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TRACT 

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in Fulfilment of 

the Requirement for the Degree of Doctor of Philosophy 

 

 

AUTOMATIC CONTROL OF FLOTATION PROCESS USING COMPUTER 

VISION  

 

By 

 

ALI JAHEDSARAVANI 

 

August 2015 

 

 

Chairman:  Mohammad Hamiruce Marhaban, PhD 

Faculty:       Engineering 

 

 

In the mineral production industry, the separation of valuable material from waste 

material is generally carried out using the flotation process. Metallurgical parameters 

of the process reflect the quality and quantity of the product. Online measurement and 

control of these parameters is currently not possible, due to lack of scientific 

relationship between froth structure and various aspects of flotation process. 

Bubble size distribution which is regarded as the most important characteristics of froth 

structure, is being addressed in this thesis by using a segmentation algorithm. A marker 

based watershed algorithm had been adopted and improved so as to prevent the over-

segmentation of big bubbles and able to adapt itself with different scenario of froth 

images. This results in a measurement of bubble size with high precision. The 

performance of improved marker based watershed algorithm was validated by using 

several industrial and laboratory froth images. In addition, several algorithms were 

implemented to measure the other important image variables such as froth velocity, 

froth color and bubble collapse rate. 

A froth model correlating the image variables to process variables and a prediction 

system estimating the metallurgical parameters based on image variables were then 

developed by using a neural network structure. A control strategy based on froth model 

was then designed in order to optimize the visual characteristics of froth, which lead to 

the control of the metallurgical parameters in an indirect manner. Finally, a control 

strategy implementing the developed froth model and prediction system was 

introduced for direct optimization of metallurgical parameters. Simulation results 

indicated the effective performance of the designed control schemes in enhancing the 

overall efficiency of the process. 
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STRAK 

Abstrak tesis ini di bentangkan kepada senat Universiti Putra Malaysia bagi memenuhi 

syarat pengijazahan darjah Doktor Falsafah 

 

 

KAWALAN AUTOMATIK PROSES PENGAPUNGAN MENGGUNAKAN 

PENGLIHATAN KOMPUTER 

 

Oleh 

 

ALI JAHEDSARAVANI 

 

Ogos 2015 

 

 

Penyelia:   Mohammad Hamiruce Marhaban, PhD 

Faculti:     Kejuruteraan 

Dalam industri pengeluaran mineral, pemisahan bahan berharga daripada bahan 

buangan biasanya dilakukan dengan menggunakan proses pengapungan. Parameter 

pelogaman proses tersebut mencerminkan kualiti dan kuantiti produk. Pengukuran dan 

kawalan parameter dalam talian pada masa ini adalah terhad, kerana kekurangan 

hubungan saintifik antara struktur buih dan pelbagai aspek proses pengapungan. 

Taburan saiz buih yang dianggap sebagai ciri yang paling penting dalam struktur buih, 

dibincangkan dalam tesis ini dengan menggunakan algoritma segmentasi. Algoritma 

legeh berasaskan penanda telah diadaptasi dan diperbaiki untuk mengelakkan 

segmentasi buih besar secara berlebihan dan dapat menyesuaikan diri dengan senario 

imej buih yang berbeza. Hasilnya, satu ukuran saiz buih dengan ketepatan yang tinggi 

berjaya diperolehi. Prestasi mantap algoritma legeh berasaskan penanda diperbaik ini 

telah disahkan dengan menggunakan beberapa imej buih industri dan makmal. Di 

samping itu, beberapa algoritma telah dilaksanakan untuk mengukur pemboleh ubah 

imej lain yang penting seperti halaju buih, warna buih dan kadar pecah gelembung. 

Model buih yang menghubungkaitkan antara pembolehubah gambar dan 

pembolehubah proses, dan sistem ramalan yang menganggarkan parameter pelogaman 

berdasarkan pembolehubah imej kemudiannya dibangunkan dengan menggunakan 

struktur rangkaian neural. Satu strategi kawalan berdasarkan model buih kemudiannya 

direka untuk mengoptimumkan ciri-ciri visual buih, yang membawa kepada kawalan 

parameter pelogaman secara tak-langsung. Akhir sekali, strategi kawalan yang 

dilaksanakan melalui model buih dan sistem ramalan yang dibangunkan telah 

diperkenalkan untuk pengoptimuman parameter pelogaman secara langsung. 

Keputusan simulasi menunjukkan prestasi yang berkesan daripada skim kawalan yang 

direka dalam meningkatkan kecekapan keseluruhan proses. 
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CHAPTER 1 

1 INTRODUCTION 

 Background and Motivation 1.1

In the past, with attention to the existence of full-grade reserves, mineral materials 

were used directly or with some changes as primary materials in other industrial 

applications after extraction; however, nowadays, low-grade reserves have become 

more important because of the lack or shortage of full-grade reserves. Low-grade 

mineral materials need concentration operations to be suitable for industrial utilization.  

