EFFECTS OF ELECTROMAGNETIC FIELDS AND PACKAGING SHAPE ON PHYSICOCHEMICAL AND MICROBIOLOGICAL CHARACTERISTICS OF WATER

MAHER ABDELALEEM ABDELRAZIK ABDELSAMIE

IPPH 2015 6
EFFECTS OF ELECTROMAGNETIC FIELDS AND PACKAGING SHAPE
ON PHYSICOCHEMICAL AND MICROBIOLOGICAL
CHARACTERISTICS OF WATER

By

MAHER ABDELALEEM ABDELRAZIK ABDELSAMIE

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

October 2015
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

EFFECTS OF ELECTROMAGNETIC FIELDS AND PACKAGING SHAPE ON PHYSICOCHEMICAL AND MICROBIOLOGICAL CHARACTERISTICS OF WATER

By

MAHER ABDELALEEM ABDELRAZIK ABDELSAMIE

October 2015

Chair: Prof. Russly B Abdul Rahman, PhD
Institute: Halal Product Research Institute

The production of Halal food is an integrated process that produces not only food that is ritually blessed, but must be safe, innocuous and healthy (Tayyib). The widespread use of electromagnetic (EM) waves and its ability to induce non-thermal effects in water solutions calls for a study of the relationship between environmentally abundant electromagnetic fields (EMFs) and packaging shape, to determine its effects on the physicochemical and microbiological characteristics of water during storage. The study was accomplished through developing computer simulation models of four water containers and then performing EM simulation. The validation of the computer simulation was done by studying the exposure of the containers to 2.4GHz EM waves and environmentally abundant EMFs. Two high and low ionic content solutions representing natural mineral drinking water and H2O-NaCl was used as a samples, respectively.

The EM simulation results showed that the absorption of EM energy was changed by changing the shape of the container. After exposure to free space 1.3V/m plane waves, the total specific absorption rate (SAR) values of EM energy absorbed by water at 2400MHz for vertical polarization were 0.0292, 0.0203, 0.0201 and 0.01723 mW/kg, for pyramidal, rectangular, square and cylindrical container models, respectively. The maximum values of the electric field induced in water in the reverberation chamber after exposure to 1 W EM radiation were 111.7, 22.9, 33.6 and 60.3 V/m for pyramidal, rectangular, square and cylindrical container models respectively. Although there were variations in the physicochemical and microbiological parameters between water stored in shielded and unshielded container groups, as well as between water in the same group of containers, the water remained within the permissible guidelines of the WHO. There were significant variations in the values of zeta potential and cluster size of water of H2O-NaCl and natural mineral drinking water stored in the unshielded containers exposed to EM waves, as shown in the results of the 17O Nuclear Magnetic Resonance NMR and Raman spectroscopy techniques, respectively.
It can be concluded that the variations in the electric and magnetic fields and SAR values induced in water affected the cluster size of water molecules, which were reflected in the results of particle size and the crystallization mode of water’s mineral content in both high and low ionic content solutions. This might indirectly affect the physicochemical and microbiological characteristics of the natural mineral drinking water. The results of the study are significantly useful in obtaining parameters for water solutions storage and packaging process optimization.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah.

HUBUNGAN DI ANTARA MEDAN ELEKTROMAGNETIK YANG BANYAK DI PERSEKITARAN DAN BENTUK PEMBUNGKUSAN SERTA KESANNYA KE ATAS CIRI-CIRI FIZIKOKIMIA DAN MIKROBIOLOGI AIR

Oleh

MAHER ABDELALEEM ABDELRAZIK ABDELSAMIE

Oktober 2015

Pengurus : Prof. Russly B Abdul Rahman, PhD
Institut : Institut Penyelidikan Produk Halal

Penghasilan produk makanan halal adalah proses integrasi yang bukan sahaja meliputi makanan yang bertepatan panduan ritual, tetapi juga selamat, tidak merbahaya dan sihat (Tayyib). Penggunaan dan kebolehan gelombang elektromagnet (EM) untuk memberi kesan dalam larutan tanpa dorongan haba; pendedahan larutan kepada persekitaran yang tinggi gelombang medan EM semasa tempoh penyimpanan jangka masa pendek dan jangka masa panjang; kebolehan bentuk geometri produk makanan untuk mempengaruhi penyebaran dan penyerapan tenaga EM serta peranan air sebagai pelarut universal, metabolit dan persekitaran tempat tinggal mikroorganisma, telah melahirkan kajian mengenai hubungan di antara medan elektromagnetik yang banyak di persekitaran dan rekabentuk pembungkusan untuk menentukan kesannya ke atas ciri-ciri fizikokimia dan mikrobiologi air semasa penyimpanan serta mendapatkan parameter bagi penyimpanan air dan proses pembungkusan yang optimum.

