled machinist. 

  

Previously, mathematical and empirical approaches have been attempted to reduce 

the dependency. However, the complexity of machining makes it difficult to 

formulate a proper model. Applications of fuzzy logic and neural network have been 

considered too to solve the machining problem; and have shown good potential. But, 

some issues remain unaddressed. In fuzzy logic, among the issues are tedious process 

of rules identification and inability to self-adapt to changing machining conditions. 

On the other hand, neural network has the issues of black box problem and difficulty 
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in optimal topology determination. In order to overcome these difficulties, a neural-

fuzzy model is proposed to model machinist in selecting machinability data for 

turning process. The neural-fuzzy model combines the self-adapting and learning 

abilities of neural network with the human-like knowledge representation and 

explanation abilities of fuzzy logic into one integrated system. The characteristics of 

fuzzy logic would solve the shortcomings in neural network; and vice versa. 

 

Generally, the developed neural-fuzzy model is designed to have five layers; input 

and output layers, and three hidden layers.  Each of the layers has different classes of 

nodes; in which are input nodes, input term nodes, rule nodes, output term nodes and 

output nodes. The model is developed using Microsoft Visual C++ .NET 

(MSVC++ .NET). Object oriented approach is applied as the development process to 

enhance reusability.  

 

The results from the model have been validated and compared against machining 

data of Machining Data Handbook from Metcut Research Associate. Good 

correlations have been shown, indicating the feasibility of representing machining 

data selection with neural-fuzzy model. The mean absolute percentage error for four 

different types of tools is below 3%, and averaging at 2.4%. Apart from that, the 

extracted fuzzy rules are compared with the general rules of thumbs in turning 

process as well as rules from other paradigm; and found to be consistent. This would 

simplify the task of obtaining fuzzy rules from machining data. Beside that, the 

model is compared with other artificial intelligence approaches, such as fuzzy logic, 

neural network and genetic algorithm. The neural-fuzzy model has shown good 

result among them. In addition, the characteristics of the model are studied and 
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analyzed as well; in which include membership functions, shouldered membership 

functions and randomness. 

 

This research has shown promising results in employing neural-fuzzy model to solve 

problems; in this case, machinability data selection in turning process. The developed 

neural-fuzzy model should be further considered in a wider range of real-world 

machining processes for learning and prescribing knowledge. 
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Sebuah model neural-fuzzy telah dibangunkan untuk mewakili pemilihan data 

kebolehmesinan dalam proses melarik. Proses melarik adalah satu daripada cabang 

proses pemesinan, yang digunakan untuk menghasilkan bahagian berbentuk silinder. 

Banyak usaha telah dijalankan untuk menjadikan proses pemesinan begini automatik, 

bagi meningkatkan kecekapan dan ketepatan  pembuatan. Salah satu daripada isunya 

ialah pemilihan data kebolehmesinan, yang selalu dirujuk sebagai pemilihan wajar 

peralatan pemotongan dan parameter pemesinan. Tugas ini adalah satu proses yang 

kompleks, dan selalu bergantung kepada pengalaman dan kemahiran seseorang 

jurumesin. Walaupun terdapat sumber seperti buku panduan data pemesinan dan 

katalog peralatan untuk rujukan, proses ini masih lagi bergantung kepada seseorang 

jurumesin yang berkemahiran.  

 

Sebelum ini, pendekatan matematik dan empirik pernah dicuba untuk mengurangkan 

kebergantungan ini. Namun demikian, kompleksiti pemesinan menjadikannya sukar 

untuk merumus satu model yang wajar. Aplikasi logik fuzzy dan rangkaian neural 

juga telah dipertimbangkan untuk menyelesaikan masalah pemesinan ini; dan telah 

menunjukkan potensi yang baik. Tetapi, terdapat isu-isu yang masih belum 
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diselesaikan. Dalam sistem logik fuzzy, di antara isu-isunya ialah proses 

pengenalpastian peraturan yang meletihkan dan ketidakdapatan menyesuaikan diri 

kepada keadaan pemesinan yang berlainan. Sebaliknya, rangkaian neural pula 

mempunyai isu-isu dalam masalah kotak hitam dan kesukaran dalam penentuan 

topologi yang optimum. Untuk mengatasi masalah ini, satu model neural-fuzzy 

dicadangkan untuk memodelkan jurumesin dalam pemilihan data kebolehmesinan 

dalam proses melarik. Model neural-fuzzy menggabungkan kebolehan penyesuaian 

diri dan pembelajaran rangkaian neural dengan kebolehan perwakilan pengetahuan 

manusia dan penerangan logik fuzzy dalam satu sistem berintegrasi. Ciri-ciri logik 

fuzzy akan menyelesaikan kelemahan dalam rangkaian neural, dan begitu juga 

sebaliknya.  

 

Secara amnya, model neural-fuzzy yang dibangunkan ini direka mempunyai lima 

lapisan; iaitu lapisan input dan output, dan tiga lapisan tersembunyi. Setiap lapisan 

ini mempunyai kelas-kelas nod yang berlainan; yang mana adalah nod input, nod 

input sebutan, nod peraturan, nod output sebutan dan nod output. Model ini 

dibangunkan dengan menggunakan Microsoft Visual C++ .NET (MSVC++ .NET). 

Pendekatan berorientasikan objek digunakan sebagai proses pembangunan untuk 

mencapai kebolehgunaan semula.  

