UNIVERSITI PUTRA MALAYSIA

PREPARATION AND CHARACTERIZATION OF PALM-BASED FUNCTIONAL LIPID NANODISPERSIONS

CHEONG JEAN NE

FSTM 2008 11
PREPARATION AND CHARACTERIZATION OF PALM-BASED
FUNCTIONAL LIPID NANODISPERSIONS

By

CHEONG JEAN NE

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfilment of the Requirement for the Degree of Master of Science

December 2008
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

PREPARATION AND CHARACTERIZATION OF PALM-BASED FUNCTIONAL LIPID NANODISPERSIONS

By

CHEONG JEAN NE

December 2008

Chairman : Tan Chin Ping, PhD
Faculty : Food Science and Technology

Poor solubility of functional lipids has made their use problematic in food industry especially in food formulations. The difficulties to find a suitable formulation or solution are even greater especially when the functional lipids are poorly soluble in both aqueous and organic solutions, which may prone to reduce bioavailability. The main objective of this study was to prepare and characterize palm-based functional lipids nanodispersions. The observations presented in this study confirmed that the nanosized droplets formed using emulsification-evaporation is relatively simple and effective technique especially for producing nanodispersions of palm-based functional lipids (tocopherols-tocotrienols and carotenoids). Droplet size can be produced in a controlled way by adjusting the processing parameters such as pressure and cycle number accordingly. This study indicated that by increasing the energy input beyond moderate pressures (20 – 80 MPa) and cycles (1 - 3) led to “over-processing” of droplets. Results have revealed that homogenization pressures have significant (P < 0.05) influence on the average droplet size and droplet size
distribution (PI). On the contrary, the processing cycle had not significantly effect the average droplet size and size distribution (P > 0.05). Preliminary studies have shown droplet diameters in the range of 90 - 120 nm for prepared α-tocopherol nanodispersions. Meanwhile, nano-droplet resulted from nanodispersions prepared with palm-based functional lipids extended from 95 – 130 nm and 140 – 210 nm for tocopherols-tocotrienols and carotenoids, respectively. During storage duration, all prepared nanoemulsions showed good physical stability. However, the content of the prepared nanodispersions was significantly (P < 0.05) reduced during storage. Investigation on the effect of polyoxyethylene sorbitan esters and sodium caseinate also revealed that the average droplet size significantly (P < 0.05) increased with increasing chain length of fatty acid and increasing the HLB value. Among the prepared nanodispersions, the palm-based tocopherols-tocotrienols nanodispersions containing Polysorbate 20 illustrated the smallest average droplet sizes and narrowest size distribution (201.8 ± 1.4 nm; PI, 0.399 ± 0.022); while palm-based carotenoids nanodispersions containing sodium caseinate had the largest average droplet size (386.3 ± 4.0nm; PI, 0.465 ± 0.021); thus indicating more emulsifying role induced by Polysorbate 20 compared to sodium caseinate.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENYEDIAAN DAN PENCIRIAN LIPID FUNGSI NANO-SEBARAN
BERASASKAN KELAPA SAWIT

