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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of 

the requirement for the degree of Master of Science 

KINETICS OF FOULING DEPOSIT REMOVAL OF PINK GUAVA PUREES 

IN A CLEANING-IN-PLACE TEST RIG 

By 

NURUL IZZAH BINTI KHALID 

May 2015 

Chairman  : Norashikin Binti Ab. Aziz, PhD  

Faculty   : Engineering 

Cleaning-in-place (CIP) is an important process in food factories, to maintain a 

hygienic processing environment. The development of economic CIP requires 

comprehensive studies of the removal kinetics of the fouling deposit. This work was 

carried out to investigate the removal kinetics of pink guava puree (PGP) fouling 

deposits, which to the knowledge of the author has not yet been reported anywhere. 

This work is divided into three parts which are: (1) design of the cleaning test rig and 

simulation validation of the design, (2) development of in-situ and ex-situ methods to 

prepare the PGP fouling deposit, and (3) investigation of the removal kinetics of the 

PGP fouling deposits by using the cleaning test rig under different cleaning parameters. 

The design of the lab-scale cleaning test rig was based on the standard design of a 

recirculating water flow channel. The entry length of 1.016m was determined from 

computational fluid dynamics (CFD) simulation, which was performed to simulate the 

cleaning environment in the rig, and to ensure the functionality of the rig was in order 

before the rig was fabricated. Both methods on developing the physical model of PGP 

fouling deposit was compared and results have shown than an ex-situ method is a 

practical method to apply. An ex-situ method was able to form reproducible samples of 

PGP fouling deposit with low production time and minimal consumptions on raw 

materials.  In part three, only alkaline cleaning stage was considered in this study. The 

cleaning study was performed at different parameters: temperatures (35-70 °C), fluid 

velocities (0.6-1.5 m/s) and NaOH concentrations (0-2.0 wt%). Cleaning profiles have 

shown two stages: rapid and gradual stages. Cleaning response in both stages was 

investigated by employing an effective removal rate constant, k2. The findings 

suggested that alkaline rinse can be divided into two stages with the following 

conditions: (1) conditions for rapid stage are 70 °C, 1.2 m/s, 1.5 wt% NaOH, with 

trapid=2 minutes; and (2) conditions for gradual stage are 35 °C, 1.5m/s, water (0wt% of 

NaOH) and with tgradual=10 minutes.  The results of the cleaning time suggest that the 

shortest cleaning time (less than 12 minutes) can be found at 1.5 m/s, 70 °C and with a 

NaOH concentration of 1.0, 1.5 and 2.0 wt%. Findings from this work suggest two 

cleaning schemes for alkaline cleaning stage, which classified as 1) economical 

cleaning scheme and 2) fast cleaning scheme. In economical cleaning scheme, the 

industries need to identify the rapid and the gradual stage for their cleaning process and 

this cleaning scheme will reduce the cost on chemicals and utilities. While for fast 

cleaning scheme, the application of excessive cleaning parameters is needed. However, 

the cleaning cost is expected to increase significantly.   
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Master Sains 

KINETIK PENYINGKIRAN UNTUK MENDAPAN KOTORAN DARI PURI 

JAMBU BATU MERAH JAMBU DALAM KELENGKAPAN UNTUK UJIAN 

PEMBERSIHAN  

Oleh 

NURUL IZZAH BINTI KHALID 

Mei 2015 

Pengerusi : Norashikin Binti Ab. Aziz, PhD  

Fakulti  : Kejuruteraan 

Pembersihan setempat adalah suatu proses yang penting di kilang makanan, bagi 

mengekalkan persekitaran pemprosesan yang bersih. Pembangunan pembersihan 

setempat yang ekonomi memerlukan kajian komprehensif berkenaan  kinetik 

penyingkiran untuk mendapan kotoran. Kerja penyelidikan ini dijalankan untuk 

mengkaji kinetik penyingkiran untuk mendapan kotoran dari puri jambu batu merah 

jambu (PJBMJ), untuk pengetahuan penulis belum pernah dilaporkan di mana-mana 

sahaja. Kerja penyelidikan ini terbahagi kepada tiga bahagian iaitu: (1) reka bentuk 

