UNIVERSITI PUTRA MALAYSIA

EFFECTS OF EFB FIBRE PRE-TREATMENTS ON RESIDUAL OIL CONTENT AND ITS IMPLICATION ON MEDIUM DENSITY FIBREBOARD PERFORMANCE

NORUL IZANI MD ALLWI

IPTPH 2015 3
EFFECTS OF EFB FIBRE PRE-TREATMENTS ON RESIDUAL OIL CONTENT AND ITS IMPLICATION ON MEDIUM DENSITY FIBREBOARD PERFORMANCE

By

NORUL IZANI MD ALLWI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

September 2015
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

EFFECTS OF EFB FIBRE PRE-TREATMENTS ON RESIDUAL OIL CONTENT AND ITS IMPLICATION ON MEDIUM DENSITY FIBREBOARD PERFORMANCE

By

NORUL IZANI MD ALLWI

September 2015

Chairman : Professor Paridah Md. Tahir, PhD
Institute : Tropical Forestry and Forest Products

Oil palm industries generate massive quantities of oil palm biomass such as oil palm trunk (OPT), oil palm frond (OPF) and oil palm empty fruit bunch (EFB). Numerous research and development efforts have been undertaken to utilize EFB, concentrating mainly on the production of pulp for paper making, while a handful can also be found on the production of medium density fibreboards (MDF), particleboard, mattress, agricultural mats, high quality organic fertilizer and charcoal briquette. However, the performance of the produced end product sometimes fails to meet the standard. Some researchers have revealed that two critical problem arise in utilizing EFB is its relatively high residual oil content and initial pH level (more alkali) resulting in some adverse effects on the adhesion properties of the fibre in particular when using urea formaldehyde (UF) resin as the binder.

In this study, the treatments to remove the residual oil on EFB fibre were done by soaking the fibres in sodium hydroxide (NaOH) for 30 min, boiling the fibres in water for 30 min or a combined soaking in NaOH and boiling water. The effects of treatment on residual oil content and other fibre properties such as adhesion properties, tensile properties, thermal analysis and fibre morphological changes were evaluated. The treated fibres were also used to manufacture MDF using urea formaldehyde (UF) and phenol formaldehyde (PF) as a binder. The mechanical, bonding strength and dimensional stability properties of the panels bonded at three resin level (8, 10 and 12% w/w) were evaluated according to Malaysian Standard 1787 (MS 1787:2005) and the failure characteristics were then determined. The difference behaviour of treated fibre in UF and PF resin curing were briefly discussed. The density profile and its effects on the board’s properties, surface characteristics of MDF from different fibre pre-treatment were also discussed.

Generally, NaOH soaking treatment was significantly removed the residual oil in EFB fibre compared to other treatments. The initial pH of EFB fibre
(untreated) was 5.66. The pH was increase to be slightly alkali (7.65) after the fibre was soaked in 2%NaOH. Boiling the fibre in water reduced the pH to become more acidic (5.17). The results also showed that the alkali treatment have significant influence on pH, tensile strength and thermogravimetric analysis of EFB.

The EFB fibres treated with boiling were apparently more compatible in UF resin with highest modulus of rupture (MOR 33.4 MPa), modulus of elasticity (MOE 2838 MPa) and internal bonding (IB 0.87 MPa). NaOH soaking treated fibre with PF resin bonding resulted in better mechanical and physical properties with the value of 31.4 MPa (MOR), 2437 MPa (MOE) and 0.67 MPa (IB). Basically, dimensional stability, thickness swelling (TS) and water absorption (WA) of both UF and PF resin bonded MDF were lowest in 12% resin level. Generally, the board properties improved with increasing adhesive levels.

Resin level was found to have major influences on vertical density profile (VDP), thus affect the mechanical board properties. MOE and MOR were benefited by high density surfaces, while IB and shear strength were improved by higher core density. In this study, positive correlations (R^2 from 0.51 to 0.75) were found between IB and core density. The top surface (D1) was positively correlated with MOR (R^2 from 0.50 to 0.52), whilst the bottom surface (D3) was positively correlated with MOE (R^2 ranging from 0.59 to 0.63). These correlations were found correspondingly in both UF and PF-bonded MDF.

The overall results indicated that the treatment of fibre on residual oil content changed the fibre pH, thus significantly affect the board properties. The best pre-treatment for EFB is by soaking in NaOH but only if PF is used as a binder, compared to water boiling which is more compatible in UF resin. Since the alkaline or acidic pre-treatment will changes the pH at the fibre surface, the important consideration after pre-treatments being done, is to make sure the final pH of treated fibre is suitable and compatible with appropriate resin used.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KESAN KE ATAS PRA-RAWATAN GENTIAN TANDAN KOSONG KELAPA SAWIT DAN KESANNYA TERHADAP PRESTASI PAPAN GENTIAN BERKETUMPATAN SEDERHANA

Oleh

NORUL IZANI MD ALLWI

September 2015

Pengerusi : Professor Paridah Md. Tahir, PhD
Institut : Perhutanan Tropika dan Produk Hutan

Industri kelapa sawit menghasilkan kuantiti besar biomas kelapa sawit seperti batang kelapa sawit (OPT), pelepah kelapa sawit (OPF) dan tandan kosong kelapa sawit (EFB). Usaha-usaha penyelidikan dan pembangunan menggunakan EFB telah banyak diambil, menumpukan perhatian kepada pengeluaran pulpa untuk pembuatan kertas, manakala segelintir terdapat pada pengeluaran papan gentian berketumpatan sederhana (MDF), papan partikel, tilam, tikar pertanian, baja organik berkualiti tinggi dan arang briquet.

