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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment 

of the requirement for the Degree of Master of Science 

 

 

GENERATING POWER FROM FLUEGAS PRODUCED BY BOILERS 

THROUGH THERMODYNAMIC ORGANIC RANKINE CYCLE 

 

By 

 

OMID ROWSHANAIE 

 

September 2015 

 

 

Chairman : Associate Professor Saari Mustapha, Ph.D. 

Faculty : Engineering 

 

 

A simulation model of Organic Rankine Cycle (ORC) was developed with HYSYS 

simulation software driven by R245fa, with NOVEC7000 and R141b as refrigerant 

working fluids and wet fluegas combustion and burning from natural gas, as a heat 

source of shell and tube heat exchanger to generate optimum power by an expander 

(more than 3MW that proper amount of energy for applying in refinery and 

petrochemical industries). The initial operating conditions were in subcooled liquid, 

normal, and steady state condition. In current ORC, refrigerant working fluids were 

sent to a heat exchanger to change the phase fraction from 0 to 1, then input to an 

expander to produce optimum power. However, the changing of all parameters were 

affected by different mass flow rates of working fluids and different inlet pressures 

of expander. The ORC thermodynamic cycle was chosen for this study due to some 

advantages such as its simple structure, the availability of its components, and the 

ease of application for small and optimum industrial power generation. 

 

Regarding to current study results, different mass flow rates of working fluids and 

different inlet pressures of expander had linear relationship with power output from 

the expander. Therefore, R141b was found to be produced the highest power output 

from the expander up to 13520 KW, compared to NOVEC7000 where by the power 

being produced 35 % less and the lowest power generated by the expander belonged 

to R245fa refrigerant with 53 % reduction. Also the highest net power generated 

output from the ORC was from R141b which the highest power was 12194 KW, 

followed by NOVEC7000 and R245fa gave as the lowest net power output, 37 % and 

57 % reduction respectively. For the heat transfer from the fluegas to the working 

fluid ascendancy; R141b with 3.780×10
9
 kJ/h, then R245fa 18 % less and 

NOVEC7000 38 % reduction respectively. 

 

Furthermore, in terms of total efficiency of ORC depend on different inlet pressures 

of expander, NOVEC7000 was chosen as highest total efficiency with 90.8 % and 

R141b was chosen as middle total efficiency with 90.6 % were the suitable options 

compare with R245fa which value was i.e. 85.0 % the lowest total efficiency of 

ORC.  The thermal efficiency of the ORC for different mass flow rates of working 

fluids and different inlet pressures of expander were analyzed and there were no 
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remarkable differences between R245fa, NOVEC7000, and R141b. The polytropic 

efficiency of the expander was evaluated at different specific pressures of each 

working fluid at the inlet of expander. The result was indicated NOVEC7000 

superior in which it given 80.3 % of the polytropic efficiency followed by R141b and 

R245fa with 70.5 % and 40.1 % respectively. On the other hand, no remarkable 

difference of the exergy efficiency for the ORC at maximum total irreversibility and 

maximum heat exchanger exergy of present ORC. 
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MENJANA KUASA DARI FLUEGAS DIHASILKAN OLEH PENDIDIHAN 

MELALUI ORGANIC RANKINE CYCLE TERMODINAMIK 

 

Oleh 

 

OMID ROWSHANAIE 

 

September 2015 

 

 

Pengerusi : Prof Madya Saari Mustapha, Ph.D. 

Fakulti : Kejuruteraan 

 

 

Satu model simulasi ORC telah dihasilkan dengan menggunakan perisian simulasi 

HYSYS dengan bantuan oleh R245fa, manakala NOVEC7000 dan R141b yang 

bertindak sebagai penyejuk bendalir kerja dan pembakaran fluegas basah dan 

pembakaran dari gas semulajadi, sebagai punca haba untuk penukar haba jenis 

cengkerang dan tiub bagi menghasilkan kuasa optimum daripada expander (3 MW 

adalah nilai tenaga yang sesuai digunakan dalam industri penapisan dan Petrokimia). 

