MODELING FOR ENERGY OPTIMIZATION IN WETLAND PADDY PRODUCTION IN NORTH-WEST SELANGOR, MALAYSIA

By

ALIYU MUAZU

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

June 2015
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

MODELING FOR ENERGY OPTIMIZATION IN WETLAND PADDY PRODUCTION IN NORTH-WEST SELANGOR, MALAYSIA

By

ALIYU MUAZU

June 2015

Chair: Associate Prof. IR. Azmi bin Dato Yahya, PhD

Faculty: Faculty of Engineering

In Malaysia, rice is the staple food for the populace and a source of income to the majority of the rural dwellers. The country relies on imported rice to argument the shortfall in local production vis-à-vis demand. The locally produced rice cost more than similar grade of imported rice. Reducing production cost and enhancing paddy productivity are achieved through optimum use of resources, to which on-farm energy analysis plays a central role by addressing issues of excess energy use.

In this study, a thorough on-farm evaluation of farm inputs and output was conducted in 40 farms with net cultivation land area of 27.005 ha at Block E5 Parit Lima Timur, Sungai Besar, North-West Integrated Agricultural Development Authority Selangor, to determine energy and cost efficiency of paddy production in the area and to develop a computer-based platform for appraising performance. The measured farm inputs were converted into energy values using appropriate conversion coefficients and the cost of inputs evaluated based on the prevailing market rate. The technical efficiency of the farms was determined using input oriented constant return to scale Data Envelopment Analysis (DEA) methodology. Quantification of excess energy used in the farms was done using DEA identified benchmarks. The benchmarking results were used to develop maximum yield predictive models for performance appraisal. A method of reference frequency was used to determine best paddy cultivation practices for enhanced paddy productivity. A motion study was conducted to evaluate the mechanization indexes of operations and in the development of fuel predictive models.
From the results of the study, at mean yield of 7625 kg/ha, the energy expenditure was 16,440 MJ/ha with energy intensity value of 2.16 MJ/kg. Cost-wise farmers in the study area expended about RM6658/ha and had a benefit-cost ratio of 1.37 and 1.68 with and without government subsidy respectively. Results from DEA analysis showed that about 18% (2915 MJ/ha) of the total energy input was used in excess of the required optimum. The excess use of energy ranges from 12% for machinery to 20% for fertilizer. Three best farms selected for their high reference frequency use less farm inputs and they have higher yield by about 19%, compared to the inefficient farms. The mean mechanization index (MI) for the cultivation was 0.92 and spraying operation with MI of 0.19, is identified as the most critical operation requiring mechanization priority. The developed multiple linear regression maximum yield predictive models revealed an inverse relationship between paddy yields with seed energy. A quadratic relationship exists between total optimum energy inputs with paddy yield. Resulting from this study, a novel decision support graphical user interface for computing optimum energy input and cost has been developed using Java programming language in NetBeans IDE release 7.2.1. The program is distributable in the form of an executable file with a computer hard disk space requirement of about 3.65 MB.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PEMODELAN UNTUK OPTIMIZATION TENEGA DALAM PAYA PADI
PENGELUARAN ALAM BARAT LAUT SELANGOR, MALAYSIA

Oleh

ALIYU MUAZU

June 2015

Pengerusi: Prof Madya IR. Azmi bin Dato Yahya, PhD
Fakulti: Fakulti Kejuruteraan

Dari hasil kajian, pada kadar hasil purata 7625 kg/ha, perbelanjaan tenaga adalah sebanyak 16,440 MJ/ha, dengan tenaga intensiti nilai 2.16 MJ/kg. Kos bijaksana petani di kawasan kajian dibelanakan kira-kira RM6658/ha dan adalah nisbah faedah-kos GNT john 1.37 dan 1.68 dengan dan tanpa subsidi kerajaan masing-masing. Keputusan daripada analisis DEA menunjukkan kira-kira 18% (2915 MJ/ha) tenaga jumlah input telah digunakan melebihi optimum yang diperlukan. Penggunaan berlebihan tenaga ranges daripada 12% untuk jentera hingga 20% untuk baja. Tiga ladang terbaik dipilih untuk rujukan tinggi kekerapan kurangkan input ladang dan mereka mempunyai hasil yang lebih tinggi oleh kira-kira 19%, berbanding dengan ladang-ladang yang tidak cekap. Purata penggunaan jentera indeks (MI) untuk penanaman adalah 0.92 dan semburan operasi dengan MI daripada 0.19, dikenal pasti sebagai operasi kritikal terbesar yang memerlukan keutamaan kepada jentera. Maju regresi linear pelbagai maju hasil maksimum model ramalan mendedahkan hubungan songsang antara padi terhasil dengan tenaga biji berih. A hubungan kuadratik wujud di antara jumlah input tenaga optimum dengan hasil padi. Hasil daripada kajian ini, antara muka pengguna grafik sokongan keputusan novel untuk mengira input tenaga optimum dan kos telah dibangunkan dengan menggunakan bahasa pengaturcaraan Java dalam NetBeans IDE pelepasan 7.2.1. Program ini boleh diagnosis dalam bentuk fail boleh laku dengan komputer keras keperluan ruang cakera kira-kira 3.65 MB.
ACKNOWLEDGEMENTS

All special praises are due to Allah for granting me the ability to undertake the program without much adieu.

I wish to acknowledge with high level of appreciation the unquantifiable, timely and valuable contributions of the chairman of my supervisory committee, Assoc. Prof. Dr. Azmi bin Dato Yahya, for his constructive criticisms, valuable advice, thorough guidance and consistent words of encouragement, which evidently led to the successful completion of this research within the time limit. Similarly, the valuable contributions of the members of my supervisory committee in persons of Prof. Wan Ismail Wan Ishak and Assoc. Prof Siti Khairruniza binti Bejo are highly acknowledged.

My appreciation also goes to the Universiti Putra Malaysia for providing funds for the research project under the Research University Grant Scheme (RUGS) 2 – 20/2 Grant No 9347400. I thank my employer, Kebbi State College of Agriculture, Zuru for the opportunity and all the supports accorded to me throughout the period of my study. The enormous support from the paddy farmers at Block E5 Parit Lima Timur Sungai Besar is also highly appreciated. I also want to appreciate the kind assistance from Mr. Roshdi of our Machine Design Laboratory, Mr. Erwin my field assistant and my lab mates: Dr. Tajudeen, Dr. Renny, Suha, Mumtaz, Husna and Haslina. The timely assistance from my brothers especially Muhammad Muazu and Ibrahim Saidu and my sisters who are too numerous to mention here is also highly acknowledged. I also wish to appreciate the supports from my friends, Umar, Yakubu, Yusuf, Ibrahim and Sulaiman. To my wife and children I salute their courageous and thoughtful understanding.
I certify that a Thesis Examination Committee has met on 9th June, 2015 to conduct the final examination of Aliyu Muazu on his thesis entitled “Modeling for energy optimization in wetland paddy production in North-West Selangor” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Degree of Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Hasfalina Che Man, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairperson)