kelengkapan untuk ujian pembersihan dan pengesahsahihan reka bentuk melalui 

penyelakuan, (2) pembangunan kaedah penyediaan mendapan kotoran PJBMJ secara di 

situ dan eksitu, dan (3) kajian mengenai kinetik penyingkiran untuk mendapan kotoran 
PJBMJ dengan menggunakan kelengkapan ujian pembersihan pada parameter 

pembersihan yang berbeza. Kelengkapan ujian pembersihan yang berskala makmal 

direka berdasarkan reka bentuk piawai bagi saluran aliran air yang beredar semula. 

Panjang masukan 1.016m telah ditentukan daripada penyelakuan perkomputeran 

dinamik bendalir, yang telah dijalankan bagi menyelakuankan persekitaran 

pembersihan di dalam kelengkapan ujian pembersihan, dan untuk memastikan 

kelengkapan ujian pembersihan ini dapat berfungsi dengan tertib sebelum kelengkapan 

ujian pembersihan itu dibikin. Kedua-dua kaedah bagi membangunkan model fizikal 

untuk mendapan kotoran PJBMJ telah dibandingkan dan keputusan telah menunjukkan 

bahawa kaedah eksitu adalah kaedah yang praktikal untuk digunakan.  Kaedah eksitu 

dapat membentuk sampel boleh ulang semula untuk mendapan kotoran PJBMJ dengan 

masa pengeluaran yang rendah dan penggunaan minimum ke atas bahan mentah. 
Dalam bahagian ketiga, hanya peringkat pembersihan beralkali telah dipertimbangkan 

dalam kajian ini. Kajian pembersihan telah dijalankan pada parameter yang berbeza: 

suhu (35-70°C), halaju bendalir (0.6-1.5m/s) dan kepekatan NaOH (0-2.0wt%). Profil 

pembersihan telah menunjukkan terdapat dua peringkat pembersihan iaitu: peringkat 

deras dan peringkat beransur. Tindak balas pembersihan bagi kedua-dua peringkat ini 

telah disiasat dengan menggunakan pemalar kadar penyingkiran berkesan, k2. Hasil 

penemuan mencadangkan bahawa pembersihan beralkali boleh dibahagikan kepada dua 

peringkat khususnya daripada keadaan ini: (1) keadaan peringkat deras ialah 70 °C, 1.2 

m/s, 1.5 wt% NaOH, dengan tderas=2 minit; dan (2) keadaan peringkat beransur ialah 

35°C, 1.5m/s, air (0wt% NaOH) dengan tberansur=10 minit. Manakala berdasarkan 

keputusan masa pembersihan, dicadangkan bahawa masa pembersihan yang paling 

singkat (kurang daripada 12 minit) boleh didapati di 1.5m/s, 70°C dan dengan 

kepekatan NaOH 1.0, 1.5 dan 2.0wt%. Hasil penemuan daripada kerja-kerja ini 
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mencadangkan dua skim pembersihan untuk peringkat pembersihan beralkali, yang 

diklasifikasikan sebagai 1) skim pembersihan yang ekonomi dan 2) skim pembersihan 

yang cepat. Dalam skim pembersihan yang ekonomi, industri perlu mengenal pasti 

peringkat deras dan peringkat beransur untuk proses pembersihan dan skim 

pembersihan ini akan mengurangkan kos pada bahan kimia dan utiliti. Manakala bagi 

skim pembersihan yang cepat, penggunaan parameter pembersihan yang lebih 

diperlukan. Walau bagaimanapun, kos pembersihan dijangka meningkat dengan ketara. 
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CHAPTER 1 

INTRODUCTION 

Fouling formation is a particularly severe problem, especially in the food and milk 

industries where frequent cleaning is needed (Visser and Jeurnink, 1997). Fouling 

deposit is an unwanted by-product of most process industries, such as food, petroleum 

and water treatment industries. In the petrochemical industry, it is common practice to 

clean only once a year or less, whereas daily cleaning is applied in the food industry 