Extracted ore from metal mines has no proper grade to be used in other industries, and, 

hence, needs to be concentrated through several processing operations. The common 

method to concentrate metal ores is the flotation process. Flotation, which is an 

industrial process with complicated physical and chemical features, is widely used in 

copper, zinc and lead plants. The flotation process entered mining areas at the 

beginning of the twentieth century and found a special place in processing industry 

rapidly. Today, this method is one of the best known and most efficient techniques for 

metal mineral processing. 

Separating valuable material from waste, in other words, enhancing the grade of 

minerals, is achieved using the flotation process. The direct effect of the efficiency of 

the process on the overall efficiency of production and the complicated physical and 

chemical characteristic features involved, have made the regular and accurate control 

of the flotation process an inevitable necessity. 

The physical-chemical process of flotation takes place in the container known as the 

flotation cell. A combination of crushed mineral, water and chemical reactants are 

entered into the flotation cell, and, by flowing air into the cell, bubbles, which contain 

the valuable material (concentrate), form at the surface (Figure 1.1). The final output of 

the flotation process is the concentrate, which is obtained by washing away the froth 

gathered at the surface of the cell, and which is evaluated using indexes called 

metallurgical parameters that reflect the quality and quantity of the product (Geng et 

al., 2008). 
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Figure 1.1. Flotation cell 

 Problem Statements 1.2

In the past, the control of the flotation process was based on visual observation of the 

froth, empirical interpretation of this image, and, finally, the adjustment of the control 

variables of the process based on their importance and role in the process by 

experienced operators. This method of control was completely based on the human 

operator’s knowledge, which is inconsistent. The absence of quantitative parameters in 

the control of the process makes the optimal control of the process practically 

impossible, as well as increasing the possibility of error. Today, to quantify the 

flotation process and eliminate the problems mentioned above, the use of various 

measurement procedures based on machine vision and various modeling methods, as 

well as intelligent control, have been considered (Aldrich et al., 2010). 

The machine vision system can measure the non-visual features, such as textural 

features of froth images as well as the visual froth features including bubble size, froth 

velocity, froth color and bubble collapse rate. Bubble size distribution is acknowledged 

to be the most significant froth feature being strongly related to process efficiency and 

operating conditions (Mehrabi et al., 2014). In contrast, experience has demonstrated 

the lack of a comprehensive algorithm for accurate segmentation of froth images which 

usually suffer from over segmentation and under segmentation of big and small 

bubbles, respectively(Forbes, 2007; Mehrshad & Massinaei, 2011). As froth images 

contain small and large bubbles located beside each other, the implementation of a 

technique that is able to differentiate the large bubbles from the small ones in a 

segmentation algorithm may increase the segmentation accuracy of the large bubbles, 

which usually suffer from over-segmentation. In addition, if the segmentation 

algorithm can adapt itself to each kind of froth image, especially those containing a 

wide range of bubble size, then the bubble edges may be recognized with more 

precision. 
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To administer an automatic control system for maximizing the metallurgical 

parameters, it is necessary for these indexes to be measured online, which is very 

costly, inaccurate and sometimes impossible using the current tools; hence, these 

indices can be optimized indirectly through a froth model similar to the work of factory 

operators. The effective control of the flotation process therefore calls for the existence 

of a comprehensive froth model. The number of variables as well as the lack of 

knowledge about the relations between these variables have prevented such a 

comprehensive model from being proposed for the description of this process (Bergh & 

Yianatos, 2011; Liu & MacGregor, 2008). Up to now, just one model has been 

established as a froth model by Liu and MacGregor (2008) but they used some visual 

froth features as output variables which were not understood by operators. Thus, 

obtained froth model cannot be accepted by operators. Hence, froth model must be 

completely interpretable for metallurgists and capable of accurately describing the 

relation between the froth features with manipulated variables (Bergh & Yianatos, 

2011). System identification by using a complete set of data seems a good way to 

obtain a froth model. If the fitted model does not reveal a large error then it will be 

capable of providing an appropriate estimate of the froth features. 

The indirect control of metallurgical parameters of the flotation process done by 

optimization of froth features, can be replaced by direct control of the metallurgical 

parameters so as to improve the process efficiency. Fortunately, the structure of the 

froth at the surface of the flotation cells is related to the metallurgical parameters of the 

valuable mineral material in the concentrate, and, therefore, the important features of 

the froth structure can be used for online prediction of the metallurgical features of the 

process. The important structure indices of the froth, which experienced operators use 

as indexes for evaluation of the flotation process efficiency, are bubble size, froth 

velocity, froth color, and bubble collapse rate, etc. (Aldrich et al., 2010; Shean & 

Cilliers, 2011). Although some prediction systems have been proposed in literature, no 

control scheme which use a prediction system to optimize the metallurgical parameters 

directly, was found. The ultimate goal of controlling the flotation process is to obtain 

an optimum combination of favorable metallurgical factors of the final product from 

the input variables of the process. Therefore, a control scheme implementing an online 

prediction system will probably increase the metallurgical parameters more in 

comparison to the indirect control of the flotation process. In conclusion, because of 

the absence in the literature of a froth model based control of flotation and flotation 

control based on a computer vision system, the absence of a control system that 

completely automates the whole flotation process is obvious (Bergh & Yianatos, 

2011). 