Kajian telah dijalankan dengan membangunkan model simulasi berkomputer bagi model bekas piramidal, segiempat tepat kubik, kubik dan silinder kemudian simulasi EM dijalankan. Validasi simulasi komputer dijalankan dengan mengkaji pendedahan kepada 2.4 GHz gelombang EM dengan menghasilkan ruang gema, di samping menggunakan pelindung Faraday untuk menutupi satu kumpulan bekas bagi mengkaji pendedahan kepada medan elektromagnetik yang banyak di persekitaran. Dua larutan, iaitu larutan yang tinggi ion dan larutan rendah ion, yang diwakili air mineral semulajadi dan H2O-NaCl telah digunakan digunakan sebagai sampel. Kualiti parameter air ditentukan melalui kaedah piawai. Struktur molekul air, keupayaan zeta dan mod penghabluran kandungan mineral air masing-masing ditentukan menggunakan 17O Spektroskopi Resonans Magnetik Nukleus (17O NMR), Teknik
Spektroskopi Raman, Penyerakan Cahaya Dinamik dan Mikroskop Pengimbas Elektron.

Keputusan simulasi medan elektromagnetik menunjukkan penyerapan tenaga medan elektromagnet berubah dengan perubahan bentuk bekas. Selepas didedahkan kepada gelombang 1.3V/m planar, nilai kadar jumlah penyerapan spesifik tenaga elektromagnet yang diserap oleh air pada 2400MHz untuk polarisasi vertikal adalah 0.0292, 0.0203, 0.0201 dan 0.01723 mW/kg, masing-masing bagi model bekas piramidal, segiempat tepat kubik, kubik dan silinder. Nilai maksimum medan elektrik yang terhasil di dalam air di dalam ruang gema selepas didedahkan kepada 1 W radiasi elektromagnet adalah 111.7, 22.9, 33.6 dan 60.3 V/m masing-masing bagi model bekas piramidal, segiempat tepat kubik, kubik dan silinder. Walaupun terdapat variasi dalam parameter fizikokimia dan mikrobiologi di antara air yang disimpan di dalam kumpulan bekas terlindung dan tidak terlindung, serta di antara air di dalam kumpulan bekas yang sama, air masih berada di dalam garis panduan WHO. Terdapat perbezaan signifikan [p < 0.05] di dalam kiraan plat heterotropik dan nilai pH di antara air yang disimpan di dalam bekas pyramidal yang tertutup dan air yang disimpan di dalam bekas piramidal, segiempat tepat kubik, kubik dan silinder tidak tertutup di dalam tiga fasa jangka masa kajian.

Secara kesimpulannya variasi dalam nilai jumlah penyerapan spesifik disebabkan air mempengaruhi saiz kluster molekul air dan nilai keupayaan zeta, yang ditunjukkan di dalam keputusan saiz partikel dan mod penghabluran kandungan mineral air di dalam larutan ion yang tinggi dan rendah. Ini secara tidak langsung mungkin mempengaruhi ciri-ciri fizikokimia dan mikrobiologi air mineral semulajadi. Keputusan kajian adalah sangat signifikan dalam mendapatkan parameter untuk penyimpanan air dan proses pembungkusan optimum.
ACKNOWLEDGMENTS

In the name of Allah, the Entirely Merciful, the Especially Merciful. All praise is to Allah for the blessing, strengths and guidance in completing this PhD thesis. I would like to express my special appreciation and thanks to my supervisory committee chairman, Professor Dr. Russly b Abdul Rahman, who have been a tremendous mentor for me. I would like to thank you for your priceless advices, encourage, motivation and support during my study. I would also like to thank my supervisory committee members, professor Dr. Shuhaimi Bin Mustafa and Dr. Maryam Binti Mohd Isa for their assistance and encouragement. I also want to thank Assoc. Prof. Dzulkifly Mat Hashim and Dr. Suhaimi Ab Rahman for your encouragement and support during my study. I would like to acknowledge and thank Halal Products Research Institute (HPRI) as well as Universiti Putra Malaysia (UPM) Malaysia for providing research facilities as well as research funds through UPM Research University Grants Scheme (RUGS-9328100). Also, I would especially to thank all HPRI staffs as well as friends namely, Afiq, Nurulhidayah, Nurul Hawa, Nina, Noor Jaini for their kindness and moral support during my study. Last but not least, my deepest gratitude goes to my parents for their prayers and support. To my brothers as well as my sister for your endless prayers and encouragement.
I certify that a Thesis Examination Committee has met on 22 October 2015 to conduct the final examination of Maher Abdelaleem Abdelrazik Abdelsamie on his thesis entitled "Effects of Electromagnetic Fields and Packaging Shape on Physicochemical and Microbiological Characteristics of Water" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Jamilah binti Bakar, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Yus Aniza binti Yusof, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Noranizan binti Mohd Adzahan, PhD
Associate Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Internal Examiner)