Oleh

CHEONG JEAN NE

December 2008

Pengerusi : Tan Chin Ping, PhD
Fakulti : Sains dan Teknologi Makanan

Pemelarutan lipid fungsi yang lemah adalah satu masalah besar yang dihadapi oleh industri makanan khasnya dalam proses penyediaan makanan. Kerumitan untuk mendapatkan formula yang sesuai adalah lebih mencabar apabila lipid fungsi ini melarut di dalam larutan akueus dan organik dengan kadar yang lemah. Ini secara tidak langsung mungkin akan mengurangkan kadar bio-penyerapan. Objektif utama kajian ini adalah untuk menyediakan dan mencirikan nano-sebaran lipid fungsi berasaskan kelapa sawit. Hasil kajian ini menunjukkan bahawa titisan nano yang dihasilkan berkesan dengan pengemulsian dan penyegatan adalah teknik yang mudah dan efektif terutamanya dalam penyediaan nano-sebaran berasaskan kelapa sawit; (tokoferol-tokotrienol dan karotenoid). Saiz butiran dihasilkan dengan pengawalan parameter penghomogenan seperti tekanan dan kitaran. Kajian menunjukkan bahawa dengan peningkatan parameter tekanan (20 – 80 MPa) dan kitaran (1 - 3) yang melempap, titisan nano akan mengalami 'over-processing'. Hasil kajian telah mendapati tekanan penghomogenan mempengaruhi purata saiz butiran dan taburan
butiran (PI) secara signifikan (P < 0.05). Sebaliknya, kitaran proses penghomogenan memberikan kesan yang tidak signifikan (P > 0.05) dari segi purata saiz butiran dan taburan butiran. Kajian awal yang dijalankan menunjukkan diameter butiran dalam lingkungan 90 - 120 nm bagi nano-sebaran α-tokoferol. Manakala, nano butiran yang dihasilkan daripada lipid fungsi berasaskan kelapa sawit adalah di dalam lingkungan 95 – 130 nm dan 140 – 210 nm bagi tokoferol-tokotrienol and karotenoid. Sepanjang tempoh simpanan, kesemua nano-sebaran menunjukkan kestabilan yang baik dari segi fizikal. Walau bagaimanapun, kandungan sebatian nano-sebaran menunjukkan pengurangan yang signifikan (P < 0.05) sepanjang tempoh simpanan. Penyelidikan berkaitan keberkesanan sistem emulsi polyoxyethylene sorbitan esters dan sodium caseinate menunjukkan peningkatan purata saiz butiran yang signifikan (P < 0.05) dengan pemanjangan rantaian asid lemak dan peningkatan nilai HLB. Antara nano-sebaran yang telah disediakan, nano-sebaran yang mengandungi tokoferol-tokotrienol berasaskan kelapa sawit dengan menggunakan Polysorbate 20 menunjukkan purata saiz butiran yang paling kecil dengan taburan titisan yang paling sempit (201.8 ± 1.4 nm; PI, 0.399 ± 0.022) berbanding dengan sebatian lain yang distabilkan oleh sodium caseinate yang menunjukkan purata saiz butiran dan taburan butiran yang paling besar (386.3 ± 4.0 nm; PI, 0.465 ± 0.021). Ini membuktikan peranan pengemulsi Polysorbate 20 adalah lebih sesuai digunakan untuk menghasilkan nano-sebaran jika dibandingkan dengan sodium caseinate.
ACKNOWLEDGEMENTS

First and foremost, I wish to extend my heartfelt gratitude to my main supervisor, Dr Tan Chin Ping for his continuous support and guidance throughout the course of my research. Without his outstanding leadership, invaluable suggestions and constructive criticism, this work would not be made possible. My sincere appreciation also goes to the members of my supervisory committee, Professor Yaakob Bin Che Man and Associate Professor Dr Misni Misran for their concrete advice, understanding, patience and constant encouragement throughout this study.

Special note of thanks are extended to Mr. Yeap Yuh Lin and Mr. Jaez Lee for their help while I was struggling with the droplet size analyzer. Not forgetting all the members of Faculty of Food Science and Technology for their kind assistance throughout the tenure of my study.

Last but not least, my deepest appreciation to my beloved family for their love, understanding and enormous support. Very special thanks to all friends and Enzyme Lab members, especially Neo, Rachel, Amanda, Kar Lin, Ling Zhi, Chen Wai, Stephenie, and Kong Ching.
I certify that an Examination Committee has met on 2nd December 2008 to conduct the final examination of Cheong Jean Ne on her Master of Science thesis entitled “Preparation of palm-based functional lipid nanodispersions” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded Master of Science.