Keadaan permulaan operasi adalah di dalam bentuk cecair separasejuk, normal dan 

stabil. Dalam keadaan ORC terkini, penyejuk bendalir kerja dihantar ke penukar 

haba bagi menukar pecahan fasa dari 0 ke 1, kemudian input kepada expander untuk 

menghasilkan  kuasa optimum. Walau bagaimanapun perubahan kesemua paramater 

adalah dipengaruhi oleh kadar aliran jisim dan perubahan tekanan masuk expander.  

Kitaran Thermodinamik ORC dipilih untuk kajian ini adalah berdasarkan kepada 

beberapa kelebihan seperti strukturnya yang ringkas, kebolehdapatan bagi setiap 

komponen dan kemudahan aplikasi untuk generasi industri kuasa yang kecil dan 

optimum. Berdasarkan dari hasil kajian terkini menunjukkan bahawa perbezaan 

kadar aliran jisim sesuatu bendalir kerja dan perbezaan tekanan masuk expander 

mempunyai hubungan yang linear kepada kuasa output daripada expander. Oleh 

sebab itu, R141b didapati telah menghasilkan kuasa output paling tinggi daripada 

expander sehingga mencecah kepada 13520 KW, dibandingkan dengan NOVEC7000 

dimana kuasa expander yang dihasilkan adalah 35% kurang dan kuasa yang terendah 

yang dihasilkan daripada expander penyejuk R245fa adalah pengurangan sebanyak 

53%. Kuasa bersih yang dihasilkan daripada output ORC R141b adalah yang 

tertinggi iaitu sebanyak 12194KW, diikuti oleh NOVEC7000 dan R245fa 

memberikan nilai terendah  bagi kuasa output, masing-masing dengan pengurangan 

37% dan 57% . Untuk pemindahan haba daripada fluegas kepada kekuasaan bendalir 

kerja: R141b dengan 3.780×10
9
 kJ/h, kemudian R245fa berkurangan 18% dan  

NOVEC7000 berkurangan 38%. 

 

Selain itu, dari segi jumlah kecekapan ORC adalah bergantung kepada perubahan 

tekanan masuk expander. NOVEC7000 telah terpilih sebagai jumlah kecekapan 

tertinggi dengan 90.8% dan R141b pula terpilih sebagai pertengahan jumlah 

kecekapan dengan nilai 90.6%. Nilai ini adalah pilihan yang sesuai jika dibandingkan 
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dengan R245fa yang nilainya adalah yang paling rendah bagi ORC iaitu sebanyak 

85.0%. Jumlah kecekapan thermal bagi ORC untuk perbezaan kadar aliran jisim bagi 

bendalir kerja dan perbezaan tekanan masuk expander telah dianalisis dan tiada 

perbezaan yang ketara diantara R245fa, NOVEC7000 and R141b. Kecekapan 

Polytropic expander dinilai berdasarkan perbezaan tekanan tertentu untuk setiap 

bendalir kerja di tempat masuk expander. Keputusan ini menunjukkan NOVEC7000 

adalah yang terbaik dengan 80.3% kecekapan polytropic, diikuti dengan R141b and 

R245fa dengan masing-masing 70.5% and 40.1%. Sebaliknya, tiada perubahan 

ketara untuk kecekapan exergy bagi ORC pada jumlah tidak boleh mengembalikan 

kuasa maksimum dan penukar haba exergy maksimum bagi ORC masa kini. 
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The pinch temperature difference in cooler for 

R245fa 

(
°
C) 

∆Tpinch H.E 

(NOVEC7000) 

The pinch temperature difference in Shell and 

Tube heat exchanger for NOVEC7000 

(
°
C) 

∆Tpinch cooler 

(NOVEC7000) 

The pinch temperature difference in cooler for 

NOVEC7000 

(
°
C) 

∆Tpinch H.E (R141b) The pinch temperature difference in Shell and 

Tube heat exchanger for R141b 

(
°
C) 

∆Tpinch cooler 

(R141b) 

The pinch temperature difference in cooler for 

R141b 

(
°
C) 

 ̇    Maximal net power output of ORC  (KW) 