Walau bagaimanapun, prestasi produk akhir adakalanya gagal memenuhi piawaian. Sesetengah penyelidik mendedahkan bahawa dua masalah kritikal yang timbul dalam penggunaan EFB adalah kandungan sisa minyak yang tinggi dan tahap pH awal (lebih alkali) menyebabkan beberapa kesan buruk kepada sifat rekatan gentian, terutama apabila menggunakan urea formaldehid (UF) sebagai perekat.

Dalam kajian ini, rawatan mengeluarkan sisa minyak pada gentian EFB telah dilakukan dengan merendam gentian dalam natrium hidroksida (NaOH) (30 minit), merebus gentian di dalam air (30 minit) serta gabungan merendam di dalam NaOH dan air mendidih. Kesan rawatan pada kandungan sisa minyak dan sifat-sifat lain seperti sifat rekatan, tegangan, analisis terma dan perubahan morfologi gentian dinilai. Gentian yang telah dirawat juga digunakan untuk menghasilkan MDF menggunakan perekat urea formaldehid (UF) dan fenol formaldehid (PF). Sifat mekanikal, kekuatan rekatan dan kestabilan dimensi panel pada tiga tahap resin (8, 10 dan 12% w/w) dinilai mengikut Malaysia Standard 1787 (MS1787:2005) dan ciri-ciri kegagalannya ditentukan. Perbezaan kelakuan dalam keadaan asid dan alkali gentian dirawat dibincangkan secara ringkas. Profil ketumpatan dan kesannya ke atas sifat panel, ciri-ciri permukaan MDF daripada gentian dirawat juga dibincangkan.

Secara amnya, rawatan rendaman NaOH ternyata mengeluarkan lebih sisa minyak dalam gentian EFB berbanding rawatan lain. pH awal gentian EFB
(tanpa rawatan) adalah 5.66. pH ini meningkat menjadi sedikit alkali (7.65) selepas gentian direndam dalam 2% NaOH. Merebus gentian di dalam air mengurangkan pH dan menjadi lebih berasid (5.17). Keputusan juga menunjukkan bahawa rawatan alkali mempunyai pengaruh besar ke atas pH, kekuatan tegangan dan analisis termogravimetrik EFB.

Gentian EFB yang dirawat melalui rebusan lebih serasi dalam UF resin dengan nilai tertinggi modulus pecah (MOR 33.4 MPa), modulus keanjalan (MOE 2838 MPa) dan ikatan dalam (IB 0.87 MPa). Gentian yang dirawat dengan rendaman NaOH dan direkat dengan PF resin menghasilkan sifat mekanikal dan fizikal yang lebih baik dengan nilai 31.4 MPa (MOR), 2437 MPa (MOE) dan 0.67 MPa (IB). Pada asasnya, kestabilan dimensi, pembengkakan ketebalan (TS) dan penyerapan air (WA) bagi MDF yang dirawat menggunakan UF dan PF resin adalah terendah pada tahap 12% resin. Secara umumnya, sifat-sifat panel bertambah baik dengan peningkatan tahap perekat.

Tahap resin didapati mempunyai pengaruh besar ke atas profil ketumpatan (VDP), dengan itu memberi kesan kepada sifat mekanikal papan. MOE dan MOR telah mendapat manfaat oleh permukaan berketumpatan tinggi, manakala IB dan kekuatan rich diperkukuhkan melalui ketumpatan teras yang lebih tinggi. Dalam kajian ini, hubungan positif (R^2 antara 0.51 hingga 0.75) didapati antara IB dan ketumpatan teras. Permukaan atas (D1) dihubung secara positif dengan MOR (R^2 antara 0.50 hingga 0.52), manakala permukaan bawah (D3) dihubung secara positif dengan MOE (R^2 antara 0.59 hingga 0.63). Korelasi ini sepadan dalam kedua-dua panel MDF dengan perekat UF dan PF.

Keputusan keseluruhan menunjukkan bahawa rawatan sisa minyak mengubah pH gentian, dengan itu memberi kesan besar kepada ciri papan panel. Pra-rawatan terbaik untuk EFB adalah dengan merendam dalam NaOH tetapi hanya jika PF sebagai perekat, berbanding rawatan air mendidih yang bersesuaian dalam resin UF. Memandangkan pra-rawatan beralkali atau berasid akan mengubah pH akhir gentian, pertimbangan selepas rawatan dilakukan adalah penting untuk memastikan pH akhir serat yang dirawat sesuai dan serasi dengan resin yang akan digunakan.
ACKNOWLEDGEMENTS

First of all, I would like to express my sincere gratitude to my supervisor Professor Dr. Paridah Md. Tahir for her assistance, constructive comments and advice throughout the study period. Without her contribution of ideas, guidance, moral support and encouragement, the completion of this study would have not been possible. Special gratitude also is due to my committee member Dr. H’ng Paik San, Dr. Astimar Abd. Aziz and Dr. Mohd Nor Mohd Yusoff for their constructive comments, valuable suggestion and encouragement.