Members of the Examination Committee are as follows:

Nazamid Saari, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Annuar Kassim, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Badlishah Sham Baharin
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Internal Examiner)

Hjh. Salmiah Ahmad, PhD
Lembaga Minyak Sawit Malaysia
Malaysia
(External Examiner)

HASANAH MOHD. GHAZALI, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement or the degree of Master of Science. The members of the Supervisory Committee are as follows:

Tan Chin Ping, PhD
Faculty of Food Science and Technology
University Putra Malaysia
(Chairman)

Yaakob Bin Che Man, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

Misni Misran, PhD
Associate Professor
Faculty of Science
Universiti Malaya
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 9 April 2009
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institutions.

CHEONG JEAN NE

Date:
TABLE OF CONTENTS

Page
ABSTRACT ii
ABSTRAK iv
ACKNOWLEDGEMENTS vi
APPROVAL vii
DECLARATION ix
LIST OF TABLES xiii
LIST OF FIGURES xiv
LIST OF ABBREVIATIONS xvi

CHAPTER

1 INTRODUCTION 1
1.1 Introduction 1

2 LITERATURE REVIEW 3
2.1 Nanotechnology 3
2.2 Food Nanotechnology 7
 2.2.1 General Aspect 7
 2.2.2 Potential of Nanotechnology in Food Industry 9
2.3 Functional Food 11
2.4 Functional Lipids 13
 2.4.1 Tocopherols and Tocotrienols 14
 2.4.2 Carotenoids 16
2.5 Solubility of Functional Lipids 16
2.6 Nanoemulsion 18
 2.6.1 Definition 18
 2.6.2 Emulsifier 18
 2.6.3 Role of Emulsifier 19
2.7 Classification 22
 2.7.1 Bancroft’s Rule 22
 2.7.2 Hydrophile-Lipophile Balance (HLB) 23
 2.7.3 Molecular Geometry 24
2.8 Preparation of Nanoemulsion 24
 2.8.1 Emulsification 24
 2.8.2 Evaporation 25
2.9 High Pressure Homogenization 26
 2.9.1 Power Density of the Homogenizer 27
 2.9.2 Number of Homogenization Cycles 27
2.10 Characterization of Nanodispersions 28
 2.10.1 Size and Size Distribution 29

3 α-TOCOPHEROL NANODISPERSIONS: 32
PREPARATION, CHARACTERIZATION AND
STABILITY EVALUATION
3.1 Introduction 32
3.2 Materials 34
3.3 Preparation of α-Tocopherol Nanodispersions 34
 3.3.1 Pre-Emulsification Step 34
 3.3.2 Preparation of Nanodispersions 35
3.4 Characterization of α-Tocopherol Nanodispersions 35
 3.4.1 Droplet Size Analysis 35
 3.4.2 High Performance Liquid Chromatography 36
3.5 Storage Stability 37
3.6 Statistical Analysis 38
3.7 Results and Discussion 38
 3.7.1 General 38
 3.7.2 Effect of Organic/Aqueous Phase Ratio on the Size Distribution of α-Tocopherol Nanodispersions 40
 3.7.3 Effect of Homogenization Parameters on the Physicochemical Properties of α-Tocopherol Nanodispersions 42
 3.7.4 Stability Evaluation of Prepared α-Tocopherol Nanodispersions during Storage 47
3.8 Summary 50

4 PALM-BASED FUNCTIONAL LIPID NANODISPERSIONS: PREPARATION, CHARACTERIZATION AND STABILITY EVALUATION 51
4.1 Introduction 51
4.2 Materials 53
4.3 Preparation of Palm-Based Functional Lipids Nanodispersions 53
 4.3.1 Pre-Emulsification Step 53
 4.3.2 Preparation of Nanodispersions 54
4.4 Characterization of Palm-Based Functional Lipids Nanodispersions 54
 4.4.1 Droplet Size Analysis Measurement 54
 4.4.2 Zeta Potential Measurement 55
 4.4.3 Microscopy Measurement 55
 4.4.4 Sample Preparation for Determination of Palm-Based Functional Lipids 56
4.5 Determination of Palm-Based Functional Lipids Content 56
 4.5.1 Determination of γ-Tocotrienol 56
4.6 Storage Stability 57
4.7 Statistical Analysis 57
4.8 Results and Discussion 58
 4.8.1 Preliminary Study 58
 4.8.2 Effect of the Homogenization Parameters on the Physicochemical Properties of Palm-Based Functional Lipids Nanodispersions 60
5 EFFECT OF POLYOXYETHYLENE SORBITAN ESTERS AND SODIUM CASEINATE ON PHYSICOCHEMICAL PROPERTIES OF PALM-BASED FUNCTIONAL LIPIDS NANODISPERSIONS