 ̇   Net power output of expander  (KW) 

 ̇       Power generated by the cooler  (KW) 

 ̇     Power consumed by the pump  (KW) 

 ̇    Heat transfer from fluegas to working fluid 

(heat rate injected) 
(kJ/h) 

 ̇    Mass flow rate of each working fluids (kg/h) 
               Enthalpy at outlet of heat exchanger  (kJ/kg) 
              Enthalpy at inlet of heat exchanger (kJ/kg) 

(  )      Total heat transfer capacity (KW/
°
C) 

      Maximal and minimal temperature differences 

at the tube and shell heat exchanger 

(
°
C) 

 ̇       heat rate rejected (kJ/h) 

 ̇    Mass flow rate of working fluids (kg/h) 

        Outlet Enthalpy (kJ/kg) 

       Inlet Enthalpy  (kJ/kg) 
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       Inlet temperature  (
°
C) 

        Outlet temperature  (
°
C) 

      Irreversibility of pump (KW) 

      Irreversibility of shell and tube heat exchanger (KW) 
    Irreversibility of expander  (KW) 

        Irreversibility of cooler  (KW) 
       Total Irreversibility of ORC  (KW) 
T0 Dead-state temperature (

°
C) 

                Mass entropy at outlet of pump (kJ/kg 
°
C) 

               mass entropy at inlet of pump (kJ/kg 
°
C) 

               Mass entropy at outlet of shell and tube heat 

exchanger 

(kJ/kg 
°
C) 

              Mass entropy at inlet of shell and tube heat 

exchanger 

(kJ/kg 
°
C) 

             Mass entropy at outlet of fluegas  (kJ/kg 
°
C) 

            Mass entropy at inlet of fluegas  (kJ/kg 
°
C) 

             enthalpy at inlet of expander  (kJ/kg) 
              enthalpy at outlet of expander  (kJ/kg) 
                 Mass entropy at inlet of cooler  (kJ/kg 

°
C) 

                  Mass entropy at outlet of cooler (kJ/kg 
°
C) 

     exergy of heat exchanger (KW) 
        exergy ofc  (KW) 
         exergy of fluegas  (KW) 

       Total exergy of ORC  (KW) 
               enthalpy at outlet of heat exchanger  (kJ/kg) 

              enthalpy at inlet of heat exchanger  (kJ/kg) 
                 enthalpy at inlet of cooler  (kJ/kg) 
                  enthalpy at outlet of cooler  (kJ/kg) 
            enthalpy at inlet of fluegas  (kJ/kg) 

             enthalpy at outlet of fluegas  (kJ/kg) 

               Absolute temperature at which heat is 

absorbed (it means at the outlet of heat 

exchanger) 

(
°
C) 

                  Absolute temperature at which heat is rejected 

(it means at the outlet of cooler)  
(
°
C) 

P Pressure (KPa) 
V Specific volume  (m

3
) 

n Polytropic index  - 

Cp  Heat capacity at pressure constant  (J/gr.
°
C) 

Cv Heat capacity at volume constant  (J/gr.
°
C) 

 

Greek Symbol                          Quantity Unit 

ηORC Total efficiency of ORC  - 

    Thermal efficiency of ORC  - 

 Heat capacity ratio  - 

   exergy efficiency of ORC  - 

     exergy destruction rate of ORC  - 



© C
OPYRIG

HT U
PM

xviii 
 

 

 

 

Subscript Quantity 

H.E shell and tube heat exchanger 

Ex expander 

Net Net 

W.F Working Fluid 

E exergy 

th Thermal 

I Irreversibility 

vap Vaporization 

b.p Boiling Point temperature 

M.W Molecular Weight 

C Critical 

I.L Ideal Liquid 

ODP Ozone Depletion Potential 

GWP Global Warming Potential 

PR Peng-Robinsone 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1.  Background 

 
In recent years, using non-renewable energy source especially fossil fuels as a heat 

source has caused a number of environmental problems, such as climate change, acid 

rain, air pollution, and global warming especially with the increasing global demand 

for many kinds of energy. In this critical situation, attempts are being made to use 

alternative heat sources instead of fossil fuels as it is one significant way of 

addressing the environmental issues, but for some processes it is still necessary to 

use fossil fuel as an energy or heat source. The low and medium temperature range 

of most commonly available energy resources is between 100 and 200 
°
C (Madhawa 

et al., 2007). Furthermore, the temperature range of industrial waste heat source is 

typically between ambient temperature and 250 
°
C. However, these low and 

moderate temperature heat sources can hardly be used to generate power through the 

conventional power generation method (Chan et al., 2013). 

