EFFECTS OF POSTHARVEST COATINGS AND HEAT TREATMENT ON QUALITY OF STORED PINEAPPLE FRUITS

ZAULIA OTHMAN

FSTM 2008 16
EFFECTS OF POSTHARVEST COATINGS AND
HEAT TREATMENT ON QUALITY OF STORED
PINEAPPLE FRUITS

ZAULIA OTHMAN

DOCTOR OF PHILOSOPHY
UNIVERSITI PUTRA MALAYSIA

2008
EFFECTS OF POSTHARVEST COATINGS AND HEAT TREATMENT ON QUALITY OF STORED PINEAPPLE FRUITS

By

ZAULIA OTHMAN

Thesis Submitted in Fulfilment of the Requirements for the Degree of Doctor of Philosophy in the Faculty of Food Science and Technology
Universiti Putra Malaysia

July 2008
Specially Dedicated
To my beloved

parents
Othman Yusuf and Fatimah Abidin

husband
Md. Hafnee Sepon

sons and daughter
Muhammad Syafiq, A’isyah, Muhammad Nazhan,
and Muhammad Taufiiqul Hakim
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the Degree of Doctor Philosophy

EFFECTS OF POSTHARVEST COATINGS AND HEAT TREATMENT ON QUALITY OF STORED PINEAPPLE FRUITS

By

ZAULIA OTHMAN

July 2008

Chairman: Professor Suhaila Mohamed, PhD

Faculty: Food Science and Technology

Studies on the effect of postharvest treatments (surface coating, heat, and, combination of surface coating and heat treatments) on the changes in physico-chemical characteristics, rate of respiration, diseases and physiological disorder of fresh N36 and Gandul pineapples during storage at 10 ± 1°C were carried out. Studies on the effect of various surface coating emulsion (paraffin, palm oil and Semperfresh) showed that palm oil was effective in maintaining the skin firmness, prolonging shelf life, significantly \(p < 0.05 \) increasing SSC and subsequently receiving the highest scores in appearance, colour and texture in sensory evaluation of N36 pineapples. Palm oil treatment significantly \(p < 0.05 \) reduced ascorbic acid (AA) content, fructose, sucrose and total sugar for Gandul pineapples. Paraffin retarded the ripening, significantly \(p < 0.05 \) increased pH, SSC:TA ratio, fructose and glucose content and scores for odour, and sourness but reduced SSC of N36 pineapples. In Gandul
pineapples, paraffin significantly ($p < 0.05$) increased AA, TA and fructose content but reduced pH. All the surface treatments were able to significantly reduce weight loss, except for Semperfresh. Semperfresh increased fructose and glucose content and reduced SSC of N36 pineapples. In Gandul pineapples, Semperfresh significantly lowered ($p < 0.05$) pH, fructose, sucrose and total sugar content. CO$_2$ production can only be reduced by paraffin treatment in Gandul pineapple.

Heat treatment (HT) (38-42°C for 24 hours) and combination of heat and surface coating treatment (CHT) were applied to N36 and Gandul pineapples before storage at 10 ± 1°C, 85 – 88% relative humidity. HT reduced internal browning (IB) and decayed fruit, promoted colour development on skin and pulp but increased weight loss in both cultivars. The positive effects of HT were more significant ($p < 0.05$) in Gandul cultivar than N36 cultivar. HT significantly increased ($p < 0.05$) fructose, glucose, SSC and AA in Gandul cultivar and sensory scores of N36 cultivar. CHT significantly reduced ($p < 0.05$) weight loss during heating and increased SSC:TA ratio in both cultivars. It also increased ($p < 0.05$) total sugar and SSC in N36 cultivar, and increased the sensory taste for Gandul cultivar. HT did not affect CO$_2$ production of N36 and Gandul pineapples stored at low temperature.
KESAN SALUTAN LEPASTUAI DAN RAWATAN HABA TERHADAP KUALITI BUAH NANAS DALAM PENYIMPANAN