5.1 Introduction 71
5.2 Materials and Methods 73
 5.2.1 Preparation of Palm-Based Functional Lipids Nanodispersions 74
5.3 Characterization of Physicochemical Properties of Palm-Based Functional Lipids Nanodispersions 75
 5.3.1 Droplet Size Analysis 75
 5.3.2 Determination of γ-Tocotrienol 75
5.4 Statistical Analysis 76
5.5 Results and Discussion 77
5.6 Conclusion 81

6 SUMMARY, CONCLUSION AND RECOMMENDATIONS

REFERENCES 84
BIODATA OF STUDENT 92
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Researches and policies in Asian countries on nanotechnology</td>
<td>6</td>
</tr>
<tr>
<td>3.1</td>
<td>Characteristic of droplet size ($D_{4,3}$, nm) of α-tocopherol nanodispersions prepared with different ratios of mixtures using two different homogenization pressures</td>
<td>40</td>
</tr>
<tr>
<td>3.2</td>
<td>Characteristic of droplet size of α-tocopherol nanodispersions prepared using different homogenization pressure</td>
<td>41</td>
</tr>
<tr>
<td>3.3</td>
<td>Characteristic of droplet size of α-tocopherol nanodispersions prepared using different homogenization pressure</td>
<td>43</td>
</tr>
<tr>
<td>3.4</td>
<td>Characteristics of droplet size distribution of α-tocopherol nanodispersions prepared with different homogenization cycles and two different ratios of mixture (at 80 MPa)</td>
<td>45</td>
</tr>
<tr>
<td>3.5</td>
<td>Changes in α-tocopherol concentration after the preparation steps (for the organic:aqueous ratio of 1:9)</td>
<td>46</td>
</tr>
<tr>
<td>3.6</td>
<td>Changes in α-tocopherol concentration after the preparation steps (for the organic:aqueous ratio of 2:8)</td>
<td>46</td>
</tr>
<tr>
<td>4.1</td>
<td>Characteristic of droplet size ($D_{4,3}$, nm) of tocopherols-tocotrienols and carotenoids nanodispersions prepared with different homogenization pressures</td>
<td>58</td>
</tr>
<tr>
<td>4.2</td>
<td>Characteristic of droplet size ($D_{4,3}$, nm) of tocopherols-tocotrienols nanodispersions prepared with different homogenization pressures during the duration of storage 12 weeks</td>
<td>59</td>
</tr>
<tr>
<td>4.3</td>
<td>Changes in γ-tocotrienol concentration during preparation steps</td>
<td>65</td>
</tr>
<tr>
<td>4.4</td>
<td>Zeta potential of tocopherols-tocotrienols and carotenoids nanodispersions for the duration of 12 weeks storage at 4 °C with different operating parameters, 1 cycle</td>
<td>69</td>
</tr>
<tr>
<td>5.1</td>
<td>Average droplet size ($D_{4,3}$, nm) of tocopherols-tocotrienols nanodispersions prepared with different emulsifiers (mean ± standard deviation)</td>
<td>77</td>
</tr>
<tr>
<td>5.2</td>
<td>Different type of polyoxyethylene sorbitan esters (POE) used and their hydrophilic-lipophilic balance (HLB) numbers</td>
<td>78</td>
</tr>
<tr>
<td>5.3</td>
<td>Changes in γ-tocotrienol and β-carotene concentration during preparation steps (mean ± standard deviation)</td>