 

Nowadays, the oil price is still high although there has been a significant decrease in 

2014. Relatively high oil prices are an obstacle to the development of the global 

economy especially in countries such as China, India and Iran.  On the other hand, 

various governments have tried to utilize the greenhouse gases such as fluegas 

produced from boilers to increase the efficiency of fuels and decrease the negative 

aspects of these kinds of gases such as global warming and also air pollution.  As the 

grade of temperature of this type of gas is slightly higher, therefore it can be used in 

some thermodynamic effective cycles (Qiu, 2012; Wei et al., 2007; Quoilin et al., 

2010). Toward this end, it is proposed that various thermodynamic cycles be 

considered. These include the Organic Rankine Cycle, Supercritical Rankine Cycle, 

Kalina Cycle, Goswami Cycle, Trilateral Flash Cycle, and Transcritical Rankine 

Cycle, which are driven by a number of refrigerant working fluids and they simulate 

and carry out the conversion of low-grade heat sources into electricity (DiPippo, 

2004). The most well-known examples of these effective thermodynamic cycles are: 

TRC (Transcritical Rankine Cycle), Kalina cycle, and ORC (Organic Rankine 

Cycle), which have been proposed to convert low temperature thermal energy into 

power (Chen et al., 2010).  

 

1.2.  Effective Thermodynamic Cycles 

 

1.2.1. Kalina Thermodynamic Cycle 

 

The Kalina cycle as shown in Figure 1.1 is more complex and its efficiency is 

approximately three percent greater than ORC and TRC thermodynamic cycles at 

simulated and actual analyses, and this is an advantage of this cycle, but the main 

disadvantage of Kalina cycle is its need for more frequent and more expensive 

maintenance. Also, the foremost disadvantage of the Kalina cycle compared to ORC 

is its greater complexity (DiPippo, 2004). Nevertheless, for pure working fluids, 
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during the isothermal evaporation process, the constant evaporation temperature is 

mismatched with the temperature change of the heat source in the heat exchangers, 

and this causes a large number of Irreversibilities (Vélez et al., 2011; DiPippo, 2004). 

 

With reference to Figure 1.1, the working solution of ammonia-water mixture 

entering the turbine (stream 1) is expanded. Energy is recovered from stream 2 to 

preheat the working solution in recuperator-1. In order to have a low condensation 

pressure in condenser-1, a separator is used from which a rich ammonia vapour 

(stream 11) and a lean ammonia liquid (stream 12) are obtained. The lean liquid is 

mixed with the working solution (in mixer-1) and thus the ammonia mass fraction in 

condenser-1 is reduced. The mass flow rate in the separator loop is determined by the 

satisfaction of the pinch point criterion for recuperator-2. A throttle valve is used to 

bring the pressure of the lean liquid (stream 12) down to the pressure level of the 

working fluid (stream 4) before mixing in mixer-1. The rich vapor (stream 11) is 

mixed with the basic solution (stream 8) to again form the working fluid (stream 14) 

before going through condenser-2 and pump-2 to increase the pressure equal to the 

turbine inlet pressure. After pump-2, the working fluid is heated up to the turbine 

inlet temperature in the receiver (Modi & Haglind, 2014). 
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Figure 1.1  Schematic of a Kalina cycle (Modi & Haglind, 2014) 
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1.2.2. TRC Thermodynamic Cycle 

 

A Transcritical Rankine Cycle (TRC) is a thermodynamic cycle where the working 

fluid goes through both subcritical and supercritical states. This is often the case 

when carbon dioxide, CO2, is mixed by a refrigerant working fluid. However, in the 