Coskan Illicali, PhD
Professor
Turkish Manas University
Kyrgyzstan
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 17 November 2015
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Russly B Abdul Rahman, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Shuhaimi Bin Mustafa, PhD
Professor
Halal Products Research Institute
Universiti Putra Malaysia
(Member)

Maryam Binti Mohd Isa, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

BUJANG KIM HUAT, PhD
Professor and Dean
Dean School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by Graduate Student

I hereby confirm that:

- This thesis is my original work;
- Quotations, illustrations and citations have been duly referenced;
- This thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- Intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- Written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- There is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ______________________ Date: ______________________

Name and Matric No.: Maher Abdelaleem Abdelrazik Abdelsamie; GS30864
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature: __________________________
Name of Chairman of Supervisory Committee: Russly B Abdul Rahman, PhD

Signature: __________________________
Name of Member of Supervisory Committee: Shuhaimi Bin Mustafa, PhD

Signature: __________________________
Name of Member of Supervisory Committee: Maryam Binti Mohd Isa, PhD
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xL</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER

1. INTRODUCTION
1.1 Problem statement 2
1.2 Scope of the study 3
1.3 Objectives 4

2. LITERATURE REVIEW
2.1 Water 5
 2.1.1 Molecular Structure 5
 2.1.2 Hydrogen Bonding in Water 5
 2.1.3 Implications of the Changes in the Hydrogen Bond Strength 7
2.2 Water quality 8
 2.2.1 The effects of environmental factors on water quality during storage 9
 2.2.2 Water quality parameters 9
2.3 Effects of packaging shape on the stored materials 12
2.4 Electromagnetic waves 12
 2.4.1 Introduction 12
 2.4.2 The role of dielectric properties of materials 14
 2.4.3 The interaction of electromagnetic waves with water and biological materials 14
 2.4.4 Thermal mechanisms of interaction 15
 2.4.5 Non-thermal mechanisms of interaction 16
 2.4.6 Exposure limits of electromagnetic fields (EMFs) 18
 2.4.7 Effects of electromagnetic fields (EMFs) on the growth of microorganisms 19
 2.4.8 Effects of electromagnetic fields (EMFs) on the values of zeta potential 19
 2.4.9 The role of the geometrical shape of biological materials in electromagnetic energy absorption 19
 2.4.10 The role of the irradiation geometry of electromagnetic waves in the distribution of electromagnetic energy 20
2.5 Numerical electromagnetic modelling techniques 20
2.6 Finite-difference time-domain (FDTD) method 21
 2.6.1 FDTD governing equations 22
3. EFFECTS OF PACKAGING SHAPE, POLARIZATION, IRRADIATION GEOMETRY, AND FREQUENCY ON THE COMPUTATION OF ELECTRIC AND MAGNETIC FIELDS AND SAR IN WATER CONTAINERS
3.1 Introduction
3.2 Objectives
3.3 Materials and Methods
 3.3.1 Modelling
 3.3.2 Exposure setup and FDTD-based SAR computation
3.4 Results and discussion
 3.4.1 For vertical polarization
 3.4.2 For horizontal polarization
 3.4.3 The mechanisms of the effect
 3.4.4 The hypothesized mechanism of effect
3.5 Conclusion

4. RELATIONSHIP BETWEEN ELECTROMAGNETIC FIELDS AND PACKAGING SHAPE AND THEIR EFFECTS ON THE KEEPING QUALITY OF DRINKING WATER
4.1 Introduction
4.2 Objectives
4.3 Materials and Methods
 4.3.1 Container Manufacturing
 4.3.2 Exposure conditions
 4.3.3 Measurement of Electrical Properties
 4.3.4 Electromagnetic Simulation
 4.3.5 Sampling
 4.3.6 Bacteriological Analysis
 4.3.7 Physicochemical Analysis
 4.3.8 Data Analyses
4.4 Results and Discussion
 4.4.1 Environmentally Abundant EMF Measurements
 4.4.2 Material Properties
 4.4.3 Electromagnetic Simulation
 4.4.4 Exposure of water containers to environmentally abundant EM waves
 4.4.5 Exposure of water containers to 1-W EMF at 2,450 Mhz
4.5 Conclusions