<td>80</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Possible applications of nanotechnology in the food industry</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>The chemical structure of tocopherols and tocotrienols. For α-tocopherol and α-tocotrienol, R1=R2=R3=CH₃; for β-tocopherol and β-tocotrienol, R1=R3=CH₃, R2=H; for γ-tocopherol and γ-tocotrienol, R1=H, R2=R3=CH₃, for δ-tocopherol and δ-tocotrienol, R1=R2=H, R3=CH₃</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>Chemical structure of β-carotene</td>
<td>17</td>
</tr>
<tr>
<td>3.1</td>
<td>Characteristic of droplet size distribution for α-tocopherol nanodispersions during the duration of storage for ratio 1:9 (12 Weeks)</td>
<td>47</td>
</tr>
<tr>
<td>3.2</td>
<td>Characteristic of droplet size distribution for α-tocopherol nanodispersions during the duration of storage for ratio 2:8 (12 Weeks)</td>
<td>48</td>
</tr>
<tr>
<td>3.3</td>
<td>Changes in α-tocopherol content for α-tocopherol nanodispersions prepared using various homogenization conditions during storage at 4 °C (for organic:aqueous ratio 1:9)</td>
<td>49</td>
</tr>
<tr>
<td>3.4</td>
<td>Changes in α-tocopherol content for α-tocopherol nanodispersions prepared using various homogenization conditions during storage at 4 °C (for organic:aqueous ratio 2:8)</td>
<td>49</td>
</tr>
<tr>
<td>4.1</td>
<td>Droplet size distribution for tocopherols-tocotrienols nanodispersions prepared with different homogenization pressures with [●] indicating pressure 20 MPa; [●] indicating 40 MPa; [■] indicating 60 MPa; and [▲] indicating 80 MPa</td>
<td>62</td>
</tr>
<tr>
<td>4.2</td>
<td>Droplet size distribution for carotenoids nanodispersions prepared with different homogenization pressures with [●] indicating pressure 20 MPa; [●] indicating 40 MPa; [■] indicating 60 MPa; and [▲] indicating 80 MPa</td>
<td>62</td>
</tr>
<tr>
<td>4.3</td>
<td>Droplet size distribution for tocopherols-tocotrienols nanodispersions prepared different homogenization cycles at 80 MPa with [●] indicating 1 cycle; [●] indicating 2 cycles; [■] indicating 3 cycles</td>
<td>64</td>
</tr>
<tr>
<td>4.4</td>
<td>Droplet size distribution for carotenoids nanodispersions prepared with different homogenization cycles at 80 MPa with [●] indicating 1 cycle; [●] indicating 2 cycles; [■] indicating 3 cycles</td>
<td>64</td>
</tr>
</tbody>
</table>
4.5 Atomic force microscopic images of: (A) carotenoids nanodispersions and (B) tocopherols-tocotrienols nanodispersions sample prepared by the emulsification-evaporation technique (40 MPa, 2 cycles).

4.6 Characteristic of droplet size distribution for tocopherols-tocotrienols nanodispersion during the duration of storage 12 weeks prepared with different homogenizing pressure at 1 cycle.

4.7 Characteristic of droplet size distribution for carotenoids nanodispersions during the duration of storage 12 weeks prepared with different homogenizing pressures at 1 cycle.