(Visser and Jeurnink, 1997). The formation of food fouling deposit is rapid in a heat 

exchanger which affects the heat transfer and develops resistance to the fluid flow. In 

earlier days, manual cleaning was practiced where all the process equipment was 

dismantled one by one to be cleaned by hand. Nowadays, most of the industry has 

shifted their cleaning method to cleaning-in-place (CIP) to save cost and reduce 

downtime. This chapter gives a brief background of CIP, and pink guava puree (PGP).  

1.1 Cleaning-in-place (CIP) 

The main reasons for cleaning are appearance, safety, plant efficiency and to prevent 

microorganism contamination (Tamime, 2008). A clean appearance gives confidence in 

the quality of the products and also provides a dirt-free tidy working environment for 

the workers. Pipe leakage due to frequent dismantling of equipment can cause slippery 

floors and can be very dangerous. An accident in the work place can cause expensive 

repercussions. Other than that, clean equipment can provide a more efficient work 

system and avoid energy wastage.  

In the food industry, daily cleaning is practiced compared to the petroleum industry, 

which cleans only once a year. Food processing equipment such as pipelines and 

pumps which have direct contact with food products can provide a suitable place for 

bacterial growth which can cause contamination in food products. Product residue 

accumulated after processing can be one of the factors that initiate bacterial growth. 

Furthermore, for high temperature processes such as pasteurisation and sterilisation, 

fouling deposit can easily attach to the hot surface of the processing equipment. 

Frequent cleaning and inspection are important to prevent attachment of fouling and 

bio-fouling deposit and to ensure that food product can be pasteurised correctly. In the 

market, there are many cleaning procedures and detergents which provide different 

cleaning effects for all kinds of fouling deposit. Different kinds of food products 

generate different characteristics of fouling deposit. Thus, each food plant should have 

a formulated CIP process to efficiently remove the fouling deposit. The selection of 

suitable and optimum cleaning methods is very important to avoid any chemical 

wastage and to minimise the downtime.  

The most common cleaning methods applied are two-stage cleaning and single stage 

cleaning (Christian and Fryer, 2004). In two-stage cleaning, two different types of 

detergent, namely alkaline and acidic detergents are used. Alkaline detergent is used in 

the first stage and this is followed by the acidic detergents in the second stage. 

Commonly, sodium hydroxide liquor is used and followed by nitric acid. At every 

stage, the chemical solution is cycled for about 15 minutes to 1 hour depending on 

experimentation and degree of experience. Between the stages, water is used to remove 

all traces of detergent which is also called rinsing. Lastly, before the final rinse using 
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water, a disinfection cycle is initiated. A chemical such as sodium hypochlorite is used 

in this cycle. Details of the cleaning process are explained in Section 2.1. 

For single stage cleaning, a formulated detergent is used. This type of cleaning only 

needs one stage of circulation of the cleaning chemicals. Although a formulated 

detergent can save cleaning time, the cost is greater compared to individual alkaline and 

acidic detergents. A formulated detergent is usually used for a fouling deposit that is 

very difficult to remove. Thus, suitable cleaning chemicals must be selected 

considering the type of fouling deposit and also the cost of the cleaning.  

1.2 Pink Guava Puree 

The scientific name for guava is Psidiumguajava L. Guava come from the myrtaceae 

family. Guava is also known as guayaba, guayabo, arazá-puitá, goyavier, and 

gobiabiera. The major producers of guava in the world are India, Brazil and Mexico. 

Since 1987, Malaysia has also started to become one of the major producers of guava. 

In Malaysia, guava is planted in Perak, Johor, Selangor and Negeri Sembilan (Lim and 

Khoo, 1990). Pink guava has a high demand in the world because it is highly nutritious 

and good for the health (Lim and Khoo, 1990). PGP is well accepted by beverage and 

food manufacturers in Europe, the United States, Australia, Japan, Korea, Singapore 

and also local manufacturers in Malaysia (Sime Darby, 2014). 