Oleh

ZAULIA OTHMAN

Julai 2008

Pengerusi: Profesor Suhaila Mohamed, Ph.D

Fakulti: Sains Makanan dan Teknologi

Kajian dilakukan terhadap kesan rawatan selepas tuai (salutan permukaan, haba dan kombinasi salutan permukaan dan haba) ke atas perubahan ciri-ciri fiziko-kimia, kadar respirasi, penyakit dan fisiologi nanas segar N36 dan Gandul semasa penyimpanan pada 10 ± 1°C. Rawatan menggunakan berbagai emulsi bahan penyalutan (paraffin, minyak kelapa sawit dan Semperfresh) menunjukkan minyak kelapa sawit berkesan untuk mengekalkan kekerasan, memanjangkan hayat simpanan, jumlah pepejal terlarut dan mencapai skor tertinggi untuk rupabentuk, warna dan tekstur nanas N36 di dalam penilaian deria. Nanas Gandul yang disalut dengan minyak kelapa sawit menurunkan dengan bererti (p <0.05) kandungan asid askorbik, fruktosa, sukrosa dan jumlah gula. Paraffin merencatkan kemasakan, meningkatkan dengan bererti (p <0.05) nilai pH dan nisbah pepejal terlarut kepada keasidan tertitrat, kandungan fruktosa dan glukosa, dan skor bau dan kemasaman, tetapi menurunkan dengan bererti (p <0.05) jumlah pepejal terlarut. Bagi nanas Gandul, paraffin meningkatkan dengan bererti kandungan asid

Perlakuan haba (38-42°C selama 24 jam) dan kombinasi perlakuan haba dan salutan permukaan dilakukan ke atas nenas N36 dan Gandul sebelum disimpan pada suhu 10 ± 1°C, 85 – 88% kelembapan relatif. Perlakuan haba boleh menurunkan pemerangan dalam dan pembusukan buah, menggalakkan pembentukan warna pada kulit dan isi buah, tetapi menyebabkan peningkatan kehilangan berat pada kedua-dua kultivar nenas. Kesan positif perlakuan haba adalah lebih ketara bagi kultivar Gandul berbanding N36. Perlakuan haba meningkatkan dengan ketara (p <0.05) kandungan fruktosa, glukosa, jumlah pepejal terlarut dan asid askorbik bagi kultivar Gandul dan skor penilaian deria untuk nenas N36. Bagi kultivar Gandul, kombinasi perlakuan haba dan salutan permukaan menurunkan dengan bererti (p <0.05) kehilangan berat semasa pemanasan dan meningkatkan skor citarasa. Rawatan haba tidak mempengaruhi penghasilan gas CO₂ ke atas nana N36 dan Gandul yang disimpan pada suhu sejuk.
ACKNOWLEDGEMENTS

Bismillahirrahmanirrahim…..

Alhamdulillah, first of all I would like to express my utmost thanks and gratitude to Almighty Allah S.W.T. who has given me the will and strength to complete this project and salawat and salam to His righteous messenger, Prophet Muhammad s.a.w.

I would like to take this opportunity to express my most sincere appreciation and deepest gratitude to Prof. Dr. Suhaila Mohamed, the chairman of my Supervisory Committee for her kind understanding, assistance, advice and guidance during the course of this study and in the preparation of this thesis. I am also grateful to other members of the Supervisory Committee Prof. Dr. Azizah Osman, Dr. Muhammed Selamat Madom and Prof. Dr. Jinap Selamat for their supervision, support and comments.

I would like to acknowledge the financial support provided by the IRPA fund and PASCA program for this research. My deep appreciation is also extended to all the officers and staff of Faculty of Food Science and Technology, UPM and Postharvest Handling Program, MARDI for their generous cooperation and technical help. Acknowledgement is also due to all my friends especially Amin Ismail, Razali Mustafa, Faridah Husin, Nuraida Mohd Padzil, Aida Hamimi, Noor Azizah Ahmad and Aisyah Jafar who had given me the moral encouragement and support to complete my graduate study. Sincere thanks are also extended to Puan Rohaizah Ahmad, Pn.