4.8 Changes in γ-tocotrienol content for palm-based functional lipids nanodispersions prepared using various homogenization conditions during storage at 4 °C at 1 cycle.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>United States</td>
</tr>
<tr>
<td>R&D</td>
<td>Research & Development</td>
</tr>
<tr>
<td>IFT</td>
<td>The Institute of Food Technologist</td>
</tr>
<tr>
<td>PGE</td>
<td>Polyglycerol esters of fatty acids</td>
</tr>
<tr>
<td>PGME</td>
<td>Propylene Glycol Monostearate</td>
</tr>
<tr>
<td>HLB</td>
<td>Hydrophil-Lipophil Balance</td>
</tr>
<tr>
<td>PI</td>
<td>Polydispersity Index</td>
</tr>
<tr>
<td>PCS</td>
<td>Photon Correlation Spectroscopy</td>
</tr>
<tr>
<td>LD</td>
<td>Laser Diffraction</td>
</tr>
<tr>
<td>D₄,₃</td>
<td>Mean droplet diameter</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission Electron Microscopy</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>AFM</td>
<td>Atomic Force Microscopy</td>
</tr>
<tr>
<td>α</td>
<td>Alpha</td>
</tr>
<tr>
<td>β</td>
<td>Beta</td>
</tr>
<tr>
<td>γ</td>
<td>Gamma</td>
</tr>
<tr>
<td>δ</td>
<td>Delta</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

Nowadays, functional lipids with high antioxidative properties constitute one of the fastest growing segments in the food ingredient market. Functional lipids such as carotenoids, phytosterols, ω-3 fatty acids, natural antioxidants and numerous other compounds are widely used as active ingredients in various industries especially in food industry. However, the poor solubility of functional lipids has made their use problematic in food industry. Most of the functional lipids are almost insoluble in water or show very low water solubility. The difficulties to find a suitable formulation or solution are even greater due to poor solubility of the functional lipids in both aqueous and organic media. Moreover, functional lipids may be prone to reduced bioavailability because of their low water solubility. In fact, poor absorption of functional lipids results in insufficient concentration leading to poor bioavailability especially after parenteral administration or transdermal application. It has been shown that smaller droplet size would increase the saturation solubility. This is because smaller droplets size increases the surface area and the dissolution velocity (Muller et al., 2001).
For these reason, great attention should emphasize to find the appropriate solutions to overcome these problems. Improvement of the solubility and bioavailability of such active ingredients play an important role in future oral formulation, especially in functional foods, nutrition, medical and pharmaceutical products. The solutions to these problems should not only increases the solubility and bioavailability of such active ingredients but also provide high stability and a longer shelf life. A promising approach is by formulating as nanodispersions.

Hence, this research is carried out to demonstrate emulsification-evaporation as a simple and effective technique in producing simple oil in water emulsion system with controlled nano-sized. Subsequently, the finding will be used to verify high-pressure homogenization as a feasible methodology in preparing complex mixture of highly purified palm-based lipids nanodispersions. Lastly, the finalized operating parameters will be employed in determining the influence on non-ionic emulsifier on the characteristic properties of palm-based functional lipids nanodispersions.

Therefore, the main objectives of this study were:

1. To prepare and characterize nanodispersions containing α-tocopherol based on emulsification-evaporation techniques,
2. To prepare and characterize the physicochemical properties of prepared nanodispersions containing palm oil-based functional lipids,
3. To evaluate the physicochemical stability of prepared nanodispersions containing palm oil-based functional lipids.
CHAPTER 2

LITERATURE REVIEW

2.1 Nanotechnology

The word ‘nano’ is derived from the Greek word which brings the meaning for dwarf (Sahoo and Labhasetwar, 2003). A nanometer is equal to a billionth of a meter (10^{-9} m). For comparison, one nanometer is about $1/80,000$ nm of the diameter of a human hair, or 10 times the diameter of a hydrogen atom. Nanoscale devices are 100 to 10,000 times smaller than human cells but are similar in size to large biomolecules such as enzymes and receptors (Yih and Wei, 2005; Sheetz et al., 2005).

Nanotechnology is known as new techniques for making things which promises more for less: tinier, cheaper, lighter and speedier devices with greater functionality, using fewer raw materials and consuming less energy. Nevertheless, the capability of manipulating nanosystem in the nano-sized range has yield nanotechnology as one of the most significant areas, drawing intense interest. It is widely touched that it is going to revolutionize every aspect of our lives and leads to generate the new capabilities, new creations and new markets (Bhat, 2005).
Nanotechnology is becoming one of the most potential fields of exploration in the decades to come. Researches have been done globally and increasing investments are pouring from government and from industry over the world (Wonglimpiyarat, 2005).