5. RELATIONSHIP BETWEEN ELECTROMAGNETIC FIELDS AND PACKAGING SHAPE AND THEIR EFFECTS ON THE 17O NMR AND RAMAN SPECTRA OF H2O–NaCl AND NATURAL MINERAL DRINKING WATER
5.1 Introduction
5.2 Objectives 80
5.3 Materials and Methods 80
 5.3.1 Manufacturing of PMMA Containers 80
 5.3.2 Sample Preparation 81
 5.3.3 Exposure conditions 81
 5.3.4 Characterization of H2O-NaCl and natural mineral drinking water 84
 5.3.5 The measurement of electrical properties 84
 5.3.6 Electromagnetic Simulation 84
5.4 Results and Discussion 85
 5.4.1 Environmentally Abundant EMF Measurements 85
 5.4.2 Material Properties 86
 5.4.3 Electromagnetic Simulation 86
 5.4.4 The exposure of H2O-NaCl to environmentally abundant EM waves 92
 5.4.5 The exposure of H2O-NaCl to 1-W EM waves at 2,450 MHz 97
 5.4.6 The exposure of natural mineral drinking water to 1-W EM waves at 2,450 MHz 99
 5.4.7 The exposure of natural mineral drinking water to environmentally abundant EM waves 100
5.5 Conclusion 103

6. RELATIONSHIP BETWEEN ELECTROMAGNETIC FIELDS AND PACKAGING SHAPE AND THEIR EFFECTS ON THE ZETA POTENTIAL AND CRYSTALLIZATION MODE OF H2O–NaCl AND NATURAL MINERAL DRINKING WATER
6.1 Introduction 105
6.2 Objectives 106
6.3 Materials and Methods 106
 6.3.1 Sample Preparation 106
 6.3.2 Exposure conditions 107
 6.3.3 Measurement of electrical properties 108
 6.3.4 Electromagnetic simulation 108
 6.3.5 Characterization 109
6.4 Results and Discussion 109
 6.4.1 Environmentally abundant EMF measurements 109
 6.4.2 The exposure of natural mineral drinking water to environmentally abundant EMF 110
 6.4.3 The exposure of natural mineral drinking water to 1-W EM waves at 2,450 MHz 113
 6.4.4 The exposure of H2O-NaCl to environmentally abundant EMF 115
 6.4.5 The exposure of H2O-NaCl to 1-W EM waves at 2,450 MHz 118
6.5 Conclusion 121

7. SUMMARY, GENERAL CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE STUDIES
7.1 Summary and general conclusions 122
7.2 Recommendations for future studies

REFERENCES 126
APPENDICES 143
BIODATA OF STUDENT 152
LIST OF PUBLICATIONS 153
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Material properties used in the computational modeling</td>
<td>27</td>
</tr>
<tr>
<td>3.2 Dimensions of the four container models</td>
<td>28</td>
</tr>
<tr>
<td>3.3 Maximum point SAR induced in water in pyramidal, cylindrical, rectangular and square models for vertical polarization at 300, 900 and 2400 MHz</td>
<td>37</td>
</tr>
<tr>
<td>3.4 Maximum point SAR induced in water in pyramidal, cylindrical, rectangular and square models for horizontal polarization at 300, 900 and 2400 MHz</td>
<td>44</td>
</tr>
<tr>
<td>4.1 Dimensions of the internal surface of PMMA containers</td>
<td>50</td>
</tr>
<tr>
<td>4.2 Measurements of electric-field strengths (V/m) in the storage room</td>
<td>57</td>
</tr>
<tr>
<td>4.3 Material properties used in the EM simulation</td>
<td>58</td>
</tr>
<tr>
<td>4.4 Maximum values of total SAR induced in water in pyramidal, cylindrical, rectangular and square models for vertical and horizontal polarizations at 2400 MHz with respect to θ angles</td>
<td>61</td>
</tr>
<tr>
<td>4.5 Maximum values of electric field induced in water in pyramidal, cylindrical, rectangular and square models for vertical and horizontal polarizations at 2400 MHz with respect to θ angles</td>
<td>61</td>
</tr>
<tr>
<td>4.6 Maximum point SAR induced in water in pyramidal, cylindrical, rectangular and square models for vertical and horizontal polarizations at 2400 MHz</td>
<td>61</td>
</tr>
<tr>
<td>4.7 Multiple comparisons between water samples stored inside unshielded pyramidal, rectangular, cylindrical and square containers in terms of pH and TDS after one week of storage</td>
<td>68</td>
</tr>
<tr>
<td>4.8 Multiple comparisons between water samples stored inside unshielded pyramidal, rectangular, cylindrical and square containers in terms of hardness and HPC after one week of storage</td>
<td>69</td>
</tr>
<tr>
<td>4.9 Multiple comparisons between water samples stored inside unshielded pyramidal, rectangular, cylindrical and square containers in terms of pH and TDS after one week of storage</td>
<td>70</td>
</tr>
</tbody>
</table>
Multiple comparisons between water samples stored inside unshielded pyramidal, rectangular, cylindrical and square containers in terms of pH and TDS after two weeks of storage