TRC thermodynamic cycle, the working fluid can be heated directly from liquid to 

the supercritical state, which results in a better thermal match in the gas heater, 

evaporator, and heat exchanger exactly similar to the ORC thermodynamic cycle, 

and reduces the energy destruction in the heating process (Karellas & Schuster, 

2008). A number of researchers have claimed that the TRC thermodynamic cycle, 

which is one of those shown in Figure 1.2 (a & b), is similar to the ORC 

thermodynamic cycle that can be used for low grade heat source and also is more 

effective in generating electrical energy, which is the main and important purpose of 

these cycles (Zhang et al., 2006; Cayer et al., 2009). 

 

 

 

 

 

 

         (a) Without a regenerator                                        (b) With a regenerator  

Figure 1.2  Schematic of a TRC (Dai et al., 2013) 

 

The CO2 is an undertaking working fluid for Transcritical Rankine cycles (TRCs) 

because of some advantages:  it is an environmentally-friendly natural working fluid 

with zero ODP (ozone depletion potential) and a negligible GWP (global warming 

potential); and it is nonflammable and non-toxic (Cayer et al., 2009). Also it has 

favorable thermodynamics and transport properties. However, unfortunately, this 

practical working fluid has a number of disadvantages, some of which are discussed 

below for improvement. The first and foremost disadvantage of CO2 is it has a 

critical point, which is as low as 31.1 
°
C and its potential effect on the condensation 

process due to the temperature limitations of available cooling sources (Chen et al., 

2010). Another negative point of CO2 as a working fluid for TRCs cycles is its high 

critical pressure, which is as high as 7.38 MPa. The normal operating pressure of a 

CO2 system is usually above 10 MPa, which leads to safety concerns in a real and 

normal operation. On the other hand, instead of CO2, other working fluids can be 

http://en.wikipedia.org/wiki/Thermodynamic_cycle
http://en.wikipedia.org/wiki/Supercritical_fluid
http://en.wikipedia.org/wiki/Carbon_dioxide
http://en.wikipedia.org/wiki/Refrigerant
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used for TRCs cycles such as HFCs (hydrofluorocarbons) and HCs (hydrocarbons) 

(Gu & Sato, 2002; Saleh et al., 2007; Schuster et al., 2010). 

 

A schematic of the TRC analyzed in this study is shown in Figure 1.2 (a) and Figure 

1.2 (b). The difference between these figures is that a regenerator, which acts as an 

internal heat exchanger to increase the performance of the TRC, is used in the cycle 

in Figure 1.2 (b). The cycle in Figure 1.2 (b) includes a pump, a gas heater, a turbine, 

a generator, a condenser, and a regenerator. The working fluid first flows into the 

pump (point 1), then after being pressurized above the critical pressure (point 2), it 

flows into the regenerator, where it absorbs heat from the fluid coming from the 

outlet of the turbine. Next, it goes into the gas heater (point 5) and is heated by the 

heat source. The supercritical fluid enters the turbine (point 3) and expands to drive a 

generator to generate power. After expansion, the low-pressure vapor enters the 

regenerator (point 4) to reject heat to the pressurized fluid from the pump. After 

decreasing its temperature in the regenerator (point 6), the working fluid flows into 

the condenser and is condensed to the liquid state. Finally, the fluid returns to the 

pump (point 1) and completes one cycle (Dai et al., 2013). 

 

1.2.3. ORC Thermodynamic Cycle 

 

The ORC thermodynamic cycle is capable of converting low-grade waste heat source 

to power. The focus of recent researches has been on solar energy, biomass energy, 

geothermal resources, power plant waste heat, and fluegas of boilers (Yamamoto et 

al., 2001; Dai et al., 2009; Wei et al., 2007; Desai et al., 2009). The lower and 

medium temperatures of heat source of ORC (below 300 
°
C) can cause higher 

thermal efficiencies, reliability and flexibility as well as simpler control and lower 

maintenance costs for greater economy and effectiveness (Ammar et al., 2012; 

Aneke & Agnew, 2011; Stoppato, 2012; Roy et al., 2011; Quoilin et al., 2011). 
 