The convergence of basic sciences such as biology, chemistry, physics and material sciences may extend the potential application of nanotechnology. Development and refinement of knowledge about manipulation of materials has led to an emerging attention in nano-sized materials which have remarkable characteristics (Mamalis, 2007). These features may yield beneficial functional physical and biological properties.

Companies in US, Japan, Europe and several other countries are attempting to position themselves to be nanotechnology leaders (Bhat, 2005). Up to 2004, total global investment was thought to be around $6.25 billion, but this was set to rise. The USA’s 21st Century Nanotechnology Research and Development Act (CNRDA, 2003) has allocated approximately $3.75 billion to subsidize nanotechnologies from 2005-2008. The Japanese government has doubled its nanotechnology funding to $800 million from 2001 to 2003. In Europe, nearly $1.25 billion was spent on nanotechnology research and development (R&D) per annum, and the UK government has allocated about $81.9 million per year from 2003-2009 for the expansion of nanotechnology (Dowling, 2004).

Many other countries have predicted that nanotechnology would be an area for their future exploitation. Table 2.1 illustrated that many Asian countries have incorporated the nanotechnology as a nationalized plans within the perspective of the country’s
strategy. Thailand and Malaysia have joined the race of opportunities by implementing national policies to support nanotechnology. The National Nanotechnology Center (Nanotech) in Thailand has been set up in cooperation with the Ministry of Information and Communication Technology to educate the researchers on nanotechnology. Attempts have been made by Malaysia to set up an undergraduates and postgraduates network for nanotechnology between universities and colleges. In Singapore, the government started a joint venture with US firms in the field of nanobiology applications for the industrialization of processes. In China, the Nano Sci-Tech Industrial Park was established to undertake exploration and expansion on nanotechnology. In Korea, USD1.56 billion was spend for the development of nanotechnology R&D in order to train engineers in the emerging fields and assisted specific nano projects including nanomaterials, electronic devices and computer memories. In Taiwan, the government has implemented a nanotechnology development strategy from 2004-2008.
Table 2.1. Researches and policies in Asian countries on nanotechnology

<table>
<thead>
<tr>
<th>Country</th>
<th>Research policies and activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thailand</td>
<td>Research activities in the field of nanotechnology are intended to respond to scientific and technological needs of Thai government’s policy. The National Nanotechnology (Nanotech) is set up with an aim to increase Thailand’s competitiveness. The R&D areas focused include advanced polymer, nanocarbon, nanoglass, nanoparticles, nanocoating, nanosynthesis with applications to the industries of automotive, food, energy, environment, medicine and health.</td>
</tr>
<tr>
<td>Malaysia</td>
<td>The Malaysian government sets aside, under the eighth Malaysian Plan. USD 8 million for research in nanotechnology and precision engineering technology. The research projects in focus are nanophysics and nanochemistry. Malaysia currently invests in high-cost laboratories to incubate and develop new technologies, in attempt to shift from a traditional manufacturing and assembly base into nano-R&D.</td>
</tr>
<tr>
<td>Singapore</td>
<td>Singapore’s government policy in nanotechnology promotion is focused on disk storage and biological fields. In 2002, the National University of Singapore Nanoscience and Nanotechnology Initiative (NUSNNI) were established as an interdisciplinary group to accelerate nanotechnology business.</td>
</tr>
<tr>
<td>China</td>
<td>The Chinese policy involved ‘Climbing Project on Nanometer Science’ (1990-1999). China has budgeted USD 240 million in less than five years from the central government and approximately USD 240-360 million from local governments for nanotechnology research. Their strengths are development of nanoprobes and manufacturing processes using nanotubes.</td>
</tr>
<tr>
<td>Korea</td>
<td>The Korean government formulated the ‘Comprehensive Plan for Nanotechnology Development’ in 2001. It has also launched a National Nanotechnology Program covering various fields whereby nanomaterials are one of the key research areas. Research projects are funded jointly by the government and the private sectors. Major funding agencies are the Ministry of Science and Technology, the Ministry of commerce, Industry, and Energy. The research program funded by the Ministry of Science and Technology are mostly basic nanotechnology while the Ministry of Commerce, Industry, and Energy supports the research program close to commercialization.</td>
</tr>
<tr>
<td>Taiwan</td>
<td>Taiwan launched the National S7T Priority program on Nanotechnology in Taiwan (NPNT) with a budget of USD 680 million for research in nanotechnology. The implementing mechanism of fund allocation is according to a 20+/60/20-rule, with (1) 20% of the funding to be targeted towards nanotechnology with short-term commercial potential, particularly those help upgrade the competitiveness of the traditional industries. (2) 60% of the R&D resources to be invested in the fields that will impact future competitiveness of current Taiwan hi-tech industries. (3) 20% of the project to be concentrated on the exploratory studies for potential applications that will generate innovative and new technologies.</td>
</tr>
<tr>
<td>Japan</td>
<td>Nanotechnology is ranked as an important field in the Second Science and Technology Basic Plan of the Japanese government. In 2002, the Japanese government announced the promotion of the ‘New Industry Development Strategy’ to tie nanotechnology and material science with new industries. Japan views the development of nanotechnology as the key to restoring its economy. In addition to government sponsored R&D, large corporations-Hitachi, Sony, Toray, Mitsui have invented in nanotechnology research.</td>
</tr>
</tbody>
</table>