I also wish to express my deepest appreciation to my beloved husband for giving me the permission, encouragement and support for continuing this study. Finally, I wish to express my deepest gratitude to my beloved parents, brothers, sisters, sons and daughter for their endless encouragement, patience and sacrifices in any way during the many years of my life. I wish for every bead of sweet they produced will be in Allah’s barakah.
I certify that a Thesis Examination Committee has met on 16 July 2008 to conduct the final examination of Zaulia binti Othman on her thesis entitled “Postharvest coatings and heat treatment effects on stored pineapple fruit quality” in accordance with the Universities and University Colleges Act 1971 and Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee as follows:

Azizah Hamid, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Siti Hajar Ahmad, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner 1)

Mahmud Tengku Muda Mohamad, PhD
Associate Professor
Agriculture Park
Universiti Putra Malaysia
(Internal Examiner 2)

Robert E. Paull, PhD
Professor
University of Hawaii, USA
(External Examiner)

BUJANG KIM HUAT, PhD.
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Suhaila Mohamed, PhD
Professor
Faculty of Food Science and Technology
University Putra Malaysia
(Chairman)

Azizah Osman, PhD
Professor
Faculty of Food Science and Technology
University Putra Malaysia
(member)

Mohammed Selamat Madom, PhD
Planting Materials, Seeds and Livestock Breed Production Unit
Malaysian Agriculture Research and Development Institute
(member)

Jinap Selamat, PhD
Professor
Faculty of Food Science and Technology
University Putra Malaysia
(member)

HASANAH MOHD GHAZALI, PhD.
Professor and Dean
School of Graduate Studies
University Putra Malaysia

Date: 14 May 2009
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institutions.

ZAULIA OTHMAN

Date: 2 April 2009
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxii</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xxxiii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>xxxiv</td>
</tr>
</tbody>
</table>

CHAPTER

1. INTRODUCTION

2. LITERATURE REVIEW

 2.1 Pineapple

 2.2 Growth and nutrient composition

 2.3 Ripening behaviour of pineapples

 2.4 Postharvest handling of pineapples for export

 2.4.1 Maturity stage at harvest

 2.4.2 Postharvest treatment

 2.4.3 Grading

 2.4.4 Packing

 2.4.5 Refrigerated transportation

 2.5 Physical and chemical changes during storage,
 transportation and marketing of pineapples

 2.6.1 Histological study on fruit skin with/without
 coating

 2.6.2 Physiological disorder of pineapple caused by
 chilling injury

 i. Blackheart

 ii. Flesh translucency or water soaking of the
 flesh

 2.6.3 Post harvest disease of pineapple

 2.6.4 Effect of modified atmosphere (MA) and
 controlled atmosphere (CA) on respiration
 and ethylene production of fruit

 2.6.5 Weight loss

 2.6.6 Fruit firmness
2.6.7 Fruit colour
2.6.8 Sensory evaluation of fresh pineapples
2.6.9 Soluble solids concentration (SSC)
2.6.10 pH and titratable acidity (TA)
2.6.11 Sugar-acid ratio
2.6.12 Ascorbic acid content
2.6.13 Sugar content

2.7 Effect of surface coating treatment on fruit quality
2.8 Effect of emulsion coating and palm oil on fruit quality
2.9 Effect of heat treatment on fruit quality

3 MATERIALS AND METHODS
3.1 Fruit sources
3.2 Chemical sources
3.3 Physical analysis
 3.3.1 Scores of visual observation
 3.3.2 Determination of diseases and physiological disorders
 3.3.3 Determination of weight loss
 3.3.4 Determination of colour
 3.3.5 Determination of texture
 3.3.6 Sensory evaluation
3.4 Chemical analysis
 3.4.1 Preparation of sample
 3.4.2 Determination of soluble solids concentration
 3.4.3 Determination of titratable acidity
 3.4.4 Sugar-acid ratio
 3.4.5 Determination of pH
 3.4.6 Determination of ascorbic acid
 3.4.7 Determination of sugars
3.5 Respiration and ethylene production rates

4 EFFECTS OF POSTHARVEST COATINGS ON QUALITY OF STORED PINEAPPLE FRUITS
4.1 Introduction
4.2 Materials and methods
 4.2.1 Fruit sources
 4.2.2 Sampling and storage studies
 4.2.3 Surface coating treatments
 4.2.4 Quality analysis
 4.2.5 Data analysis
4.3 Results and Discussion