 

Keputusan yang diperolehi daripada model ini telah disahkan dan dibandingkan 

dengan data pemesinan yang diperolehi daripada Buku Panduan Data Pemesinan 

oleh Metcut Research Associate. Korelasi yang baik telah dipaparkan dalam kajian 

ini; menunjukkan kebolehlaksanaan mewakili pemilihan data pemesinan dengan 

model neural-fuzzy. Min peratusan ralat mutlak untuk empat jenis peralatan adalah 
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dibawah 3% dan puratanya adalah 2.4%. Selain itu, peraturan fuzzy yang diekstrak 

telah dibandingkan dengan petua am dalam proses melarik dan peraturan daripada 

paradigma lain, dan didapati konsisten. Ini akan memudahkan tugas mendapatkan 

peraturan fuzzy daripada data pemesinan. Model tersebut juga dibandingkan dengan 

pendekatan kecerdasan buatan lain, seperti logik fuzzy, rangkaian neural dan 

algoritma genetik. Model neural-fuzzy telah menunjukkan keputusan yang baik di 

antara pendekatan tersebut. Tambahan pula, ciri-ciri model neural-fuzzy juga dikaji 

dan dianalisa; yang mana melibatkan fungsi keahlian, bahu fungsi keahlian dan 

kerawakan. 

 

Penyelidikan ini menunjukkan keputusan yang menggalakkan dalam menggunakan 

model neural-fuzzy untuk menyelesaikan masalah; dalam kes ini, pemilihan data 

kebolehmesinan dalam proses melarik. Model neural-fuzzy yang dibangunkan ini 

seharusnya dipertimbangkan lebih lanjut lagi dalam proses pemesinan dunia sebenar 

yang lebih luas untuk pembelajaran dan preskripsi pengetahuan. 
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CHAPTER 1 

 

INTRODUCTION 

 

One of the most important processes in manufacturing industry is machining. 

Generally, machining is a group of processes that consist of removal of the material 

and modification of the surfaces of a workpiece after it has been produced by various 

manufacturing methods such as casting and forging. The other processes provide the 

general shape of the starting workpiece, while machining creates the final dimension, 

geometry and finish. As variety of work materials, variety of part geometric features, 

dimensional accuracy and good surface finishes are involved, machining is 

commercially and technologically important. With today’s demanding productivity 

and profitability in manufacturing industry, machining has increasingly needed to be 

performed optimally.  

 

As substantial amount of material is removed from the raw material in order to 

achieve required shape, machining is an expensive process. Furthermore, a lot of 

energy is expended in this process. Machining may be more economical provided 

that the number of parts required is relatively small; or the material and part shape 

allows them to be machined at high rates and quantities with high dimensional 

accuracy. It is important to view machining processes as a system, consisting of the 

workpiece, cutting tool, machine tool and production personnel. Machining cannot 

be carried out efficiently or economically without a through knowledge of the 

interactions among these four elements [1].  

 



Turning process is one of the machining processes, which produces cylindrical parts 

using a single-edged cutting tool to remove material from a rotating workpiece. 

Three parameters can be used to describe turning process; in which are speed, depth 

of cut and feed. In the process, the cutting tool is set at a certain depth of cut (mm) 

and travels with a certain speed (m/ min) towards a direction parallel to the axis of 

the workpiece rotation. The feed is the distance the tool travels horizontally per unit 

revolution of the workpiece (mm/ rev). Turning process is widely used in core 

manufacturing processes and in a wide range of products. It has been investigated by 

various disciplines; which include not only mechanics and control theory, but 

economy too. 

 

Machinability data selection is a complex process due to the number of possible 

variables and variations. Thus, this process cannot be easily formulated to meet 

design specification by any empirical or mathematical model. This includes the 

proper selection of machining cutting tools [2] and machining variables; in which 

among others are speed, depth of cut, feed, tool material and work material. Other 

variables such as the cutting fluid and temperature [3] are important as well. These 

machining data selection variables have major impacts on a machine performance in 

terms of productivity, reliability and product quality [4, 5]. In practice, optimized 

machinability data is obtained from a skilled machinist’s experience and intuition [6, 

7] in order to satisfy the required accuracy. Efforts have been made to capture this 

optimal machinability data into machining data handbooks and other media to serve 

as references when performing machining processes. However, there are still some 

problems with this practice. Therefore, models incorporating artificial intelligence 

technologies such as fuzzy logic and neural network are employed. 
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Fuzzy logic is a mathematical theory of imprecise reasoning that allows us to model 

the reasoning process of human in linguistic terms [8]. Fuzzy logic has been 

deployed to replace the role of mathematical model with another that is built from a 

number of rules with fuzzy variables such as output temperature and fuzzy terms 

such as relatively high and reasonably low [9-12]. While fuzzy logic allows the use 

of linguistic terms to represent data sets in the reasoning process, neural network is 

able to discover connections between data sets simply by having simple data 

represented to its input and output layers. Neural network are artificial and simplified 

models of the neurons that exist in the human brain [13]. It has the ability to learn the 

relationship among input and output data sets through a training process. The 

network can be regarded as processing device, and usually has some sort of ‘training’ 

rule whereby the weights of connections are adjusted on the basis of presented 

patterns.  

 

Although applications of fuzzy logic and neural network in machining processes 

bring significant improvement to the processes, they are not without issues; in which 

are inherent to each of the paradigms. Most of the issues in fuzzy logic applications 

are in the formation of the fuzzy rules [14, 15], whereas the issues lie with the neural 

network application are mostly in its topology [16].  

 

In order to overcome these shortcomings, this research proposes an integrated neural-

fuzzy model for machinability data selection in turning process as they are 

complementing each other. The main feature of the neural-fuzzy model is that it 

takes advantage of the capacity that fuzzy logic stores human expertise knowledge 
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