However, the penetration of nanotechnology in the market is still in the initial phase, indicating not only remarkable promises but also great consequences. All of these potential applications can significantly affect our lives, health and convenience, as well as our environment. Consequently, it triggers major concerns from the public. This generates a great extent of debates, both in the scientific world and the general media. Studies have revealed that human exposure to nanotechnology can be hazardous (Bainbridge, 2002; Cobb and Macaoubie, 2004). The nanotechnology involved many forms of hazard in military, environmental contamination, terrorist misuse and dislodgment of human beings. Hence, the government, researches and scientist ought to review the implications and benefits of this technology thoroughly to establish strict guidelines leading to a reliable nanotechnology (Poole and Owens, 2003; Edwards, 2005). Contrary to what scientists tend to concern about nanotechnology, Bainbridge (2002) provided an online assessment on the public perception of nanotechnology. According to this assessment, the public are incredibly enthusiastic concerning nanotechnology. As also demonstrated by Cobb and Macaoubie (2004), the public feel hopeful about nanotechnology rather than worried although public perception of nanotechnology is still in its initial step.

2.2 Food Nanotechnology

2.2.1 General Aspect

Nanotechnology is shifting out of the realm of science fiction into our buildings, drugs, cosmetics, and even nudging into our foods, beverages, and dietary
supplements. This technology has the capability to impact many aspects of food and agricultural systems. Food safety, disease treatment delivery system, new tools for molecular and cellular biology, new materials for pathogen recognition and security of the environment are crucial linkage of nanotechnology to the science and engineering of agriculture and food systems (Weiss et al., 2006).

The development of new food products traditionally comprises the application of unit operations such as heat, shear, drying and freezing processes or alteration of product composition in order to generate different textures in food stuff by varying constitutions thereby attract the customers. The next wave of food innovation will budge from macroscopic scale to nano-scale. The exploration and applications of nanoscience to the food industries vary from enhancing the security of the food supply, differentiating molecules based on structure and size, nanosensors packaging or smart delivery system. These applications allow improvement to products quality while simultaneously reducing cost and enhancing productivity (Sanguansri and Augustin, 2006).

A number of groups around the world have identified the potential application of nanoscience and nanotechnology in the food industry. In 2000, Kraft company established a NanoteK Research Consortium of 15 universities and national research laboratories to carry out the research in nanotechnology for prospective food application which include food that can be customized to individual’ preference and nutritional requirement, and filters that can distinguish molecules based on shape rather than size. Nowadays, more than 20 types of food and beverage in the market