Pink guava is among the favourite food ingredients that are used for producing baby 

food, beverages, juices, ice cream, frozen desserts, yoghurt, fruit jelly and 

confectionery products (Sime Darby, 2014). The average amount of ascorbic acid in 

pink guava is three to six times higher compared to oranges at 50-300 mg/100g fresh 

weight (Thaipong et al., 2006). PGP has anti-hypertensive properties which are suitable 

for patients with hypertension (Ayub et al., 2010). PGP is also rich in antioxidants that 

help to reduce the incidence of degenerative diseases such as arthritis, arteriosclerosis, 

cancer, heart disease, inflammation and brain dysfunction (Lim et al., 2006).  

Since 2006, almost nine million kilograms of pink guava are harvested annually in 

Malaysia and the Sime Darby plantations produce 15 % of the world‟s pink guava 

puree. The PGP process involves several unit operations such as pasteurisation, UHT, 

and cooling. The critical area for rapid fouling deposit formation is in the high 

temperature operations such as pasteurisation and the UHT process. The fouling 

deposit also forms in the low temperature area (i.e. the cooling area). However, this 

research work is only focused on the high temperature condition.  

1.3 Objective of the Study 

Pink guava puree fouling deposit was used as the physical fouling deposit model in this 

work. To the knowledge of the author, this type of deposit has not been studied 

previously by any other researcher. PGP fouling deposit is classified as a carbohydrate-

based fouling deposit which is considered easier to clean when compared to protein-

based fouling deposit. This work focuses on alkaline cleaning stage for which sodium 

hydroxide was used in the cleanability experiments. For cleaning kinetics studies, a lab-

scale cleaning test rig was designed and was utilised for the cleanability experiments.  
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The objectives of this study are:  

 To perform simulation validation of the lab-scale cleaning test rig before it can 

be utilised for the cleanability experiments.  

 To develop a suitable physical model of the PGP fouling deposit.  

 To investigate the cleaning kinetics during the alkaline cleaning stage by using 

the lab-scale cleaning test rig.   

1.4 Significance of the Study  

In Malaysia, there is no standard CIP process that was formulated for all food 

industries. Most of the food industries applied the standard CIP process designed for 

dairy-based fouling deposit. Every type of food-based fouling deposit requires a 

different formulated CIP process to achieve effective cleaning. Short CIP process is 

favorable to food industries as food industries incur downtime when cleaning is 

performed. Thorough investigation of CIP performance on different fouling deposits is 

a must to obtain effective and economical cleaning.  

PGP processing plants in Malaysia are referring to cleaning program for dairy 

industries for their cleaning program. This can be considered as excessive cleaning 

parameters for carbohydrate-based fouling deposit like PGP fouling deposit. Research 

into cleaning was performed to find the best CIP process for the specific problem of 

PGP fouling deposit removal under high temperature conditions. Most of the previous 

researchers focused on dairy production (Visser & Jeurnink, 1997; Robbins et al., 1999; 

Grijspeerdt et al., 2004; Nema & Datta, 2005; Sahoo et al., 2005; Simmons et al., 2007; 

Rosmaninho et al., 2007; Mahdi et al., 2009) instead of tropical resources such as pink 

guava that has a very good market demand, as mentioned above. Dairy is one of the 

staple foods in western countries and fouling research first began in these western 

countries. However, it is still important to explore the fouling characteristics of other 

sources of local food such as juices and purees which are not as critical as the protein-

based deposits. PGP was chosen to be the physical model for fouling deposit in this 

study due to it being considered an ill-defined fouling fluid model compared to milk. 

There is currently no guidance for industry to control and clean PGP fouling deposit as 

no related reference has been published as far as is known. So it is important to conduct 

this study as it can provide knowledge for the industry in order to optimally clean PGP 

fouling deposit.  