Grateful acknowledgements are extended to all of the members of Institute Tropical Forestry and Forest Product (INTROP) who in one way or another have contributed to the success of this study. Much appreciation also goes to Faculty of Forestry (UPM), Malaysian Palm Oil Board (MPOB) and Forest Research Institute Malaysia (FRIM) for granting permission in using the facilities throughout this study.

I am also grateful to the reviewers of this thesis and paper, Prof Salim Hiziroglu and Dr. Khairun Anwar Uyup for discussions, valuable comments and good advice during the work. Special thanks also go to friends who have been a constant help in many ways from beginning to the end of this study, especially Miss Aisyah Humaira Alias, Miss Juliana Abdul Halip and Miss Nor Hafizah Ab. Wahab.

My greatest and deepest love also goes to my beloved family: my parents, siblings and my mother in law. To my husband Ash Fadzli, thank you for your patience and support while lifting my spirit during my difficulties. Also to my lovely daughter and son (Ara and Aish) for understanding the situation of their mother.

Last but not least, I am also greatly indebted to UPM for the much needed financial support and to the Faculty of Agriculture and Food Sciences (UPMKB) for granting my study leave.
I certify that a Thesis Examination Committee has met on 30 September 2015 to conduct the final examination of Norul Izani Binti Md Allwi on her thesis entitled “Effects of EFB Fibre Pre-Treatments on Residual Oil Content and Its Implication on Medium Density Fibreboard Performance” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Khalina Abdan, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Rasmina Halis, PhD
Faculty of Forestry
Universiti Putra Malaysia
(Internal Examiner)

Edi Suhaimi Bakar, PhD
Associate Professor
Faculty of Forestry
Universiti Putra Malaysia
(Internal Examiner)

Mehmet Hakki Alma, PhD
Professor
Faculty of Forestry
University of Kahramanmaras
Turkey
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Paridah Md. Tahir, PhD
Professor
Institute of Tropical Forestry and Forest Products
Universiti Putra Malaysia
(Chairman)

H'ng Paik San, PhD
Associate Professor
Faculty of Forestry
Universiti Putra Malaysia
(Member)

Astimar Abd. Aziz, PhD
Head
Biomass Technology Unit
Malaysian Palm Oil Board (MPOB)
(Member)

Mohd Nor Mohd Yusoff, PhD
Wood Chemistry Division
Forest Research Institute Malaysia (FRIM)
(Member)

BUJANG KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:
• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ________________________ Date: __________________

Name and Matric No.: Norul Izani Md Allwi GS23951
Declaration by Members of Supervisory Committee

This is to confirm that:

• the research conducted and the writing of this thesis was under our supervision;
• supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: __________________________
Name of Chairman of Supervisory Committee: Paridah Md. Tahir, PhD

Signature: __________________________
Name of Member of Supervisory Committee: H’ng Paik San, PhD

Signature: __________________________
Name of Member of Supervisory Committee: Astimar Abd. Aziz, PhD

Signature: __________________________
Name of Member of Supervisory Committee: Mohd Nor Mohd Yusoff, PhD
TABLE OF CONTENTS

ABSTRACT	i
ABSTRAK	iii
ACKNOWLEDGEMENTS	v
APPROVAL	vi
DECLARATION	vii
LIST OF TABLES	xiii
LIST OF FIGURES	xvii

CHAPTER

1. **INTRODUCTION**
 - 1.1 Background 1
 - 1.2 Justification and Problem Statement 3
 - 1.3 Objectives 4
 - 1.4 Organization of the Thesis 4

2. **LITERATURE REVIEW**
 - 2.1 Introduction 6
 - 2.2 Natural Fibres 6
 - 2.2.1 Advantages and Disadvantages of Natural Fibres 9
 - 2.3 Agricultural Waste 11
 - 2.4 Oil Palm 11
 - 2.4.1 Historical Background 11
 - 2.4.2 Oil Palm Residues as New Fibre Sources 13
 - 2.4.3 Empty Fruit Bunch (EFB) 16
 - 2.4.4 Physical and Mechanical Characteristics of OPEFB 17
 - 2.4.5 Potential Uses of EFB Residual Oil in EFB 20
 - 2.5 Residual Oil in EFB 21
 - 2.6 EFB Fibre Treatment 22
 - 2.6.1 Alkali Treatment 23
 - 2.6.2 Water Boiling Treatment 28
 - 2.7 MDF 29
 - 2.7.1 Refining Process in MDF Manufacture 29
 - 2.7.2 Physical and Mechanical Properties of MDF 30
 - 2.7.3 Vertical Density Profile 31
 - 2.8 Adhesive Binder for MDF 32
 - 2.8.1 UF Resin 32
 - 2.8.2 PF Resin 35
 - 2.9 Adhesion Characteristics of Natural Fibre 35
 - 2.9.1 pH and Buffering Capacity 35
3 PRE-TREATMENT OF OIL PALM EMPTY FRUIT BUNCH AND IT’S EFFECT ON THE FIBRE PROPERTIES