Ahmed Desa, PhD
Professor/Ir
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Rimfiel Janius, PhD
Associate Professor/Ir
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Burhan Ozkan, PhD
Professor
Faculty of Agriculture
Akdeniz University
Turkey
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Azmi Yahya, PhD
Associate Professor/Ir
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Wan Ismail Wan Ishak, PhD
Professor/Ir
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Siti Khairunniza Bejo, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ________________________ Date: __________________

Name and Matric No.: __
Declaration by Members of Supervisory Committee

This is to confirm that:

• the research conducted and the writing of this thesis was under our supervision;
• supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: __________________________
Name of Chairman of Supervisory Committee:

Signature: __________________________
Name of Member of Supervisory Committee:

Signature: __________________________
Name of Member of Supervisory Committee:

Signature: __________________________
Name of Member of Supervisory Committee:

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>iii</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>V</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>X</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
</tbody>
</table>

CHAPTER

1 **INTRODUCTION**
 1.1 Background of the study 1
 1.2 Statement of the problem 4
 1.3 Research objectives 7
 1.4 Scope of the study 8

2 **LITERATURE REVIEW**
 2.1 Rice as a world crop 9
 2.2 Rice eco-system 11
 2.3 Rice production in Malaysia 12
 2.3.1 National rice production granaries 14
 2.3.2 Typical national paddy production statistics based on area 16
 2.3.3 Government and private organization roles in paddy production 19
 2.3.4 Standard paddy field layout and scheme infrastructures 21
 2.3.5 Available machinery support systems in paddy cultivation 23
 2.3.6 Cultivation operations and machinery usage in rice farms 23
 2.4 Energy analysis 29
 2.4.1 Methods of energy analysis in crop production 30
 2.4.2 Types of energy analysis in crop production 31
 2.5 Modelling yield and energy inputs in crop production 37
 2.6 Fuel predictive models 39
 2.7 Carbon dioxide emission from combustion of fuel in crop production 41

3 **MATERIALS AND METHODS**
 3.1 Description of the study area 44
 3.2 Systems boundary for the farm inputs and output energy study 47
3.3 Farm inputs and output data collection procedure 48
3.4 Estimation of energy input/output for the wetland paddy field operations 56
3.4.1 Source-wise energy budget 56
3.4.2 Energy ratio analysis 64
3.4.3 Operation-wise energy budget 66
3.4.4 Direct and indirect energy input 67
3.4.5 Renewable and non-renewable energy input 67
3.5 Basic farm inputs and output cost analysis 67
3.5.1 Cost of farm inputs 68
3.5.2 Price of harvested paddy 72
3.5.3 Cost ratio analysis 72
3.6 Estimation of carbon dioxide emission in wetland paddy cultivation 74
3.7 Determination of mechanization index for the cultivation 75
3.8 Application of data envelopment analysis techniques to benchmark farmers 75
3.9 Analysis of field time distribution 77
3.10 Model development 77
3.10.1 Development of paddy yield predictive models 78
3.10.2 Development of fuel predictive models 79
3.11 Sensitivity analysis 79
3.12 Model validation 80
3.13 Development of a decision support graphical user interface 81
3.14 Methodology for computing optimum energy inputs 83
3.15 Determination of best cultivation practices for optimum energy use 86

4 RESULTS AND DISCUSSION 87
4.1 Analysis of energy inputs and output in the study area 87
4.1.1 Analysis of energy inputs based on operations 87
4.1.2 Comparison of mechanization index among operations 107
4.1.3 Analysis of energy inputs based on sources 111
4.1.4 Basic energy ratio analysis 120
4.2 Analysis of carbon dioxide emissions according to operations 122
4.3 Energy inputs and output analysis based DEA and benchmarks 123
4.3.1 Comparison of observed versus optimum energy inputs 123
4.3.2 Segregated energy inputs for efficient and inefficient farms 130
4.3.3 Segregated paddy yield level and energy output for efficient and inefficient farms 134
4.3.4 Comparison of energy ratios for efficient and inefficient farms 135

4.4 Measurement of human energy expenditures 136
4.4.1 Distribution of conventional human energy expenditure according to operations 137
4.4.2 Distribution of Armband measured human energy expenditure according to operations 138
4.4.3 Comparison of conventional versus Armband measured human energy expenditures 139

4.5 Best paddy cultivation practices 141

4.6 Cost analysis 144
4.6.1 Production cost distribution based operations 145
4.6.2 Benefit-cost analysis 151
4.6.3 Farm inputs cost analysis for efficient and inefficient farms 153
4.6.4 Comparison of benefit-cost ratios for efficient and inefficient farms 154

4.7 Time and motion study 156
4.7.1 Time and motion analysis for mechanized operations 156
4.7.2 Time and motion analysis for semi-mechanized operations 158

4.8 Proposed predictive yield models 159
4.8.1 Proposed basic paddy yield predictive model 160
4.8.2 Proposed maximum yield predictive models 162

4.9 Proposed fuel predictive models 166
4.9.1 Predictive fuel model for tillage operation 166
4.9.2 Predictive fuel model for slashing operation 170
4.9.3 Predictive fuel model for harvesting operation 172
4.9.4 Predictive fuel model for semi-mechanized operations 173

4.10 Validation of developed models 174
4.10.1 Validation result for basic yield predictive model 174
4.10.2 Validation result for fuel consumption predictive models 175

4.11 Graphical user interface for energy and cost performance appraisal 178
4.11.1 The GUI mainframe 178
4.11.2 GUI data entry frames 179
4.11.3 GUI result summary frames 187