4.3.1 Visual Observation

4.3.2 Diseases and physiological disorder

4.3.3 Respiration and ethylene production

4.3.4 Weight loss

4.3.5 Skin colour

4.3.6 Flesh colour

4.3.7 Firmness

4.3.8 Soluble solid content (SSC)

4.3.9 Titratable acidity (TA) and pH

4.3.10 Sugar-acid ratio (SSC:TA)

4.3.11 Ascorbic acid (AA)

4.3.12 Sugar content

4.3.13 Sensory evaluation

4.4 Conclusions

5 EFFECTS OF HEAT TREATMENT AND COMBINATION OF SURFACE COATING AND HEAT TREATMENT ON QUALITY OF STORED PINEAPPLE FRUITS

5.1 Introduction

5.2 Materials and methods

5.2.1 Fruit sources

5.2.2 Sampling and storage studies

5.2.3 Heat treatment and combination of surface coating and heat treatment

5.2.4 Quality analysis

5.2.5 Data analysis

5.3 Results and Discussion

5.3.1 Fruit temperature during heat treatment

5.3.2 Visual Observation

5.3.3 Diseases and physiological disorder

5.3.4 Respiration and ethylene production

5.3.5 Weight loss

5.3.6 Skin colour

5.3.7 Flesh colour

5.3.8 Firmness

5.3.9 Soluble solids concentration (SSC)

5.3.10 Titratable acidity (TA) and pH

5.3.11 Sugar-acid ratio (SSC:TA)

5.3.12 Ascorbic acid (AA)

5.3.13 Sugar content

5.3.14 Sensory evaluation

5.4 Conclusions
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH</td>
<td>328</td>
</tr>
<tr>
<td></td>
<td>BIBLIOGRAPHY</td>
<td>330</td>
</tr>
<tr>
<td></td>
<td>BIODATA OF STUDENT</td>
<td>371</td>
</tr>
<tr>
<td></td>
<td>LIST OF PUBLICATIONS</td>
<td>372</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>External fruit section for skin colour ($L^, a^, b^*$) and texture analysis.</td>
<td>89</td>
</tr>
<tr>
<td>2</td>
<td>Internal fruit section for skin colour ($L^, a^, b^*$) and texture analysis.</td>
<td>89</td>
</tr>
<tr>
<td>3</td>
<td>Relationship between skin colour and storage duration of N36 pineapple with different surface coating treatments.</td>
<td>106</td>
</tr>
<tr>
<td>4</td>
<td>Relationship between skin colour and storage duration of Gandul pineapple with different surface coating treatments.</td>
<td>107</td>
</tr>
<tr>
<td>5</td>
<td>Relationship between flesh colour and storage duration of Gandul pineapple with different surface coating treatments.</td>
<td>109</td>
</tr>
<tr>
<td>6</td>
<td>Relationship between skin texture and storage duration of N36 pineapple with different surface coating treatments.</td>
<td>111</td>
</tr>
<tr>
<td>7</td>
<td>Relationship between skin texture and storage duration of Gandul pineapple with different surface coating treatments.</td>
<td>112</td>
</tr>
<tr>
<td>8</td>
<td>Relationship between crown condition and storage duration of N36 pineapple with different surface coating treatments.</td>
<td>113</td>
</tr>
<tr>
<td>9</td>
<td>Relationship between crown condition and storage duration of Gandul pineapple with different surface coating treatments.</td>
<td>114</td>
</tr>
<tr>
<td>10</td>
<td>Relationship between crown condition and storage duration of N36 pineapple with different surface coating treatments.</td>
<td>122</td>
</tr>
<tr>
<td>11</td>
<td>Relationship between skin disease and storage duration in Gandul pineapples treated with different surface coatings and stored at 10°C.</td>
<td>124</td>
</tr>
<tr>
<td>12</td>
<td>Relationship between peduncle disease and storage duration of N36 pineapple with different surface coating treatments.</td>
<td>126</td>
</tr>
<tr>
<td>13</td>
<td>Relationship between peduncle disease and storage duration of Gandul pineapple with different surface coating treatments.</td>
<td>127</td>
</tr>
<tr>
<td>14</td>
<td>Relationship between internal browning and storage duration of</td>
<td>128</td>
</tr>
</tbody>
</table>
N36 pineapple with different surface coating treatments.