3.1 Introduction 38
3.2 Materials 39
3.3 Methodology 39
 3.3.1 Pre-Treatment of EFB Fibres 39
 3.3.2 Residual Oil Analysis 40
 3.3.3 Determination of Fibre pH 41
 3.3.4 Tensile Properties of EFB Fibre 41
 3.3.5 Thermogravimetric Analysis (TGA) 42
 3.3.6 Scanning Electron Microscopy (SEM) 42
 3.3.7 Statistical Analysis 43
 3.3.8 Flow Chart Used in Chapter 3 43
3.4 Results and Discussions 44
 3.4.1 Effects of Pre-Treatment Methods and Type of Fibre (Before Pulping and After Pulping) on Residual Oil Analysis and Fibre pH 44
 3.4.2 Effects of Pre-Treatment Methods on Tensile Strength and TGA of After Pulping Fibres 48
 3.4.3 Effects of Fibre Pre-Treatment Methods on Surface Morphology of After Pulping Fibres 53
3.5 Conclusions 59

4 EFFECTS OF FIBRE PRE-TREATMENT ON THE PERFORMANCE OF OIL PALM EMPTY FRUIT BUNCHES MDF BONDED WITH UREA FORMALDEHYDE RESIN

4.1 Introduction 60
 4.1.1 Effects of Fibre Pre-Treatment on Fibre pH 61
4.2 Materials 62
4.3 Methodology 62
 4.3.1 Determination of Buffering Capacity 62
 4.3.2 Preparation of MDF 67
 4.3.3 Evaluation of Dimensional Stability Properties 65
 4.3.4 Evaluation of Internal Bonding 67
 4.3.5 Evaluation of Mechanical Properties 67
 4.3.6 Surface Characteristics of MDF by SEM 68
 4.3.7 Determination of Vertical Density Profile 69
 4.3.8 Relationship between Density Profile with MDF Properties 69
 4.3.9 Statistical Analysis 69
 4.3.10 Flow Chart Used in Chapter 4 70
4.4 Results and Discussions 71
 4.4.1 Buffering Capacity towards Acid 71
 4.4.2 Effects of Pre-Treatment Method and Resin Level on Dimensional Stability 74
 4.4.3 Effects of Pre-Treatment Method and Resin Level on Bond Integrity and Strength Properties 77
 4.4.4 Effect of Fibre pH on the Bond Integrity of MDF 81
4.4.5 Failure Characteristics in Flexural Test 83
4.4.6 Surface Characteristics of UF- Bonded MDF 86
4.4.7 Effects of Fibre Pre-Treatments and Resin Level on Density Profile 89
4.4.8 Correlations between Density and MDF Properties 96
4.5 Conclusions 100

5 EFFECTS OF FIBRE PRE-TREATMENT ON THE PERFORMANCE OF OIL PALM EMPTY FRUIT BUNCHES MDF BONDED WITH PHENOL FORMALDEHYDE RESIN 101
5.1 Introduction 101
5.2 Materials 102
5.3 Methodology 102
5.3.1 Determination of Buffering Capacity 102
5.3.2 Fabrication of MDF 102
5.3.3 Evaluation of MDF Properties 103
5.3.4 Surface Characteristics of MDF by SEM 103
5.3.5 Determination of Vertical Density Profile 103
5.3.6 Relationship between Density Profile with MDF Properties 104
5.3.7 Statistical Analysis 104
5.3.8 Flow Chart Used in Chapter 5 105
5.4 Results and Discussion 106
5.4.1 Buffering Capacity towards Alkali 106
5.4.2 Effects of Fibre Pre-Treatment and Resin Level on Dimensional Stability 109
5.4.3 Effects of Fibre Pre-Treatment and Resin Level on Bond Integrity and Mechanical Properties 112
5.4.4 Surface Characteristics of PF- Bonded MDF 117
5.4.5 Effects of Fibre Pre-Treatments and Resin Level on Density Profile 119
5.4.6 Correlations between Density and MDF Properties 126
5.5 Conclusions 130