The Organic Rankine Cycle (ORC) applies the principle of the Steam Rankine Cycle, 

but uses organic working fluids with low boiling points to recover heat from lower 

temperature heat sources instead of water as a working fluid. Figure 1.3-1.7, shows a 

configuration of some ORC thermodynamic cycles (Chen et al., 2010; Modi & 

Haglind, 2014; Sun & Li, 2011; Kang, 2012; Wang et al., 2013). ORC 

thermodynamic cycle has a number of advantages such as; its simple structure, the 

availability of its components, the ease of application for local small-scale power 

generation systems, and driven by low-grade heat sources with temperature lower 

than 370 
°
C and below this temperature called low-grade temperature in industry. 

The structure of ORC thermodynamic cycles is similar to a typical Rankine Cycle 

(RC) which uses water as a working fluid, but in ORC systems the organic fluids 

especially refrigerant fluids are used as working fluids with high critical coordinate 

values, because of lower specific vaporization (Wang et al., 2011; Yamamoto et al., 

2001; Kang, 2009; Dai et al., 2009; Wei et al., 2007). 
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Figure 1.3  Schematic of a ORC (Chen et al., 2010) 

 

 

 

 

 

 

 

 

Figure 1.4  Schematic of a ORC (Modi & Haglind, 2014) 
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Figure 1.5  Schematic of a ORC (Sun & Li, 2011) 

 

 

 

 

    

 

                                                           

                                                                        

 

 

 

 

Figure 1.6  Schematic of a ORC (Kang, 2012) 
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Figure 1.7  Schematic of a ORC (Wang et al., 2013) 

 

1.3.  Refrigerant Working Fluids 

 

Pure working fluids especially wet, isentropic, and dry fluids including: 

 

 Chlorofluorocarbons (CFCs) (Yari, 2010; Lakew & Bolland, 2010; Guo et 

al., 2011).  

 Hydrofluorocarbons (HFCs) (Tchanche et al., 2009; Saleh et al., 2007; Yari, 

2010; Lakew & Bolland, 2010; Guo et al., 2011; Tempesti et al., 2012).  

 

 Hydrocarbons (HCs) (Tchanche et al., 2009; Saleh et al., 2007; Lakew & 

Bolland, 2010; Guo et al., 2011; Aljundi, 2011; Liu & Duan, 2012). 

 

 Hydrocholoroflurocarbons (HCFCs) (Zhang et al., 2011; Chen et al., 2010; 

Gua et al., 2011; Mikielewicz & Mikielewicz, 2010; Wang et al., 2012; 
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Maizza & Maizza ,1996; Kosmadakis et al., 2009; Dai et al., 2009; Li et al., 

2012; Li et al., 2011).  

 

 Hydrofluroethers (HFEs) (Wang et al., 2011; Tokuhashi et al., 2000; Murata 

et al., 2002; Yasumoto et al., 2003; Defibaugh et al., 1192; Wang et al., 

1991).  

 

These refrigerant working fluids are generally selected as the working fluids for 

ORC thermodynamic cycles and in terms of relation of Entropy differences and 

Temperature differences at operating conditions are classified as wet, isentropic, or 

dry fluids. An ideal ORC should have a perfect match between the temperatures of 

the working fluid and the heat source to reduce exergy losses during the heat transfer. 

Subcritical ORCs, which are operated at pressures below the critical point, have 

isothermal evaporation and condensation processes that result in worse temperature 

matches between the working fluid and the heat source, which lead to large heat 

transfer Irreversibilities (Shiflett & Yokozeki, 2007; Chen et al., 2012). In contrast, 

supercritical ORCs can have better temperature matches with the heat source; 

however, their operating pressures are much higher than for the subcritical cycles. 

The heat exchangers in supercritical ORC thermodynamic cycles are also larger since 

the overall heat transfer coefficient decreases as the operating pressure increases 

(Chen et al., 2011). 