There are several types of equipment available for cleaning research. However, most of 

this equipment does not consider the CIP environment and does not allow on-line 

monitoring. Chapter 2 provides information on the existing equipment for cleaning 

research. By considering these two main challenges (the CIP environment and on-line 

monitoring), a lab-scale cleaning test rig was designed to study the cleaning process. 

The cleaning test rig enabled an investigation into the cleaning kinetics during the 

alkaline cleaning stage, and was designed with a test section which allowed video 

recording of the removal of the PGP fouling deposits. Furthermore, this rig was 

designed to closely mimic the typical industry flow environment in food piping, 

whereby different cleaning parameters could be manipulated to study the CIP 

performance.  

Shear stress has generally been considered as one of cleaning parameters that contribute 

to cleaning efficiency. The findings from this work of research can provide basic 



© C
OPYRIG

HT U
PM

4 

 

knowledge of development stage of the design for the cleaning test rig to investigate 

experimental shear stress. The findings from this study can also provide fundamental 

data for optimising CIP in future work. Moreover, the findings can benefit the PGP 

industry in Malaysia whereby a suitable CIP process can be implanted to benefit the 

industry.  

1.5 Structure of the Thesis 

The description of this work is arranged into six chapters in this thesis. The following 

chapters will provide a specific explanation concerning this research. 

Chapter 1 gives an introduction to the subject of Cleaning-in-place (CIP). The chapter 

continues with a brief introduction to Pink Guava Puree (PGP) and states the 

Objectives and the Significance of the study. 

Chapter 2 describes the previous studies and their findings in related areas of fouling 

and cleaning studies, which involves CIP process, cleaning parameters, cleaning 

mechanisms, methods of development of physical fouling deposit models, cleaning test 

rig applications, shear stress, modelling of cleaning kinetics, and modelling and 

simulation by a simulation software, COMSOL Multiphysics. 

Chapter 3 describes the method and the equipment used for this work. At the beginning 

of the chapter, the design requirements and design work of a lab-scale cleaning test rig 

is explained in detail. The procedure for developing Computational Fluid Dynamic 

(CFD) models for simulating the flow inside the lab-scale cleaning test rig by using 

COMSOL Multiphysics is explained. Simulation validation is performed to determine 

the location for the test section and to prove the fully developed flow inside the rig. 

Then, the procedure for developing the PGP fouling deposit is described by using two 

different methods namely, ex-situ (by using an oven) and in-situ (by using a concentric 

tube-fouling rig). A suitable physical model for the fouling deposit is chosen to be used 

in the cleanability experiments. Procedures for the cleanability experiments of the 

removal of PGP fouling deposit using different sets of parameter combinations 

(temperature, fluid velocity and chemical concentration) are also included in this 

chapter. The performance of a Lab-scale cleaning test rig for PGP fouling deposit 

removal was tested.  

Chapter 4 presents the specifications of the design and results analysis from the 

simulation validation of the lab-scale cleaning test rig by using COMSOL 

Multiphysics. The results from calculation and simulation were used to determine the 

fully developed flow zone after pipe bending. This is to determine the location of the 

test section. The flow behaviour of the water flow inside the cleaning test rig and the 

test section is discussed. The flow is simulated for different cleaning parameters (fluid 

velocity, fluid temperature and chemical concentration).  

Chapter 5 discusses the physical model fouling deposit development method that was 

used in this work. Two methods were used to prepare the PGP fouling deposit for the 

experiments, which were the ex-situ method (using an oven) and the in-situ method 

(using a concentric tube-fouling rig). The concentric tube-fouling rig was validated 

before it was used for preparing the fouling deposit. The ex-situ method was chosen as 

to develop the physical model of the PGP fouling deposit for this study. The results 

from the cleanability experiments which study the effects of cleaning parameters 
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(temperature, fluid velocity and chemical concentration) on the fouling deposits are 

discussed here.  

Chapter 6 concludes the study and gives some suggestions for future studies in cleaning 

and fouling of PGP and other food-based fouling deposits. In this chapter, some 

suggestions to modify the lab-scale cleaning test rig are also provided.  
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