6 SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH 131

REFERENCES/BIBLIOGRAPHY 133
BIODATA OF STUDENT 161
LIST OF PUBLICATIONS 162
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Properties of various natural fibres and synthetic fibres</td>
</tr>
<tr>
<td>2.2</td>
<td>Chemical composition, moisture content and microfibrillar angle of plant fibres</td>
</tr>
<tr>
<td>2.3</td>
<td>The weight portion and quality per hectare for the different types of oil palm biomass in Malaysia</td>
</tr>
<tr>
<td>2.4</td>
<td>Some applications of oil palm fibres from 2004-2014</td>
</tr>
<tr>
<td>2.5</td>
<td>Chemical composition of EFB fibres in comparison with trunk, frond and coconut stem</td>
</tr>
<tr>
<td>2.6</td>
<td>Chemical composition of EFB fibres from different researchers</td>
</tr>
<tr>
<td>2.7</td>
<td>Average diameter of some natural fibre</td>
</tr>
<tr>
<td>2.8</td>
<td>Physical properties of oil palm biomass fibre</td>
</tr>
<tr>
<td>2.9</td>
<td>Physical and mechanical properties of EFB and coir fibre</td>
</tr>
<tr>
<td>2.10</td>
<td>The alkali (NaOH) treatment of some natural fibres</td>
</tr>
<tr>
<td>2.11</td>
<td>Physical modifications of the EFB fibres after various chemical treatments</td>
</tr>
<tr>
<td>2.12</td>
<td>pH and buffering capacity of oil palm and rubberwood fibres</td>
</tr>
<tr>
<td>3.1</td>
<td>The EFB fibre pre-treatment methods</td>
</tr>
<tr>
<td>3.2</td>
<td>Summary of Analysis of variance (ANOVA) for the effects of pre-treatment method and type of fibres on the residual oil content and fibre pH</td>
</tr>
<tr>
<td>3.3</td>
<td>Summary of Analysis of variance (ANOVA) for the effects of pre-treatment method on the tensile strength and thermogravimetric analysis of refined EFB fibres</td>
</tr>
<tr>
<td>3.4</td>
<td>Mechanical properties of untreated and treated EFB fibre</td>
</tr>
<tr>
<td>3.5</td>
<td>The degradation temperature from TG analysis of different treatments of EFB fibres</td>
</tr>
<tr>
<td>4.1</td>
<td>The properties of urea formaldehyde (UF) adhesive</td>
</tr>
<tr>
<td>4.2</td>
<td>Production parameters of medium density fibreboard (MDF)</td>
</tr>
<tr>
<td>4.3</td>
<td>Properties and specimen size for mechanical and dimensional stability properties evaluation</td>
</tr>
<tr>
<td>4.4</td>
<td>Summary of Analysis of variance (ANOVA) for the effects of pre-treatment method on buffering capacity of EFB fibres</td>
</tr>
<tr>
<td>4.5</td>
<td>Effects of pre-treatment methods on the buffering capacity of EFB fibres after pulping</td>
</tr>
<tr>
<td>4.6</td>
<td>Analysis of variance (ANOVA) for differences between EFB pre-treatment effects on the mechanical, bonding, and dimensional stability properties of the produced MDF</td>
</tr>
<tr>
<td>4.7</td>
<td>Water absorption (WA) and thickness swelling (TS) values of the MDF’s manufactured from EFB fibres at different resin levels and at different pre-treatment methods and different resin levels</td>
</tr>
</tbody>
</table>
4.8 Internal bonding and mechanical strength of UF-bonded MDF manufactured from EFB fibres at different pre-treatment methods and different resin levels
4.9 Fibre pH before and after pre-treatment
4.10 Analysis of variance (ANOVA) for differences between EFB pre-treatment and resin levels effect on the vertical density profile of UF-bonded MDF
4.11 Density distribution through a board’s thickness and mechanical properties of UF-bonded MDF panels at different fibre pre-treatments and resin levels
5.1 The properties of phenol formaldehyde (PF) adhesive
5.2 Summary of Analysis of variance (ANOVA) for the effects of pre-treatment method on buffering capacity of EFB fibres
5.3 Effects of pre-treatment methods on the buffering capacity of EFB fibres after pulping
5.4 Analysis of variance (ANOVA) for differences between EFB pre-treatment effects on dimensional stability, bonding and mechanical properties of PF-bonded MDF
5.5 Thickness swelling of the MDF’s manufactured from treated EFB fibres at different resin levels
5.6 Effect of pre-treatment method on water absorption and thickness swelling of MDF’s manufactured from EFB fibres
5.7 Internal bonding and mechanical properties of PF-bonded MDF manufactured from EFB fibres at different pre-treatment methods and resin levels
5.8 Analysis of variance (ANOVA) for differences between EFB pre-treatment and resin levels effect on the vertical density profile of PF-bonded MDF
5.9 Density distribution through a board’s thickness of PF-bonded MDF panels at different fibre pre-treatments and resin level
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Classification of natural fibres</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Structure of cellulose</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Schematic representation of hydrogen bonding in natural fibre</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td>Schematic view of secondary layer of fibre cell wall</td>
<td>9</td>
</tr>
<tr>
<td>2.5</td>
<td>Oil palm tree</td>