4.12 Performance appraisal 189
4.13 Appraisal of maximum yield predictive models 192

5 CONCLUSION AND RECOMMENDATIONS 195
5.1 Conclusion 195
5.2 Recommendation 197
REFERENCES 199
APPENDICES 214
BIODATA OF STUDENT 304
LIST OF PUBLICATIONS 305
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Six major rice producing countries in the world in 2012</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Government policy and self-sufficiency level of rice in Malaysia 1956-2011</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Government incentives/subsidies given to paddy farmers in Malaysia</td>
<td>19</td>
</tr>
<tr>
<td>2.4</td>
<td>Paddy varieties recognized by MARDI, year of release and class</td>
<td>20</td>
</tr>
<tr>
<td>2.5</td>
<td>Infrastructural density in the irrigation schemes</td>
<td>22</td>
</tr>
<tr>
<td>2.6</td>
<td>Survey on energy coefficients, MJ/kg</td>
<td>31</td>
</tr>
<tr>
<td>2.7</td>
<td>Energy input per hectare for rice cultivation in northeastern China</td>
<td>32</td>
</tr>
<tr>
<td>2.8</td>
<td>Energy inputs for rice production under PTFS and BFS</td>
<td>33</td>
</tr>
<tr>
<td>2.9</td>
<td>Energy inputs for rice production in TOF and BOF</td>
<td>34</td>
</tr>
<tr>
<td>2.10</td>
<td>Operation-wise energy inputs for the production of rice</td>
<td>34</td>
</tr>
<tr>
<td>2.11</td>
<td>Summary of energy inputs (MJ/ha) and output yield (kg/ha)</td>
<td>36</td>
</tr>
<tr>
<td>2.12</td>
<td>First difference Cobb-Douglas Equation</td>
<td>38</td>
</tr>
<tr>
<td>3.1</td>
<td>Statistics of farm workers’ personal data</td>
<td>51</td>
</tr>
<tr>
<td>3.2</td>
<td>Machinery specification used by the farmers</td>
<td>52</td>
</tr>
<tr>
<td>3.3</td>
<td>Energy conversion coefficients used to compute energy values for the farm inputs</td>
<td>56</td>
</tr>
<tr>
<td>3.4</td>
<td>Economic life of farm machinery used by farmers in the study area</td>
<td>57</td>
</tr>
<tr>
<td>3.5</td>
<td>Conversion factors for carbon dioxide emission from fuel combustion</td>
<td>74</td>
</tr>
<tr>
<td>3.6</td>
<td>Operation based energy used instances</td>
<td>84</td>
</tr>
<tr>
<td>4.1</td>
<td>Distribution of average tillage energy according to sources, MJ/ha</td>
<td>88</td>
</tr>
<tr>
<td>4.2</td>
<td>Distribution of tillage energy based on number of passes</td>
<td>89</td>
</tr>
<tr>
<td>4.3</td>
<td>Comparison of second tillage run energy expenditure based field condition, MJ/ha</td>
<td>90</td>
</tr>
<tr>
<td>4.4</td>
<td>Comparison of tillage energy based run number, MJ/ha</td>
<td>91</td>
</tr>
<tr>
<td>4.5</td>
<td>Third tillage run energy expenditure based implement types, MJ/ha</td>
<td>96</td>
</tr>
<tr>
<td>4.6</td>
<td>Distribution of average energy expenditure for planting operation, MJ/ha</td>
<td>98</td>
</tr>
<tr>
<td>4.7</td>
<td>Average energy expenditure for fertilizer application, MJ/ha</td>
<td>100</td>
</tr>
<tr>
<td>4.8</td>
<td>Average energy expenditure for fertilizing based application methods, MJ/ha</td>
<td>102</td>
</tr>
</tbody>
</table>
4.9 Distribution of energy expenditure for pesticides application, MJ/ha
4.10 Distribution of energy expenditure for harvesting operation, MJ/ha
4.11 Distribution of energy expenditure for slashing operation, MJ/ha
4.12 Distribution of mechanization index according to operations
4.13 Comparison of mean energy input sources based operations, MJ/ha
4.14 Farm inputs use rate in the study area
4.15 Fertilizer use rate by type, kg/ha
4.16 Pesticides use rate by type, kg/ha
4.17 Energy ratio analysis
4.18 Energy distribution to meet per capita requirements for paddy of 110 kg/yr
4.19 Carbon dioxide emission according to operations
4.20 Observed versus computed mean energy input based sources, MJ/ha
4.21 Observed versus optimum mean human energy expenditure based operations, MJ/ha
4.22 Observed versus optimum mean fuel energy based operations, MJ/ha
4.23 Observed versus optimum mean machinery energy based operations, MJ/ha
4.24 Comparison of observed versus optimum mean fertilizer use rate, kg/ha
4.25 Comparison of observed versus optimum pesticides used rate, kg/ha
4.26 Comparison of observed versus optimum seed use rate, kg/ha
4.27 Frequency distribution of technical efficiency of the farms
4.28 Comparison of mean energy inputs for efficient and inefficient farms
4.29 Comparison of human energy expenditure for efficient and inefficient farms based operations, MJ/ha
4.30 Comparison of fuel energy expenditure for efficient and inefficient farms based operations, MJ/ha
4.31 Comparison of machinery energy expenditure for efficient and inefficient farms based operations, MJ/ha
4.32 Comparison of fertilizer use rate for efficient and inefficient farms
4.33 Comparison of seeds use rate for efficient and inefficient farms
4.34 Comparison of pesticides use rate for efficient and inefficient farms
4.35 Comparison of yield level and output energy
4.36 Comparison of energy ratios for efficient and inefficient farms
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.37</td>
<td>Distribution of conventional human energy expenditure according to operations</td>
</tr>
<tr>
<td>4.38</td>
<td>Distribution of Armband measured physical human energy expenditure according to operations</td>
</tr>
<tr>
<td>4.39</td>
<td>Comparison of Conventional versus Armband measured human energy expenditure according to operations</td>
</tr>
<tr>
<td>4.40</td>
<td>Management practices of three most efficient farms in the block</td>
</tr>
<tr>
<td>4.41</td>
<td>Distribution of mean energy input in the three reference farms, MJ/ha</td>
</tr>
<tr>
<td>4.42</td>
<td>Comparison of cost distribution for tillage operations, RM/ha</td>
</tr>
<tr>
<td>4.43</td>
<td>Summary cost distribution for seeding operations, RM/ha</td>
</tr>
<tr>
<td>4.44</td>
<td>Summary cost distribution for fertilizing operation, RM/ha</td>
</tr>
<tr>
<td>4.45</td>
<td>Summary cost distribution for pesticides used, RM/ha</td>
</tr>
<tr>
<td>4.46</td>
<td>Summary cost distribution for pesticides application operation, RM/ha</td>
</tr>
<tr>
<td>4.47</td>
<td>Summary cost distribution for harvesting operation, RM/ha</td>
</tr>
<tr>
<td>4.48</td>
<td>Summary cost distribution for slashing operation, RM/ha</td>
</tr>
<tr>
<td>4.49</td>
<td>Summary cost expenditures on farm inputs (RM/ha)</td>
</tr>
<tr>
<td>4.50</td>
<td>Benefit-cost analysis</td>
</tr>
<tr>
<td>4.51</td>
<td>Summary mean cost distribution for the efficient farms, RM/ha</td>
</tr>
<tr>
<td>4.52</td>
<td>Summary mean cost distribution for the inefficient farms, RM/ha</td>
</tr>
<tr>
<td>4.53</td>
<td>Comparison of benefit-cost ratio for the efficient and inefficient farms</td>
</tr>
<tr>
<td>4.54</td>
<td>Machinery field performance for mechanized operations</td>
</tr>
<tr>
<td>4.55</td>
<td>Distribution of field capacity according to farm size, ha/h</td>
</tr>
<tr>
<td>4.56</td>
<td>Time and motion analysis for semi - mechanized operations</td>
</tr>
<tr>
<td>4.57</td>
<td>Estimated basic yield predictive model parameters</td>
</tr>
<tr>
<td>4.58</td>
<td>Estimated maximum yield predictive model 4.2 parameters</td>
</tr>
<tr>
<td>4.59</td>
<td>Estimated maximum yield predictive model 4.3 parameters</td>
</tr>
<tr>
<td>4.60</td>
<td>Fuel consumption model parameters for tillage operation</td>
</tr>
<tr>
<td>4.61</td>
<td>Fuel consumption model parameters for slashing operation</td>
</tr>
<tr>
<td>4.62</td>
<td>Correlation analysis on fuel consumption model for slashing operation</td>
</tr>
<tr>
<td>4.63</td>
<td>Fuel consumption model parameter for harvesting</td>
</tr>
</tbody>
</table>
operation