15 Relationship between internal browning and storage duration of Gandul pineapple with different surface coating treatments. 129

16 Relationship between fruit decay and storage duration of N36 pineapple with different surface coating treatments. 131

17 Relationship between fruit decay and storage duration of Gandul pineapple with different surface coating treatments. 132

18 Relationship between flesh translucency and storage duration of N36 pineapple with different surface coating treatments. 133

19 Relationship between flesh translucency and storage duration of Gandul pineapple with different surface coating treatments. 134

20 Relationship between weight loss and storage duration of N36 pineapple with different surface coating treatments. 139

21 Relationship between weight loss and storage duration of Gandul pineapple with different surface coating treatments. 140

22 Relationship between skin lightness (L^*) and storage duration of N36 pineapple with different surface coating treatments. 145

23 Relationship between skin lightness (L^*) and storage duration of Gandul pineapple with different surface coating treatments. 146

24 Relationship between skin hue (h^*) and storage duration of N36 pineapple with different surface coating treatments. 147

25 Relationship between skin chroma (C^*) and storage duration of N36 pineapple with different surface coating treatments. 148

26 Relationship between skin hue (h^*) and storage duration of Gandul pineapple with different surface coating treatments. 150

27 Relationship between skin chroma (C^*) and storage duration of Gandul pineapple with different surface coating treatments. 153

28 Relationship between flesh lightness (L^*) and storage duration of N36 pineapple with different surface coating treatments. 156

29 Relationship between flesh hue (h^*) and storage duration of N36 pineapple with different surface coating treatments. 57
30 Relationship between flesh chroma (C^*) and storage duration of N36 pineapple with different surface coating treatments.

31 Relationship between flesh lightness (L^*) and storage duration of Gandul pineapple with different surface coating treatments.

32 Relationship between flesh hue (h^*) and storage duration of Gandul pineapple with different surface coating treatments.

33 Relationship between flesh chroma (C^*) and storage duration of Gandul pineapple with different surface coating treatments.

34 Relationship between skin firmness and storage duration of N36 pineapple with different surface coating treatments.

35 Relationship between skin firmness and storage duration of Gandul pineapple with different surface coating treatments.

36 Relationship between flesh firmness and storage duration of N36 pineapple with different surface coating treatments.

37 Relationship between flesh firmness and storage duration of Gandul pineapple with different surface coating treatments.

38 Relationship between soluble solid concentration (SSC) and storage duration of Gandul pineapple with different surface coating treatments.

39 Relationship between pH and storage duration of N36 pineapple with different surface coating treatments.

40 Relationship between pH and storage duration of Gandul pineapple with different surface coating treatments.

41 Relationship between titratable acidity (TA) and storage duration of N36 pineapple with different surface coating treatments.

42 Relationship between titratable acidity (TA) and storage duration of Gandul pineapple with different surface coating treatments.

43 Relationship between sugar acid ratio (SSC:TA) and storage duration of N36 pineapple with different surface coating treatments.

44 Relationship between sugar acid ratio (SSC:TA) and storage duration of Gandul pineapple with different surface coating treatments.
duration of Gandul pineapple with different surface coating treatments.

45 Relationship between ascorbic acid content and storage duration of N36 pineapple with different surface coating treatments. 185

46 Relationship between ascorbic acid content and storage duration of Gandul pineapple with different surface coating treatments. 186

47 Relationship between fructose and storage duration of N36 pineapple with different surface coating treatments. 191

48 Relationship between glucose and storage duration of N36 pineapple with different surface coating treatments. 192

49 Relationship between sucrose and storage duration of N36 pineapple with different surface coating treatments. 193

50 Relationship between total sugar and storage duration of N36 pineapple with different surface coating treatments. 194

51 Relationship between fructose and storage duration of Gandul pineapple with different surface coating treatments. 195

52 Relationship between glucose and storage duration of Gandul pineapple with different surface coating treatments. 196

53 Relationship between sucrose and storage duration of Gandul pineapple with different surface coating treatments. 197

54 Relationship between total sugar and storage duration of Gandul pineapple with different surface coating treatments. 199

55 Relationship between sensory attribute (appearance) and storage duration of N36 pineapple with different surface coating treatments. 202

56 Relationship between sensory attribute (colour) and storage duration of N36 pineapple with different surface coating treatments. 204

57 Relationship between sensory attribute (texture) and storage duration of N36 pineapple with different surface coating treatments. 205

58 Relationship between sensory attribute (overall acceptance) and
storage duration of N36 pineapple with different surface coating treatments.