<td>12</td>
</tr>
<tr>
<td>2.6</td>
<td>Oil palm fresh fruit bunch and the structure of the palm fruit</td>
<td>13</td>
</tr>
<tr>
<td>2.7</td>
<td>Biomass/ products from oil palm tree</td>
<td>14</td>
</tr>
<tr>
<td>2.8</td>
<td>Oil palm empty fruit bunch (OPEFB)</td>
<td>16</td>
</tr>
<tr>
<td>2.9</td>
<td>a) Composition of the wood cell wall. (b) A schematic representation of cellulose microfibrils. (c) Schematic of cellulose microfibril consisting of crystalline and amorphous region</td>
<td>18</td>
</tr>
<tr>
<td>2.10</td>
<td>Transverse section of oil palm fibre cell wall structure</td>
<td>19</td>
</tr>
<tr>
<td>2.11</td>
<td>Schematic of the role of pre-treatment in the lignocellulosic material</td>
<td>22</td>
</tr>
<tr>
<td>2.12</td>
<td>Schematic representation removing of residual oil on EFB fibres with NaOH treatment</td>
<td>23</td>
</tr>
<tr>
<td>2.13</td>
<td>Schematic representation of raw and alkali treated fibre</td>
<td>25</td>
</tr>
<tr>
<td>2.14</td>
<td>Actual vertical density profile in MDF</td>
<td>31</td>
</tr>
<tr>
<td>2.15</td>
<td>Process involved in the formation of phenol formaldehyde</td>
<td>35</td>
</tr>
<tr>
<td>3.1</td>
<td>Schematic representation of the experimental setup of tensile test</td>
<td>42</td>
</tr>
<tr>
<td>3.2</td>
<td>Flow chart used in Chapter 3</td>
<td>43</td>
</tr>
<tr>
<td>3.3</td>
<td>Effect of fibre pre-treatments on the residual oil extraction in EFB fibres</td>
<td>45</td>
</tr>
<tr>
<td>3.4</td>
<td>Effect of fibre pre-treatments on pH of EFB fibre before and after pulping process</td>
<td>47</td>
</tr>
<tr>
<td>3.5</td>
<td>The TG analysis of untreated and different treatments of EFB fibres</td>
<td>51</td>
</tr>
<tr>
<td>3.6</td>
<td>SEM micrograph of untreated EFB fibre (500x)</td>
<td>54</td>
</tr>
<tr>
<td>3.7</td>
<td>SEM micrograph of EFB fibre after NaOH soaking treatment (a) 500x (b) 250x (c) 200x</td>
<td>55</td>
</tr>
<tr>
<td>3.8</td>
<td>SEM micrograph of water boiling EFB fibre with (a) impurities on fibre and (b) physical changes after pre-treatment</td>
<td>57</td>
</tr>
<tr>
<td>3.9</td>
<td>SEM micrograph of combination NaOH soaking and boiling EFB (a) and (b) occurrence of fibre damage and (c) cracks in fibre</td>
<td>58</td>
</tr>
<tr>
<td>4.1</td>
<td>Flow chart of MDF production</td>
<td>64</td>
</tr>
<tr>
<td>4.2</td>
<td>Cutting pattern of test specimens</td>
<td>65</td>
</tr>
<tr>
<td>4.3</td>
<td>Thickness swelling measurement of test sample</td>
<td>66</td>
</tr>
<tr>
<td>4.4</td>
<td>Internal bonding test specimen</td>
<td>67</td>
</tr>
</tbody>
</table>
4.5 Illustration of three point static bending test
4.6 Flow chart used in Chapter 4
4.7 Comparative stability of different EFB fibre treatments towards acid
4.8 SEM micrograph of cut surfaces of MDF made from NaOH soaking treated EFB fibres
4.9 SEM micrograph of cut surfaces of MDF made from combination NaOH soaking and boiling treatment (fine fibres)
4.10 Failure characteristics of MDF EFB bonded with UF from (a) untreated, (b) boiling treated, (c) NaOH soaking treated, and (d) combination NaOH soaking and boiling fibre
4.11 Cross section of failure characteristics of MDF EFB bonded with UF from (a) untreated, (b) boiling treated, (c) NaOH soaking treated, and (d) combination NaOH soaking and boiling fibre
4.12 SEM of MDF made from different pre-treatment EFB fibre bonding with UF resin
4.13 Density profile pattern of board from (a) untreated, (b) NaOH soaking treatment, (b) water boiling treatment, and (c) combination NaOH and boiling treatment
4.14 Density profile pattern of MDF bonded with different resin levels at (a) 8% resin, (b) 10% resin, and (c) 12% resin
4.15 Correlation between IB and density (a) top surface (D1), (b) core (D2), and (c) bottom surface (D3) for UF-bonded MDF
4.16 Correlation between MOR and density (a) top surface (D1), (b) core (D2), and (c) bottom surface (D3) for UF-bonded MDF
4.17 Correlation between MOE and density (a) top surface (D1), (b) core (D2), and (c) bottom surface (D3) for UF-bonded MDF
5.1 Flow chart used in Chapter 5
5.2 Comparative stability of different EFB fibre treatments towards alkali
5.3 Water absorption of the samples manufactured with different fibre pre-treatment at different resin levels
5.4 Thickness swelling of the samples manufactured with different fibre pre-treatment at different resin levels
5.5 SEM of MDF made from different pre-treatment EFB fibre bonding with PF resin
5.6 Density profile pattern of board from (a) untreated, (b) NaOH soaking treatment, (b) water boiling treatment, and (c) combination NaOH and boiling treatment
5.7 Density profile pattern of MDF bonded with different resin levels at (a) 8% resin, (b) 10% resin, and (c) 12% resin
5.8 Correlation between IB and density (a) top surface (D1), (b) core (D2), and (c) bottom surface (D3) for UF-bonded MDF
5.9 Correlation between MOR and density (a) top surface (D1), (b) core (D2), and (c) bottom surface (D3) for UF-bonded MDF