4.64 Fuel consumption model parameters for semi-mechanized operation 173
4.65 Correlation analysis on fuel consumption model parameters for semi-mechanized operations 174
4.66 T-statistics for basic measured and predicted yield for fuel consumption for tillage 175
4.67 T-statistics for measured and predicted fuel consumption for harvesting 176
4.68 T-statistics for measured and predicted fuel consumption for semi-mechanized operations 177
4.69 T-statistics for measured and predicted fuel consumption for tillage 178
4.70 Determination of excess energy usage in Farm 1, MJ/ha 190
4.71 Determination of excess energy usage in Farm 2, MJ/ha 191
4.72 Determination of excess energy usage in Farm 3, MJ/ha 191
4.73 Determination of excess energy usage in Farm 4, MJ/ha 192
4.74 Determination of excess energy usage in Farm 5, MJ/ha 192
4.75 T-statistics for measured and predicted maximum yield 193

A.1 Tillage energy distribution according to sources, MJ/ha 214
A.2 Tillage energy data for farms with three tillage runs, MJ/ha 215
A.3 Tillage energy data for farms with two tillage runs, MJ/ha 216
A.4 Tillage energy data second run in flooded fields, MJ/ha 216
A.5 Tillage energy data second run in dry fields, MJ/ha 217
A.6 Energy distribution first tillage run, MJ/ha 218
A.7 Energy distribution second tillage run, MJ/ha 219
A.8 Energy distribution all farms third tillage run, MJ/ha 220
A.9 Energy distribution third tillage run with rotavator, MJ/ha 221
A.10 Energy distribution third tillage run with chisel plow, MJ/ha 221
A.11 Energy distribution for planting operation, MJ/ha 222
A.12 Energy distribution for fertilizer application, MJ/ha 223
A.13 Energy distribution for fertilizer application by blower broadcasting, MJ/ha 224
A.14 Energy distribution for fertilizer application by manual broadcasting, MJ/ha 225
A.15 Energy distribution for pesticides application, MJ/ha 226
A.16 Energy distribution for harvesting operation, MJ/ha 227
A.17 Energy distribution for slashing operation, MJ/ha 228
A.18 Distribution of farm machinery mechanization index based operations (%) 229
A.19 Distribution of human labor work rate based operations, h/ha
A.20 Distribution of fuel use rate based operations, l/ha
A.21 Distribution of machinery use rate based operations, kg/ha
A.22 Distribution of average farm inputs used by the farmers
A.23 Distribution of fertilizer use rate by type, kg/ha
A.24 Distribution of pesticides use rate by type, kg/ha
A.25 Distribution of observed energy input used in running DEA
A.26 Distribution of optimum energy input obtained through benchmarking
A.27 Distribution of observed human energy based operations, MJ/ha
A.28 Distribution of optimum human energy based operations, MJ/ha
A.29 Distribution of observed fuel energy based operations, MJ/ha
A.30 Distribution of optimum fuel energy based operations, MJ/ha
A.31 Distribution of observed machinery energy based operations, MJ/ha
A.32 Distribution of optimum machinery energy based operations, MJ/ha
A.33 Distribution of observed fertilizer use rate, kg/ha
A.34 Distribution of optimum fertilizer use rate, kg/ha
A.35 Distribution of optimum pesticides used rate, kg/ha
A.36 Observed and optimum seed use rate, kg/ha
A.37 Distribution of energy expenditure according to sources for inefficient farms, MJ/ha
A.38 Distribution of energy expenditure according to sources for efficient farms, MJ/ha
A.39 Distribution of human energy expenditure for efficient farms based operations, MJ/ha
A.40 Distribution of human energy expenditure for inefficient farms based operations, MJ/ha
A.41 Distribution of fuel energy expenditure for efficient farms based operations, MJ/ha
A.42 Distribution of fuel energy expenditure for inefficient farms based operations, MJ/ha
A.43 Distribution of machinery energy expenditure for efficient farms based operations, MJ/ha
A.44 Distribution of machinery energy expenditure for inefficient farms based operations, MJ/ha
A.45 Distribution of fertilizer use rate for efficient farms
A.46 Distribution of fertilizer use rate for inefficient farms
A.47 Seed use rate for efficient farms
A.48 Seeds use rate for inefficient farms
A.49 Distribution of pesticides use rate for efficient farms
<table>
<thead>
<tr>
<th>H.3</th>
<th>Fuel predictive model validation data for harvesting operation</th>
<th>302</th>
</tr>
</thead>
<tbody>
<tr>
<td>H.4</td>
<td>Fuel predictive model validation data for semi mechanized operations</td>
<td>303</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Trend in world rice production 1990 – 2012 (Adapted from FAOSTAT, 2014)</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Irrigated and rainfed rice in East, South and Southeast Asia</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Rice harvested area, production and import in Malaysia 2000-2013</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>National average rice yields in Malaysia 2000-2013</td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>Paddy granary areas in Malaysia</td>
<td>15</td>
</tr>
<tr>
<td>2.6</td>
<td>Paddy granary cultivated land area 1998-2013</td>
<td>16</td>
</tr>
<tr>
<td>2.7</td>
<td>Country-wide paddy production distribution based on eco-systems</td>
<td>17</td>
</tr>
<tr>
<td>2.8</td>
<td>Country-wide paddy yield distribution based ecosystems</td>
<td>17</td>
</tr>
<tr>
<td>2.9</td>
<td>Wetland paddy productions by granary areas 1998-2013</td>
<td>18</td>
</tr>
<tr>
<td>2.10</td>
<td>Paddy yield level at granary areas 1998-2013</td>
<td>18</td>
</tr>
<tr>
<td>2.11</td>
<td>The role of BERNAS in the rice industry in Malaysia</td>
<td>21</td>
</tr>
<tr>
<td>2.12</td>
<td>Typical layouts of paddy lots at the granary area</td>
<td>22</td>
</tr>
<tr>
<td>2.13</td>
<td>Available infrastructural facilities in the irrigation scheme</td>
<td>23</td>
</tr>
<tr>
<td>2.14</td>
<td>Sequence of land preparation activities in a typical lowland paddy farm</td>
<td>24</td>
</tr>
<tr>
<td>2.15</td>
<td>Systems of rice planting</td>
<td>26</td>
</tr>
<tr>
<td>2.16</td>
<td>Common methods of crop care and protection</td>
<td>28</td>
</tr>
<tr>
<td>2.17</td>
<td>Methods of rice harvesting</td>
<td>29</td>
</tr>
<tr>
<td>2.18</td>
<td>Data flow for fuel consumption in mechanized operation</td>
<td>39</td>
</tr>
<tr>
<td>2.19</td>
<td>Fuel combustion process</td>
<td>42</td>
</tr>
<tr>
<td>3.1</td>
<td>Layout of IADA North-West Selangor showing irrigation schedule areas (ISA)</td>
<td>45</td>
</tr>
<tr>
<td>3.2</td>
<td>Relative humidity, atmospheric temperature, rainfall distribution and duration of activities in the offseason March – July, 2013 paddy cultivation at Block E5 Parit 5 Timur Sungai Besar</td>
<td>46</td>
</tr>
<tr>
<td>3.3</td>
<td>Relative humidity, atmospheric temperature and rainfall distribution and duration of activities in the main season September, 2013 – January, 2014 paddy cultivation at Block E5 Pant 5 Timur Sungai Besar</td>
<td>46</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.4</td>
<td>Weather station located in the study area</td>
<td>47</td>
</tr>
<tr>
<td>3.5</td>
<td>System boundary specifications</td>
<td>48</td>
</tr>
<tr>
<td>3.6</td>
<td>Weighing fertilizers in the field before application</td>
<td>49</td>
</tr>
<tr>
<td>3.7</td>
<td>Refilling machinery tanks with measured amount of fuel after operation</td>
<td>50</td>
</tr>
<tr>
<td>3.8</td>
<td>Armband BodyMedia system</td>
<td>53</td>
</tr>
<tr>
<td>3.9</td>
<td>Flowchart for data collection</td>
<td>54</td>
</tr>
<tr>
<td>3.10</td>
<td>Farmer filling irrigation pipe with water preparatory to flooding his farm</td>
<td>55</td>
</tr>
<tr>
<td>3.11</td>
<td>Farmer making footpath using lorong pisau</td>
<td>56</td>
</tr>
<tr>
<td>3.12</td>
<td>Demonstration of efficiency frontier for constant return to scale DEA</td>
<td>58</td>
</tr>
<tr>
<td>3.13</td>
<td>Flowchart for computing optimum energy inputs</td>
<td>60</td>
</tr>
<tr>
<td>3.14</td>
<td>Demonstration of common frontier between reference (1) and referent (2) farms</td>
<td>62</td>
</tr>
<tr>
<td>3.15</td>
<td>Frontier approach to computing optimum energy inputs</td>
<td>63</td>
</tr>
<tr>
<td>4.1</td>
<td>Distribution of average tillage energy based sources</td>
<td>66</td>
</tr>
<tr>
<td>4.2</td>
<td>Tractor-rotary tiller combinations performing the first tillage operation</td>
<td>68</td>
</tr>
<tr>
<td>4.3</td>
<td>The scene of one of the paddy farms after the first tillage operation</td>
<td>69</td>
</tr>
<tr>
<td>4.4</td>
<td>Scene of a typical paddy farm after the second tillage run on dry soil</td>
<td>71</td>
</tr>
<tr>
<td>4.5</td>
<td>Scene of a flooded paddy farm after the second tillage run</td>
<td>73</td>
</tr>
<tr>
<td>4.6</td>
<td>Tractor–chisel plow combinations performing third tillage third tillage run in one of the study farms</td>
<td>75</td>
</tr>
<tr>
<td>4.7</td>
<td>Tractor-rotary tiller combinations performing third tillage run in one of the study farms</td>
<td>77</td>
</tr>
<tr>
<td>4.8</td>
<td>Scene of one of the study farms after the third tillage run</td>
<td>79</td>
</tr>
<tr>
<td>4.9</td>
<td>A farm worker conveying pre-germinated paddy seeds to loading points along the boundary of a farm in the study area</td>
<td>80</td>
</tr>
<tr>
<td>4.10</td>
<td>Farmer workers performing paddy seeding operation on puddle soil in one of the study farms</td>
<td>81</td>
</tr>
<tr>
<td>4.11</td>
<td>Farmer conveying fertilizer to reloading point</td>
<td>83</td>
</tr>
<tr>
<td>4.12</td>
<td>Farmer applying fertilizer to growing paddy plants with power knapsack blower</td>
<td>85</td>
</tr>
<tr>
<td>4.13</td>
<td>Farmer broadcasting fertilizer manually to growing paddy plants</td>
<td>87</td>
</tr>
<tr>
<td>4.14</td>
<td>A farm worker performing pesticide application using power knapsack blower</td>
<td>89</td>
</tr>
<tr>
<td>4.15</td>
<td>New Holland combine harvester performing</td>
<td>90</td>
</tr>
</tbody>
</table>
harvesting operation in one of the study farms