 

This study first attempts  to investigate R245fa from HFC refrigerant fluids group; 

secondly  investigates NOVEC 7000 from HFE refrigerant fluids group, and thirdly, 

R141b is considered from HCFCs group as refrigerant working fluids, because of 

high heat of vaporization (∆hvap.) and high density in vapor state (ᵖvap.), compared 

with other refrigerant fluids. An ORC thermodynamic cycle is then designed and 

simulated by using these refrigerant working fluids and driven by fluegas to generate 

optimum power i.e. more than 3MW that proper amount of energy for applying in 

refinery and petrochemical industries, such as; NGL 1300 factory of Khozestan, Iran 

and NGL 1200 factory of Fars, Iran (Amini et al., 2012). The wet fluegas, which is 

used in this ORC thermodynamic cycle is combustion and burn from natural gas and 

drive by air ambient (Beychok, 2012). 

 

1.4.  Research Problem Definition     

 

A large group of researchers (Pei et al., 2011; Wei et al., 2007; Yamamoto et al., 

2001; Roy & Ashok, 2012; Heberle et al., 2012) have focused on achieving the total 

efficiency of ORC below 50 %, however this study try to modify and increase total 

efficiency of ORC higher than 50 %, also improve total exergy efficiency and power 

generator efficiency, means polytropic efficiency, and decrease the exergy 

destruction rate to generate optimum power.  

 

By applying simple and economic operating condition like: normal, steady state, and 

subcooled liquid instead of complex operating conditions like supercritical, 

superheating and so on (Chen et al., 2012; Roy & Misra, 2012), try to improve and 

increase the power generation in optimum by using ORC. 
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Another obstacle goes back to the waste gases of equipment at refineries and 

petrochemical plants especially fluegas of boilers. These waste gases have a high 

temperature (˃150 
°
C) and also have harmful environmental compounds such as: 

CO2, N2, O2, and H2O which cause a number of environmental problems, such as 

global warming, climate change, acid rain, and air pollution. Therefore, the current 

study tries to use wet fluegas of boilers combustion and burn from natural gas to 

avoid removing the fluegas from Boilers to the environment with high temperature 

and also high amount of compounds. And as a result, with increasing the heat 

transfer from fluegas to working fluids attempts to improve and increase the total 

efficiency of ORC and in same line improve and increase the polytropic efficiency of 

expander as power generator efficiency. 

 

Finally, the last advantage of this study is using the HYSYS simulation software to 

decrease operational costs in industry at real level, and also decrease the number of 

errors at implementation of each section of the current study and increase the safety 

of this study by using this powerful Chemical Engineering simulation software. 

 

1.5.  Objectives of Study 

 

The main objectives of this study are: 

i) To investigate and simulate the ORC thermodynamic cycle of this study by 

using R245fa, NOVEC7000, and R141b as working fluids and driven by 

fluegas and using HYSYS. 

ii) Evaluate the optimum power generated by expander from the ORC 

thermodynamic cycle between R245fa, NOVEC 7000, and R141b as working 

fluids and driven by fluegas and using HYSYS simulation. 

 

1.6.  Scope and Relevance of Study 

 

Nowadays, optimum power is being generated by using a simple and low 

maintenance thermodynamic cycle and applying waste gases with high temperature 

and harmful compounds that have more environmental issues for industries 

especially at refineries and petrochemicals. Hence, using the model of current ORC 

by HYSYS simulation software in this study will try to generate optimum power 

through wet fluegas combustion and burn from natural gas and drive by air ambient 

that including 70 % Nitrogen (N2), 9 % Carbon Dioxide (CO2), 2 % Oxygen (O2), 

and the rest others belong to water (H2O) approximately 19-20 % (Beychok, 2012). 