5.10 Correlation between MOE and density (a) top surface (D1), (b) core (D2), and (c) bottom surface (D3) for UF-bonded MDF
CHAPTER 1

INTRODUCTION

1.1 Background

Oil palm biomass is an agricultural by-product periodically left in the field during the replanting, pruning and milling processes of oil palm. The biomass from oil palm residue include the oil palm trunk (OPT), oil palm frond (OPF), kernel shell, empty fruit bunch (EFB), presses fruit fibre (PFF) and palm oil mill effluent (POME). Oil palm biomass (OPB) is classified as lignocellulosic residues that typically contain 57.8% cellulose, 21.2% hemicellulose and 22.8% lignin in their cell wall (Abdullah and Sulaiman, 2013). Among the oil palm fibre residues, EFB was found to be most abundant and readily available in the palm oil processing plants throughout the country. With a planted area of 5.39 million hectares, it generates 23.82 million tons of EFB annually through a combined processing capacity of 96.14 million tons by 439 mills and 54 refineries (Malaysia Palm Oil Board, 2015). Several investigations have been carried out to produce hybrid plywood, MDF, polymer composites, particleboard (PB), paper, pulp, furniture, bio fuels etc. from oil palm biomass (Abdul Khalil et al., 2012). Presently, EFB mainly used as mulch, but the economic are marginal due to high transport cost. As the major waste of oil palm industry, EFB is currently being applied as a wood composite, fibreboard, soil mulching material in the oil palm estate, and as a composting material (Baharuddin et al., 2009; Kheong et al., 2010).

MDF is a wood-based composite material containing panels composed of combinations of lignocellulosic compounds and synthetic resins, such as urea formaldehyde (UF) and phenol formaldehyde (PF), which is dried at low temperatures and pressurized under humid conditions (Park et al., 2001). MDF, which was developed during the 1970s, has been the most successful substitute for particleboard, thanks to its unique properties, including strength, homogeneity, and machining performances (Halvarsson et al., 2008). Due to the declining availability and limitation in wood supply and other fibre resources directed toward MDF manufacturing, attention must be concentrated on uncommon and unconventional fibre supplies, with particular attention to agricultural residues. Attempts to utilize the potential of agro-based raw material in panel board production such as particleboard and MDF is still continuing, and an excellent wealth of research and development reports has become available (Halvarsson et al., 2010; Pan et al., 2010; Ciannomea et al., 2010; Akgul and Tozluoglu, 2008; Ye et al., 2007; Lee et al., 2006).

In Malaysia, two primary sources have been identified for making MDF; oil palm EFB fibres and rubberwood. The curing rate of UF resin when pressing wood-based fibre material is generally not a problem in conventional MDF manufacture (Xing et al., 2006a). Unlike wood materials, most agro-based
fibres have higher pH values and pH-buffering capacity levels, pH-levels above 7 are not being uncommon. As reported from previous studies by Suhaily and co-workers (2012), oil palm EFB fibres are inferior compared to rubberwood fibres because they have higher pH values and buffering capacities towards acids. The presence of residual oil on the EFB fibre has been reported also by several researchers (AbuBakar et al., 2006; Ngan, 2005; Rozman et al., 2001; Paridah et al., 2000; Nor Yuziah et al., 1997) who reported that the presence of oil on the EFB surface may be a critical factor that affects the fibre-resin compatibility, and determining the strength of composites. Shinoj et al. (2011) reported that removal of residual oil from EFB surface improves the interfacial adhesion between fibre and matrix.

Alkali treatment is the most common treatment on EFB to improve fibre-matrix interfacial adhesion (Chowdhury et al., 2013). According to Aziz and Ansell, (2004), such method that has been used for the treatment of natural fibre because this method is relatively simple, inexpensive and quite effective in preparing natural fibres for the subsequent treatment reaction. John and Anandjiwala (2008) reviewed the developments in chemical modification of natural fibres and concluded that alkali treatment is the most common and efficient method for this purpose. Alkali treatment of cellulosic fibres, also called mercerization, is the usual method that often used by some researchers to produce quality and reactive fibres by decreasing the spiral angle and increasing the molecular orientation of the cellulose chains (Bledzki et a., 2010) that makes them easy to crosslink with resin polymer. The alkali treatments generally result in rougher fibre topography, which can further improve the fibre matrix adhesion in composite by providing additional sites for mechanical interlocking. Various types of treatment have been carried out to modify the surface of fibres, including alkalization (Mwaikambo and Ansell, 2002), thermal treatment (Ayrilmis et al., 2011), chemical bleaching (Abdul Razak et al., 2014), steaming (Then et al., 2014; Bahrin et al., 2012). These treatments normally lead to reduction in moisture uptake, as well as changes in the fibre surface properties. Thermal treatments also can eliminate most of the impurities such as waxy and oily substances that are present on the surface of fibre, as well as part of the non-cellulose components, e.g. hemicelluloses and lignin (Ayrilmis et al., 2011). The removal of these substances can increase the surface roughness of fibre, promoting the adhesion between thermoplastic and fibre, particularly via mechanical interlocking mechanism (Edeerozeey et al., 2007).

Efforts to utilize oil palm empty fruit bunches (EFB) have been reported quite extensively (Mohamad et al., 2003; Thole and Hora, 2003; Manarapaac, 2001. Numerous research and development efforts have been undertaken to utilize EFB, concentrating mainly on the production of pulp for paper making (Astimar et al., 2002; Tanaka et al., 2002), while a handful can also be found on the production of medium density fibreboards (Rdzuan et al., 2002), oil palm fibre mattress and agricultural mats, high quality organic fertilizer, charcoal briquette, and roof tiles (Mohamad et al., 2002). However, the performance of the produced end product sometimes fails to meet the expectation.
1.2 Justification and Problem Statement

The most frequent problems associated with panels made from EFB fibres are poor performance and low internal bond that have made them inferior to those produced from wood material such as rubberwood. Subiyanto et al. (2002), associated the poor mechanical properties of particleboard made from EFB to the characteristics of the fibre raw material itself.