4.16 Scene of a typical paddy farm after slashing operation 106
4.17 Operation-wise energy distribution 111
4.18 Energy distribution according to sources 112
4.19 Distribution of machinery energy based operations 114
4.20 Distribution of fuel energy expenditure based operations 115
4.21 Distribution of NPK use rate the farmers 117
4.22 Distribution of pesticides use rate by type 116
4.23 Relationship between paddy yield and optimum total energy input 124
4.24 Manual fertilizer application 137
4.25 Performing harvesting operation 137
4.26 Variation of predicted paddy yield with changes in energy inputs 161
4.27 Variation of paddy yield with respect to nitrogen application 162
4.28 Variation of predicted maximum paddy yield with changes in energy inputs 165
4.29 Variation of predicted fuel consumption with changes in field capacity, implement weight and tractor engine power in the first tillage run with rotavator on dry soil 167
4.30 Variation of predicted fuel consumption with changes in field capacity, implement weight and tractor engine power in the second tillage run with rotavator on dry soil 168
4.31 Variation of predicted fuel consumption with changes in field capacity, implement weight and tractor engine power in the second tillage run with rotavator on a wet soil 169
4.32 Variation of predicted fuel consumption with changes in field capacity, implement weight and tractor engine power in third tillage run with rotavator on a wet soil 170
4.33 Variation of predicted fuel consumption with changes in field capacity, implement weight and tractor engine power in third tillage run with chisel plow on a wet soil 170
4.34 Variation of fuel consumption with changes in field capacity and tractor engine power in performing the slashing operation 172
4.35 Predicted and measured paddy yield 175
4.36 Predicted and measured fuel consumption in tillage operation 176
4.37 Predicted and measured fuel consumption for harvesting operation 177
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.38</td>
<td>Predicted and measured fuel consumption for semi-mechanized operations</td>
</tr>
<tr>
<td>4.39</td>
<td>GUI mainframe of the developed EnergyAnalyst</td>
</tr>
<tr>
<td>4.40</td>
<td>Land preparation data entry and analysis frame</td>
</tr>
<tr>
<td>4.41</td>
<td>Seeding operation data entry and analysis frame</td>
</tr>
<tr>
<td>4.42</td>
<td>Message confirmation box for energy and cost results</td>
</tr>
<tr>
<td>4.43</td>
<td>Results section for the energy and cost of seeding operation</td>
</tr>
<tr>
<td>4.44</td>
<td>Message confirmation box for seeding energy and cost transfer</td>
</tr>
<tr>
<td>4.45</td>
<td>Fertilizer application data entry and energy and cost analysis frame</td>
</tr>
<tr>
<td>4.46</td>
<td>Pesticides application data entry and energy and cost analysis frame</td>
</tr>
<tr>
<td>4.47</td>
<td>Harvesting operation data entry and energy and cost analysis frame</td>
</tr>
<tr>
<td>4.48</td>
<td>Energy and cost data entry and analysis frame for slashing operation</td>
</tr>
<tr>
<td>4.49</td>
<td>Basic energy and cost statistics analysis frame</td>
</tr>
<tr>
<td>4.50</td>
<td>Basic energy and cost graphs</td>
</tr>
<tr>
<td>4.51</td>
<td>Optimum energy inputs and paddy yield prediction analysis frame</td>
</tr>
<tr>
<td>4.52</td>
<td>Comparison of measured and predicted maximum paddy yield</td>
</tr>
<tr>
<td>4.53</td>
<td>Predicted maximum yield based on model 4.2 and measured yield</td>
</tr>
<tr>
<td>4.54</td>
<td>Predicted maximum yield based on model 4.3 and measured yield</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of the study