59 Relationship between sensory attribute (appearance) and storage duration of Gandul pineapple with different surface coating treatments.

60 Relationship between sensory attribute (colour) and storage duration of Gandul pineapple with different surface coating treatments.

61 Relationship between sensory attribute (overall acceptance) and storage duration of Gandul pineapple with different surface coating treatments.

62 Fruit temperature during hot air treatment

63 Relationship between skin colour and storage duration of N36 pineapple with heat treatment (HT), combination of surface coating + heat treatment (CHT) and non-treated as control.

64 Relationship between flesh colour and storage duration of N36 pineapple with heat treatment (HT), combination of surface coating + heat treatment (CHT) and non-treated as control.

65 Relationship between skin colour and storage duration of Gandul pineapple with heat treatment (HT), combination of surface coating + heat treatment (CHT) and non-treated as control.

66 Relationship between flesh colour and storage duration of Gandul pineapple with heat treatment (HT), combination of surface coating + heat treatment (CHT) and non-treated as control.

67 Relationship between crown condition and storage duration of N36 pineapple with heat treatment (HT), combination of surface coating + heat treatment (CHT) and non-treated as control.

68 Relationship between crown condition and storage duration of Gandul pineapple with heat treatment (HT), combination of surface coating + heat treatment (CHT) and non-treated as control.

69 Relationship between skin diseases and storage duration of N36 pineapple with heat treatment (HT), combination of surface coating + heat treatment (CHT) and non-treated as control.
coating + heat treatment (CHT) and non-treated as control.

70 Relationship between skin diseases and storage duration of Gandul pineapple with heat treatment (HT), combination of surface coating + heat treatment (CHT) and non-treated as control.

71 Relationship between peduncle disease and storage duration of N36 pineapple with heat treatment (HT), combination of surface coating + heat treatment (CHT) and non-treated as control.

72 Relationship between peduncle diseases and storage duration of Gandul pineapple with heat treatment (HT), combination of surface coating + heat treatment (CHT) and non-treated as control.

73 Relationship between internal browning and storage duration of N36 pineapple with heat treatment (HT), combination of surface coating + heat treatment (CHT) and non-treated as control.

74 Relationship between internal browning and storage duration of Gandul pineapple with heat treatment (HT), combination of surface coating + heat treatment (CHT) and non-treated as control.

75 Relationship between fruit decay and storage duration of N36 pineapple with heat treatment (HT), combination of surface coating + heat treatment (CHT) and non-treated as control.

76 Relationship between fruit decay and storage duration of Gandul pineapple with heat treatment (HT), combination of surface coating + heat treatment (CHT) and non-treated as control.

77 Relationship between translucency flesh and storage duration of N36 pineapple with heat treatment (HT), combination of surface coating + heat treatment (CHT) and non-treated as control.

78 Relationship between translucency flesh and storage duration of Gandul pineapple with heat treatment (HT), combination of surface coating + heat treatment (CHT) and non-treated as control.

79 Relationship between weight loss and storage duration of N36 pineapple with heat treatment (HT), combination of surface coating + heat treatment (CHT) and non-treated as control.