According to Husain et al. (2003), the residual oil in the EFB was estimated at 3-4% and it was located mostly on the spikelet rather in the stalk. However, this estimation neglected/dependent to the effects of nature, bunch size variation and maturity level. Ngan (2005) reported that EFB fibres contain 0.28 to 1.38% of residual oil and it still present even after the extraction process in the factory. It is crucial to ensure that the residual oil in EFB fibre is kept to a minimum, since the remaining oil in EFB surface may affect the properties of the composite materials. Other researchers also reported similar findings on both bonding and finished properties of EFB MDF (Paridah et al., 2000; Nor Yuziah et al., 1997) and weakened the paper produced from EFB (Riduan et al., 2002; Kobayashi et al., 1985). Study reported by Paridah and Zaidon (2000) stated that two critical problem arise in utilizing EFB is its relatively high residual oil content and initial pH level (more alkali) resulting in some adverse effects on the adhesion properties of the fibre in particular when using urea formaldehyde (UF) resin as the binder. Although researchers have reported that alkali pre-treatment of EFB fibres has resulted in improved flexural and tensile strength (Rozman et al., 2001), there is no other literature confirming the amount of residual oil actually being extracted, and whether the residual oil reduction in EFB fibre is actually responsible for the improvement observed in the board properties.

As the oil palm EFB fibres contain significant amount of residual oil even after fibre extraction process took place (AbuBakar et al., 2006), they are amenable to be treated prior to further processing. Such pre-treatments can come in various forms: physical, thermal, chemical, biological, or combinations thereof. In addition, it is also important to consider the side effects resulting from these treatments which can influence the properties of the final products. For instance, the pre-treatment could increase the surface roughness, as well as give cleaner fibre surface (Edeerozey et al., 2007), giving a better bonding and enhanced mechanical properties of the resulting fibreboard. Hence, it is crucial to evaluate the actual effects of alkali and heating treatments onto the fibres to remove the residual oil. The treatments were done either by soaking the fibres in sodium hydroxide (NaOH) for several hours, boiling the fibres in water for several hours or a combined soaking in NaOH and boiling water. Theoretically, treatment of EFB fibres with NaOH works through a modification of cellulose crystallinity, cleaning the fibre surface, increasing the surface roughness, removing amorphous polysaccharides, and degrading lignin, waxes and oils (Carvalho et al., 2010; Thiruchitrambalam et al., 2010).
More residual oil in EFB is expected to be removed using a combination of NaOH soaking and boiling water treatment. Since the pre-treatment is anticipated to change the pH and the adhesion behaviour of EFB fibres, study on adhesion characteristics of the treated fibres was conducted and MDF was manufactured using these treated fibres. Urea formaldehyde (UF), an acid-curing resin, and phenol formaldehyde (PF), an alkali-curing resin, were used as binders. Evaluation on the compatibility between the treatments and resins were carried out based on buffering capacity, as well as board performances.

1.3 Objectives

The general objective of this study was to evaluate the effectiveness of alkali and thermal treatments in removing the residual oil in EFB fibres and their effects on physic-mechanical properties of MDF.

The specific objectives of the study were to:

i. Determine the effect of fibre pre-treatment method on the residual oil content, adhesion properties, tensile strength, morphology and thermal degradation of the EFB fibre.

ii. Evaluate the effect of pre-treatment of EFB on dimensional stability, mechanical properties, and density profile of UF-bonded MDF.

iii. Evaluate the effect of pre-treatment of EFB on dimensional stability, mechanical properties, and density profile of PF-bonded MDF.

1.4 Organization of the Thesis

This thesis is organized into seven chapters. The first chapter introduces the overview of oil palm empty fruit bunch, problem statement and objectives of the study. The second chapter reviews the relevant literature on natural fibres properties and the performance of oil palm residues as new fibre sources in wood composite products. The chapter also discusses the fibre pre-treatment i.e., using sodium hydroxide (NaOH) and water boiling treatment to remove the residual oil in fibre. The adhesion characteristic i.e. pH and buffering capacity were also discussed.

Chapter 3 reports on the EFB fibre properties after the fibre pre-treatment process used in this study. The effects of pre-treatment on residual oil content and other fibre properties such as adhesion properties and tensile properties were discussed. The thermal analysis of treated fibres was determined using thermogravimetric analysis (TGA). The fibre morphological changes that occurred after pre-treatment were examined using Scanning Electron Microscopy (SEM). Based on the results obtained in Chapter 3, the board properties made from alkali-treated fibres using urea formaldehyde (UF) and phenol formaldehyde (PF) as binders were examined in Chapters 4 and 5 respectively. The mechanical, bonding strength and dimensional stability properties of the panels bonded at three resin levels, i.e. 8, 10 and
12\%, were evaluated and the failure characteristics were then examined. The difference behaviour of alkali-treated fibre in acid- (UF-bonded) and alkali-based (PF-bonded) resins, evaluation on density profiles and its effects pre-treatment were also briefly discussed. The Chapter 6 concludes and interrelates the results from all chapters. This chapter also makes recommendations for future work.
REFERENCES

144