Rice is a cereal crop grown and consumed on every continent of the world because of its adaptive capabilities which enables it to grow in areas of differing soil types and climatic conditions (Ferrero and Tinarelli, 2008). It ranks as the top major food crop in the world in terms of the production volume catering for the food requirements of more than half of the world population. The world production of rice in 2012 was estimated to be 719,738,273 tons harvested from 163,199,090 ha of farmlands with average yield level of 4.41 tons/ha (FAOSTAT, 2014). In the same year, Southeast Asian countries with combined rice production output of 217,174,887 tons accounted for about 30% of the world’s total production.

About 692,340 ha of arable land in Malaysia were subjected to rice cultivation in 2012. The country has eight rice granary areas which practice double cropping per year. The granary areas account for about 72% of lowland rice cultivated in the country (Najim et al., 2007). Considerable upland rice cultivation is also done in Malaysia (Hanafi et al., 2009). The year round rainfall distribution, tropical temperatures and high humidity serving as great assets supporting multiple paddy cropping systems in the country. In the past four decades successive governments in Malaysia have put emphasis on rice production being the national staple food, with a view to achieving self-sufficiency in the production. The emphasis on achieving self-sufficiency in rice production has led to considerable infrastructural developments. Such as construction of good access roads to paddy fields, irrigation/drainage facilities, provision of extension services, machinery packages, in addition to the subsidy and special incentive support packages, including guaranteed minimum price and bumper harvest prize to farmers. Despite the huge yearly budgetary expenditure dedicated to supporting paddy production, the average national yield of 3.782 tons/ha (FAOSTAT, 2014) is still about 10% lower than the world average.

Rice in Malaysia is not only the national staple food but as well its cultivation in the country is a source of employment/income to majority of rural dwellers. As much as 150,000 farmers depend exclusively on rice cultivation for their overall sustenance (Najim, 2007). Despite massive government support extended to rice farmers over the years through subsidy which virtually covers all farm inputs as mentioned in the preceding paragraph, the country is still not self-sufficient in rice production. Nearly one third of the country’s rice requirement is met through import. Although according to FAOSTAT (2014), from 1970 to 2010 rice productivity in Malaysia rose from 2.386 t/ha to 3.782 t/ha (up 58.51%), however the area under rice cultivation declined 4.4% when it drops from 704,767 ha to
673,745 ha, population rose by 1.6 times and rice import jumped from 355,450 tons to 931,444 tons (i.e. increased 162.05%). Corresponding to these jumps, the rice import bill skyrocketed 10.91 times from $42,011,000 in 1970 to $500,369,000 in 2010, thereby straining the economy through foreign exchange depletion. Given the country’s current population figures of 28,401,000 and per capita rice consumption of 110 kg/year, for the country to achieve 100% self-sufficiency from the present 73% sufficiency level, rice production must reach 3,216,100 tons from the present production level of 2,548,000 tons. Furthermore, given the present trend in annual population growth of 1.43% the country’s population is projected to hit 32.56 million people by 2020. As such rice production must reach 3,581,600 tons by the said year in order to attain 100% self-sufficiency level. In other words for the country to be 100% self-sufficient in rice, production will have to be raised by 1,033,600 tons, up 40.57% from the current production level. Assuming the current land area under rice cultivation remains unchanged, average national yield must reach 5.32 tons/ha by 2020 if the country must be 100% self-sufficient.

Production increase is generally achieved by either increasing area under rice cultivation or increasing farm land productivity through optimization in the use of farm inputs or both. Increasing rice production in Malaysia through area expansion is not feasible because of limited arable land suitable for rice cultivation in the country. Malaysia is unable to have a breakthrough in terms of achieving 100% rice self-sufficiency level, because the recorded increases in rice productivity over the years was not commensurate with the decline of land under rice cultivation, population explosion and the change in the eating habit of the people. In order for the country to be fully sufficient in rice production, productivity must be increased tacitly in such a manner pursued by some countries with similar problems of dwindling land area under rice cultivation e.g. China which was able to raised production 74.37% by nearly doubling its rice productivity level.

Furthermore, it is worth mentioning here that rice production in Malaysia is expensive compared to what obtains in some neighboring countries. As a matter of fact the country lacks competitive advantage (Murad et al., 2008) in terms of local rice production and this suggests that paddy production is neither viable nor sustainable in the country (Man and Sami, 2009). Najim et al., (2007) claimed that imported white milled rice cost less by about RM590/ton compared to the cost of similar grade of rice produced locally. Assuming a total annual production of 2.4 million tons and a conservative production cost difference of only RM300/ton between local and imported rice in favor of imported rice, this translates into a staggering sum of RM720 million/annum in lost revenue to local paddy farmers. It represents a clear case of financial loss the side effects of which is multi-faceted and must not be allowed to go unchecked. Particularly that incidence of poverty is higher among paddy farmers in the country compared to other segments of the population engaged in other occupations. Study conducted by Man and Sami (2009) revealed that more than 35% of the farmers surveyed had income in the range of RM3000 – RM6000/annum with about 2 – 6 dependents. Increasing rice productivity will go a long way in enhancing the
quality of life for the farmers by increasing profitability, sustainability and above all self-reliance.