In summary, the following problems are considered to be solved in the current 

investigation: 

 A lack of segmentation algorithm, which can be adapted to each kind of froth 

image for measurement of the bubble size distribution. 
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 The absence of an interpretable froth model to be implemented in a control 

system for control of the froth structure. 

 The absence of a control strategy for direct control of the metallurgical 

parameters of the flotation process. 

 Objectives of the Study 1.3

The aim of this study is to automate the whole flotation process by using a computer 

vision based measurement system. Thus, the present study is motivated by the need to 

take into consideration the three significant existing problems in flotation technology; 

therefore, the three specific objectives are defined as follows: 

1- Improvement of bubble segmentation accuracy by modifying a watershed 

algorithm that is capable of providing the same precise bubble size 

distribution as manual segmentation for any kind of froth image. 

2- Developing a froth model describing the relationships between the key visual 

features of the froth and process variables of the flotation process, and 

designing a froth model based control system for indirect control of the 

metallurgical parameters. 

3- Intelligent control of the flotation process by real time prediction of the 

copper grade and recovery through a computer vision system for direct control 

of the metallurgical parameters. 

 Scope 1.4

This study explores the possibilities of implementing a computer vision system to be 

used as a monitoring device in a control system. Development of a computer vision 

system includes different algorithms used to measure the froth’s visual features. For 

this purpose, a comprehensive algorithm is proposed for segmentation of froth images 

whereas other visual characteristics of froth are quantified using the most accurate and 

simplest algorithm in this field. These algorithms are tested using a video data base 

which is collected from experimental tests on a batch flotation cell. Next, these 

algorithms are used to develop two control schemes for optimization of the flotation 

process. 

However this study addresses some issues considering the control and optimization 

solutions for flotation process, establishment of control system hardware is beyond the 
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thesis scope and therefore, suggested control systems are evaluated in a Simulink 

environment. 

 Thesis Contribution 1.5

In order to cover all the defined objectives, firstly, a video data set including 81 

laboratory experiments is established to investigate the role of flotation froth in 

different operating conditions, following which each of these videos is processed using 

different computer vision algorithms for measurement of the key visual features of 

froth. Afterwards, a froth model is identified using the collected data, and the 

relationships between the input and output of the froth model are discussed.  

Consequently, a froth model based control scheme is designed in order to control the 

froth status leading to controlling the metallurgical parameters indirectly. Froth is 

classified based on the measured froth features and metallurgical parameters in order to 

find the optimal set points for the control system. Next, another control strategy 

implementing the computer vision system is developed for online control of the 

metallurgical parameters. In this procedure, firstly, a prediction system is identified for 

online measurement of the metallurgical parameters based on the froth features. A 

schematic of what has been accomplished in the current study is provided in Figure 

1.2. The highlighted part of the diagram indicates the author’s contribution in the 

current thesis. As shown in Figure 1.2, experimental tests are conducted using different 

process variables and then for each experiment, metallurgical parameters are measured 

and froth appearance is captured by a video camera. Four different visual features of 

froth structure are measured using different computer vision algorithms and then a 

froth model is developed based on process variables in order to describe the froth 

properties.  The developed froth model is followed by a control system for control of 

the most important froth features. On the other side, the froth features are used for 

prediction of metallurgical parameters of flotation process. Identified prediction system 

is employed in the heart of a control system for direct control of metallurgical 

variables. 
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Figure 1.2. Schematic of using computer vision system in flotation process 

 Organization of the Thesis  1.6

The current thesis is organized into six chapters, as shown in Figure 1.3. In the second 

chapter, the froth flotation process and its input and output variables are briefly 

discussed and then all the computer vision algorithms designed for measurement of the 

significant froth features are comprehensively reviewed, and, finally, the different 

control systems implementing the computer vision measurements are investigated. In 

the third chapter, details of data collection are explained and the chief visual features of 

the froth are measured using designed algorithms. And then the first control strategy, 

which implements the developed froth model and the second control strategy utilizing 

a prediction system are discussed. The results of designed computer vision algorithms, 

evaluations of identified froth model and prediction system as well as two introduced 

control schemes are presented in next chapter. Finally, a summary of the thesis and 

some suggestions for further investigation are provided in the last chapter. 
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Figure 1.3. Thesis layout 
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