80 Relationship between weight loss and storage duration of Gandul pineapple with heat treatment (HT), combination of surface coating + heat treatment (CHT) and non-treated as control.
<table>
<thead>
<tr>
<th>Table</th>
<th>Relationship</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>Relationship between skin lightness (L^*) and storage duration of N36 pineapple with heat treatment (HT), combination of surface coating + heat treatment (CHT) and non-treated as control.</td>
<td>259</td>
</tr>
<tr>
<td>82</td>
<td>Relationship between skin hue (h^*) and storage duration of Gandul pineapple with heat treatment (HT), combination of surface coating + heat treatment (CHT) and non-treated as control.</td>
<td>260</td>
</tr>
<tr>
<td>83</td>
<td>Relationship between skin chroma (C^*) and storage duration of N36 pineapple with heat treatment (HT), combination of surface coating + heat treatment (CHT) and non-treated as control.</td>
<td>261</td>
</tr>
<tr>
<td>84</td>
<td>Relationship between skin lightness (L^*) and storage duration of Gandul pineapple with heat treatment (HT), combination of surface coating + heat treatment (CHT) and non-treated as control.</td>
<td>262</td>
</tr>
<tr>
<td>85</td>
<td>Relationship between skin hue (h^*) and storage duration of Gandul pineapple with heat treatment (HT), combination of surface coating + heat treatment (CHT) and non-treated as control.</td>
<td>264</td>
</tr>
<tr>
<td>86</td>
<td>Relationship between skin chroma (C^*) and storage duration of Gandul pineapple with heat treatment (HT), combination of surface coating + heat treatment (CHT) and non-treated as control.</td>
<td>265</td>
</tr>
<tr>
<td>87</td>
<td>Relationship between flesh lightness (L^*) and storage duration of N36 pineapple with heat treatment (HT), combination of surface coating + heat treatment (CHT) and non-treated as control.</td>
<td>268</td>
</tr>
<tr>
<td>88</td>
<td>Relationship between flesh hue (h^*) and storage duration of N36 pineapple with heat treatment (HT), combination of surface coating + heat treatment (CHT) and non-treated as control.</td>
<td>269</td>
</tr>
<tr>
<td>89</td>
<td>Relationship between flesh chroma (C^*) and storage duration of N36 pineapple with heat treatment (HT), combination of surface coating + heat treatment (CHT) and non-treated as control.</td>
<td>271</td>
</tr>
<tr>
<td>90</td>
<td>Relationship between flesh lightness (L^*) and storage duration</td>
<td>272</td>
</tr>
<tr>
<td>Relationship</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>91 Relationship between flesh hue (h^*) and storage duration of Gandul pineapple with heat treatment (HT), combination of surface coating + heat treatment (CHT) and non-treated as control.</td>
<td>273</td>
<td></td>
</tr>
<tr>
<td>92 Relationship between flesh chroma (C^*) and storage duration of Gandul pineapple with heat treatment (HT), combination of surface coating + heat treatment (CHT) and non-treated as control.</td>
<td>274</td>
<td></td>
</tr>
<tr>
<td>93 Relationship between skin firmness and storage duration of N36 pineapple with heat treatment (HT), combination of surface coating + heat treatment (CHT) and non-treated as control.</td>
<td>276</td>
<td></td>
</tr>
<tr>
<td>94 Relationship between flesh firmness and storage duration of N36 pineapple with heat treatment (HT), combination of surface coating + heat treatment (CHT) and non-treated as control.</td>
<td>277</td>
<td></td>
</tr>
<tr>
<td>95 Relationship between skin firmness and storage duration of Gandul pineapple with heat treatment (HT), combination of surface coating + heat treatment (CHT) and non-treated as control.</td>
<td>278</td>
<td></td>
</tr>
<tr>
<td>96 Relationship between flesh firmness and storage duration of Gandul pineapple with heat treatment (HT), combination of surface coating + heat treatment (CHT) and non-treated as control.</td>
<td>279</td>
<td></td>
</tr>
<tr>
<td>97 Relationship between soluble solid concentration (SSC) and storage duration of N36 pineapple with heat treatment (HT), combination of surface coating + heat treatment (CHT) and non-treated as control.</td>
<td>282</td>
<td></td>
</tr>
<tr>
<td>98 Relationship between soluble solids concentration (SSC) and storage duration of Gandul pineapple with heat treatment (HT), combination of surface coating + heat treatment (CHT) and non-treated as control.</td>
<td>283</td>
<td></td>
</tr>
<tr>
<td>99 Relationship between titratable acidity (TA) and storage duration of N36 pineapple with heat treatment (HT), combination of surface coating + heat treatment (CHT) and non-treated as control.</td>
<td>287</td>
<td></td>
</tr>
</tbody>
</table>