Considering the abundant water resources, productive land (though greatly limited) and the performance of high yielding rice varieties introduced in Malaysia which are key factors in boosting rice production, the country has the potential to increase rice productivity not only to achieve self-sufficiency level but as well become a net rice exporting country. The average annual rainfall in the country is well above 2,500 mm higher than in China, Thailand, Australia, Vietnam and Myanmar and is a huge competitive edge over these countries. The rice varieties introduced in the country by the Malaysian Agricultural Research and Development Institute (MARDI), particularly the MR219 and MR220, are high yielding and so far are doing well and have potential output of up to 10 tons/ha. At individual farm level, reported cases of bumper harvest greater than 8 tons/ha exist. With a total annual land area of 673,745 ha dedicated to rice cultivation, if the national average rice yield is raised to 6 tons/ha, the country’s rice output will hit 4 million tons, and this could easily place Malaysia in the league of rice exporting nations even at the face of population growth. The major drawback to realizing this being the huge differences in rice yield recorded at the granary areas. For example whereas the farmers IADA North-west Selangor obtained mean yield above 5 tons/ha, in other irrigation schemes example at Kemasin Semerak, the farmers obtained yield as low as 2.877 tons/ha (DOA, 2010). The high disparity in rice yield across the country continues to be a strong barrier for its quest to achieve the desired 100% self-sufficiency in rice production with the given limited paddy cultivation area.

The huge difference in yield particularly at farm levels is worrisome, hence its nature need to be investigated, causes determined and remedial actions effectively proffered. The best viable approach is to conduct a thorough on-farm input and output audit (energy analysis) study, which will cover all the operations involved in wet paddy cultivation, in the most productive irrigation scheme in the country. In this way the technical efficiency of the farmers involved in the study along with their cultivation practices would be uncovered. So that the practices of the most efficient farmers among them, could serve as models for the less performing farmers to adopt, especially by farmers operating in the less productive irrigation schemes in the country. This becomes necessary because any meaningful improvement, in rice productivity will only be achieved through effective and efficient application of available farm inputs. In a nutshell, a possible way of raising farm productivity at reduced cost is through optimum use of resources, to which on-farm energy analysis plays a central role by addressing the issues of excess energy utilization. Energy analysis is a sure methodology for providing synthesized information, useful to both farmers and agricultural policy makers, regarding best practices capable of promoting optimum energy resource utilization, rice productivity and profitability. It has especially been identified as a valuable tool for computing financial savings and fossil fuel conservation (Lu et al., 2010).
In crop production, energy analysis is usually performed to determine where and how energy is being used, the information obtained is then used to improve efficiency and reduce costs. For the information to be of great importance to the farmers however, a critical performance assessment methodology is required to expose level of inefficiencies in the farms in their use of energy inputs, and in suggesting appropriate practices to remedy wastage and make the occupation profitable. Such capabilities are found in Data Envelopment Analysis (DEA), which is a mathematical programming model applied to observation data and it provides a way of obtaining empirical estimates of relationships (Cook and Zhu, 2005). It is an excellent and easily to used methodology for modeling operational processes for performance evaluations. Unlike traditional statistical approaches used to evaluate farmers' performance relative to an average farmer (central tendency), it compares each farmer with the best farmers (frontier approach). DEA is most useful when a comparison is intended against best farmers and it opened up possibilities for use in scenarios that have been resistant to other approaches. Particularly in complex cases with an unknown relationship between inputs and outputs (e.g. ability to quantify effects of varying energy inputs on rice yield) involved.

DEA has found wide application in the area of energy optimization studies in agriculture for its ability to benchmark farmers and in identifying their technical efficiencies. It was used in energy optimization studies for canola production (Unakitan et al., 2010 and Mousavi-Avval et al., 2011), kiwi production (Mohammadi et al., 2011), apple production (Mousavi-Avval et al., 2011b) and broiler production (Heidari et al., 2011b). In DEA there are a number of producers also called decision making units (DMUs) using varying levels of inputs to generate varying levels of outputs. The basic idea behind DEA is that the efficiency of a DMU can be determined by the ratio of its weighted output and weighted input. DEA attempts to determine which of the DMUs are most efficient and point out specific inefficiencies of other DMUs. In crop production the DMUs are the participating farms in the study.

1.2 Statement of the problem

Rice production involves several energy expending operations which include seed selection, seedbed and land preparation, planting, weeding, fertilizing, pest management, harvesting, threshing, drying and irrigation activities. These operations are conducted using energy from different sources including human, fuel, machinery, fertilizer, pesticides and seeds. Generally, in crop production energy is used directly in operating machinery and equipment, and indirectly through the application of fertilizer and agro-based chemicals. Availability of the right energy in sufficient quantity, at the right time, is a prerequisite for the timely completion of rice production operations, which is a key to securing maximum yield. In order to achieve maximum benefits, farmers must have the correct energy mix at the right time. Too much energy input signifies uneconomic production and therefore waste, which may lead to decrease or loss in benefit, increase in global warming and pose some stress on the environment. Too little energy than
required, makes it difficult to attain maximum productivity level to guarantee the required level of food sufficiency.

Modern paddy cultivation in Malaysia involves the use of different types of machinery that are powered through the combustion of fossil fuel, which is subsidized by government. Information on the quantity of fuel use could easily indicate the future fuel cost the farmers will have to contend with, in the absence of the government subsidies and encourage them to adopt farming practices that will optimize fuel use more rigorously. Furthermore, data generated on the fuel consumption by the machinery in performing field operations, could be used to develop fuel predictive models, for use at farm level by the farmers and in quantifying the level of carbon dioxide (CO_2) emissions due to fuel use in rice cultivation. From an environmental point of view, any reduction in fuel use, in rice cultivation will have a commensurate positive effect on the reduction of CO_2 emissions thereby promoting sustainable production. As for the government, information about fuel consumption will allow them to know the exact additional financial burden a farmer is likely to face with each reduction in subsidy, and the potential price hike on rice and rice products in the market. In this way, adequate provisions could be made to cushion the undesired effects of additional economic burden on the consumers. Furthermore, information about fuel consumption per unit area will enable government to evaluate it commitments in meeting ratified international conventions (such as Kyoto Convention) on GHG emission reduction from rice production sector. The country is a signatory to Kyoto protocol with commitment to reduce greenhouse gas emissions by 40% in 2020 (Shafie et al., 2011).