The high temperature of fluegas of boilers as a heat source of heat exchanger applied 

to change phase fraction of working fluids from 0 to 1. Current ORC is a simple 

idealized thermodynamic cycles because including isentropic process at pump and 

expander and isochoric process at heat exchanger and cooler. This ORC is driven by 

three well-known refrigerant working fluids with normal, steady state, and subcooled 

liquid as initial operating condition. For simulation the present ORC and generating 

optimum power the following steps should be observe: 

 

https://en.wikipedia.org/wiki/Carbon_dioxide
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1.6.1. Define Working Fluids and fluegas for HYSYS 

 

First of all in a simulation of the current ORC by HYSYS there is a need to define 

R245fa from HFC group, NOVEC7000 from HFE group, and R141b from HCFCs 

group as refrigerant working fluids. Because HYSYS has a limited library source 

with a number of specific materials but does not including these working fluids. In 

order to describe each working fluid there should be input of some thermodynamic 

parameters which consist of: component name (working fluid name), UNIFAC 

structure (molecular structure), molecular weight (mM.W), boiling point temperature 

at normal thermodynamic condition (Tb,p), ideal liquid density (ρI.L), critical 

temperature (Tc), critical pressure (Pc), and critical volume (Vc). But to define fluegas 

for HYSYS the components of fluegas: H2O, CO2, N2 and O2 should be found and 

input from the library of HYSYS then added to the component list along working 

fluid. 

 

1.6.2. Selecting a Suitable Fluid Package as a Solvent Method 

 

The last step to prepare the HYSYS for starting the simulation of the present ORC 

system is selecting a suitable fluid package as a solvent method for estimate and 

solve a lot of parameters (such as thermodynamic and heat parameters) by HYSYS 

which are needed for simulation and analysis of the present ORC system. The main 

function of each fluid package is similar, but the differences are in accuracy of the 

calculations. The current study selects and uses Peng-Robinson (PR) fluid package as 

a solvent method of ORC simulation, because it has the highest accuracy compared 

with other fluid packages such as: steam package, CS, GS, Activity models, and 

PRSV. 

 

1.6.3. Define, Add, and Simulate each Instrument of the  Present ORC to 

Simulate the Whole Present ORC 

 

Now the preparation of HYSYS to start the simulation of the present ORC system is 

completed. It is now time to add the fluids flow of each working fluid and 

instruments of ORC and also simulate in PFD-case of HYSYS (simulation 

environment of HYSYS). Here the important objective is to define the subcooled, 

normal, and steady state of the initial operating condition for first fluid flow of each 

working fluid. Another more important objective in simulation of each fluids flow 

and also each instrument of ORC selects the suitable thermodynamic and heat 

parameters at input and output of each fluids flow and instruments of ORC for 

decreasing error to least, because of safety and also high efficiency at each section. 

 

1.6.4. Energy Analysis of ORC 

 

By using Energy analysis of ORC such as: Grid diagram of ORC, Grid diagram of 

heat exchangers, heat exchangers detailed characteristics and capital cost index,   T-

H diagram of heat exchangers, and tables of Grid Diagrams data of heat exchangers, 

can encourage  deeper thinking to consider more thermodynamic and heat 

parameters.   
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1.6.5. The Theoretical Formulas of ORC 

 

By focusing  intensely on some theoretical formula of ORC such as: the maximal net 

power output of ORC ( ̇   ), heat transfer between fluegas to working fluid ( ̇   ), 
expander size (SP), total heat transfer capacity (UAtotal), Irreversibility and exergy (I 

& E), total efficiency of ORC (ηORC), thermal efficiency of ORC (ηth), polytropic 

efficiency of expander, exergy efficiency of ORC, and exergy destruction of ORC, 

and by paying  attention to some thermodynamic and heat parameters that are 

calculated by simulation, can lead to more  investigation and philosophical  thinking 

in this study.    

 

1.7.  Hypothesis 

 

The hypotheses of the present study are: 

 Increasing the mass flow rate of each refrigerant working fluid leads to 

increasing the electricity generated by expander. 

 Increasing the net power output of expander and total exergy of ORC 

increases the maximal net power output of ORC. 

 Increasing the value of heat transfer between fluegas to each working fluid 

leads to improve and increase the efficiency of ORC. 

 Gliding inlet pressure of expander increases inlet temperature of expander 

then net power of expander is increased. 

 The thermal efficiency of ORC should be always smaller than the total 

efficiency of ORC. 
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