The lack of enough labor force in the paddy cultivation sector is another area of great concern both to farmers and agricultural policy makers because of its strong influencing effects on production cost and the need for achieving timeliness in completion of critical farm operations in order to avoid undue losses. In the last two decades labor availability in agriculture in Malaysia has declined by about 21.83% from 1,901,000 people in 1993 to 1,486,000 people in 2013 (FAOSTAT, 2014). Presently, studies have shown imported white milled rice cost less compared to similar grade of rice produced locally. One way to reduce production cost is by mechanizing operations with the highest human labor engagement in paddy production. The need for human labor in agriculture reduces with an increase in the level of mechanization (Baruah and Bora, 2008). Complete information about the level of machinery inclusion in each operation is required for effective assessment of farm mechanization status for paddy production system. Such information has the potentials to reveal critical operations requiring mechanization, so as to enhance paddy yield through efficient and timely completion of operations. With correct farm machinery of appropriate power ratings, availability of water for irrigation and proper planning, paddy cropping intensity per year could be increased, thereby boosting the annual production.

Currently, there are no documented studies regarding the extent of the machinery involvement in typical direct seeding wetland paddy cultivation systems, in Malaysia. Information about the level of machinery involvement
at each level of paddy cultivation could be used by the agricultural policy makers in their tasks of making comprehensive farm mechanization plan for the country, in line with the rapid modernization and industrialization going on in the country. The developments are increasingly making paddy production less attractive to the educated youths partly because of the perceived field work drudgeries and the widely acknowledged low income earned by paddy farmers compared to earnings made by segment of the society engaged in other occupations.

Another area of concern is in the used of mineral fertilizer and chemical pesticides. Although rice yield is said to increase with an increase in fertilizer input (Fan et al., 2005), excessive application of nitrogen fertilizer pollutes the environment, ground water and may lead to surface erosion and the leakage of nitrogen (Ya-Guang et al., 2010). Considering the fact that about 2/3rd of the country's annual fertilizer requirements are met through imports, high price change for fertilizer in the global market may likely affect the level of subsidy offered by government on fertilizer to farmers. With or without subsidy, paddy farmers must make profit and continue to make profit for them to remain in the occupation. Profit making and its consolidation are only possible when inefficiencies in the system are eliminated – i.e. the need for optimum resource utilization. The optimum use of fertilizer is necessary in order to promote sustainable rice production at reduced cost. With an on-farm energy study, the amount of fertilizer required to achieve maximum yield could be ascertained through a modeling approach. Such a modeling work in direct seeding paddy cultivation is lacking in the database.

Similarly although the significant contribution of chemical pesticides in improving paddy productivity is well documented however, on the one hand, it is obvious that an excessive use of pesticides, apart from polluting the environment, has some negative effects on the growing paddy plants in terms of their growth and survivability. On the other hand, using the pesticides below recommended dose may cause the pests to mutate and becomes resistant to the chemicals, leading to the need for increased application frequencies. The key to good pesticides management includes adherence to manufacturers’ recommendations in terms of mixing ratio and dosage used per hectare, in addition to the employment of appropriate technology in performing the applications. One way of raising the farmers’ awareness about their compliance level in the use of the chemicals, is by having a computing algorithm that could indicate the required volume of solution to use, while considering the recommended mixing ratio and application dose for the chemicals. This needed computing algorithm is to date not known to exist in the literature.

Since efficient management of resources in any production system relates the production of outputs with maximum economic returns. A mathematical model that relates inputs with outputs is used by researchers to gain insight into the responses of output due to changes in inputs, so that the most influential input variables are adequately managed for maximum yield. In crop production, yield is globally acknowledged to have a positive correlation with energy input (Singh, 1999). Knowledge of this relationship
stirs the interests of researchers towards performing energy analysis with a view to improving the performance of the production system through modeling. Several energy studies in crop production that link energy flows with crop yield are available in the literature. However, the currently available models do not predict the maximum yield a farmer should expect from a given level of energy inputs. Thus, it is desirable for a farmer to have a user-friendly model that can predict expected maximum yield from a given level of primary energy inputs (seeds, labor, machinery, fuel, fertilizer and pesticides). The model could readily serve as a tool for performance appraisal of previous paddy cultivations and quantification of the level of underperformance, so that appropriate remedial actions can be taken to improve future paddy productivity. To our knowledge, to date there is no energy study that have investigated optimum energy input in the direct seeding wetland paddy cultivation system and related it with the crop yield.

Considering all these challenges, a comprehensive on-farm energy audit study for direct seeding paddy cultivation targeted at optimizing the use of farm inputs, will be a welcomed development to farmers, as well as the agricultural policy makers in the country. The study results when integrated into a computer program, will not only help foster our understandings about the likely effect of changes in the energy mix on paddy productivity, but as well accord farmers the opportunity to make informed decisions in selecting energy mix to maximize crop productivity. To ensure food security and get rid of poverty among the paddy farmers, rice productivity must increase appreciably and at reduced cost. Therefore, an easy to use computing system is required to serve as a decision support system to the farmers in their quest to achieve higher yield with less use of farm inputs.

1.3 Research objectives

The main aim of this research is to develop an energy optimization model for direct seeding rice cultivation system in Malaysia with due regards to farm size and cultural practices employed by the farmers.

The specific aims of the current study include:

1. Determine the energy inputs and production cost for direct seeding wetland paddy cultivation in Malaysia.
2. Develop a regression model for predicting maximum rice yield for given levels of energy inputs.
3. Develop a robust computer decision support program for computing optimum energy and cost requirements based on farmers’ supplied paddy cultivation data.
4. Identify best agricultural practices with respect to optimum energy use and cost obligation to ensure sustainable paddy production.
1.4 Scope of the study

Paddy farmers in Malaysia practice both direct seeding and transplanting system of cultivation, this study is limited to the direct seeding system of cultivation. Farmers practicing direct seeding system of paddy cultivation perform about eleven different types of operations namely: tillage, seeding, fertilizing, spraying, harvesting, slashing, liming, leveling, irrigation, dredging of drainages and foot path making activities in some seasons. The research is however, limited to evaluating six standard operations (tillage, seeding, fertilizing, spraying, harvesting and slashing) practiced by farmers in the study area. For the purpose of developing yield predictive models, the study utilized energy data from five operations (tillage, seeding, fertilizing, spraying and harvesting) because of their relationship with paddy yield.

Generally, the scope of the study is limited to developing computer based decision support program, for evaluating energy and cost expenditures in wetland paddy cultivation, so that wasteful uses of energy hence, cost expenditures therein, may be pinpointed and described more precisely vis-à-vis cultural practices of the farmers. The study while using measured farm input data, shall offer a complete platform for computing the various measures of energy and cost indicators; generate reports on machinery utilization, and to effectively appraise the performance of farmers in their use of energy resources.
REFERENCES

Barber, A., 2004. Seven case study farms: total energy and carbon indicators for New Zealand arable and outdoor vegetable production. AgriLINK New Zealand Ltd.

200

bullock farming systems in Bangladesh. *Journal of Biological Sciences*, 1(9): 873-876.

Romanelli, T.L. and Milan, M., 2012. Machinery management as an environmental tool – material embodiment in agriculture. *Agric Eng*