Multiple comparisons between water samples stored inside unshielded pyramidal, rectangular, square and cylindrical containers in terms of pH and TDS after four weeks of storage

Multiple comparisons between water samples stored inside unshielded pyramidal, rectangular, square and cylindrical containers in terms of hardness and HPC after two weeks of storage

Multiple comparisons between water samples stored inside unshielded pyramidal, rectangular, square and cylindrical containers in terms of hardness and HPC after four weeks of storage

Descriptive statistics for pH and TDS of water containers exposed to 1 W EMF at 2.45GHz in the reverberation chamber and sham-exposed water containers (control) during 1 month of storage

Descriptive statistics for Hardness and HPC of water containers exposed to 1 W EMF at 2.45GHz in the reverberation chamber and sham-exposed water containers (control) during 1 month of storage.

Maximum electric-field strengths for different RF Signals during the storage period of H2O-NaCl

Maximum electric-field strengths for different RF Signals during the storage period of natural mineral drinking water

Material properties used in the EM simulation

Maximum point SAR induced in H2O-NaCl in pyramidal, cylindrical, rectangular and square models for vertical and horizontal polarizations at 2400 MHz

17O NMR line-width of H2O-NaCl samples stored inside shielded (sham exposure) and unshielded containers for 7 days

17O NMR line-width of H2O-NaCl samples stored in rectangular, pyramidal, square and cylindrical containers and exposed to 1W EM waves at 2450MHz for 7 days.

17O NMR line-width of natural mineral drinking water samples stored in rectangular, pyramidal, square and cylindrical containers for 7 days.
cylindrical containers and exposed to environmentally abundant EM waves for 7 days

6.1 Maximum electric-field strengths for different RF signals during the storage period of H2O-NaCl

6.2 Maximum electric-field strengths for different RF signals during the storage period of natural mineral drinking water

6.3 The zeta potential of natural mineral drinking water samples stored inside shielded (sham exposure) and unshielded containers exposed to environmentally abundant EMF for 7 days

6.4 The zeta potential of natural mineral drinking water samples stored inside containers exposed to 1 W continues EMF at 2450MHz for 7 days

6.5 The zeta potential of H2O-NaCl samples stored inside shielded (sham exposure) and unshielded containers exposed to environmentally abundant EMF for 7 days

6.6 The zeta potential of H2O-NaCl samples stored inside containers exposed to 1 W continues EMF at 2450MHz for 7 days
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The dipole nature of water molecule</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Hydrogen bonds between water molecules where the oxygen atoms are shown in black</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>The formation of a hydrogen bond between two amino acids in a protein</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td>Electromagnetic wave propagation</td>
<td>12</td>
</tr>
<tr>
<td>2.5</td>
<td>Electromagnetic spectrum</td>
<td>13</td>
</tr>
<tr>
<td>2.6</td>
<td>Dipole rotation of a water molecule subjected to electromagnetic radiation</td>
<td>15</td>
</tr>
<tr>
<td>2.7</td>
<td>Ionic conductivity or space charge displacement and dipolar realignment in the RF alternating field that contribute to volumetric heating</td>
<td>16</td>
</tr>
<tr>
<td>2.8</td>
<td>The edge overheating phenomenon. The electromagnetic fields are concentrated at the corners of the food, due to scattering phenomena</td>
<td>20</td>
</tr>
<tr>
<td>2.9</td>
<td>Geometry of a Yee cell in FDTD three-dimensional grid.</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>3D models of pyramidal, rectangular, cylindrical and square shaped containers</td>
<td>27</td>
</tr>
<tr>
<td>3.2</td>
<td>Definition of elevation angle (θ) and azimuth angle (φ) (incident angles) of the EM waves of (a) pyramidal, (b) rectangular, (c) square and (d) cylindrical containers. Elevation angle (θ) ranged from 0° to 100° with a step width of 20° and azimuth angle (φ) rotates in 20° steps from 0° to 180°</td>
<td>29</td>
</tr>
<tr>
<td>3.3</td>
<td>Maximum E (a) and H (b) fields induced in water in pyramidal, cylindrical, rectangular and square models for vertical polarization at 300, 900 and 2400 MHz</td>
<td>31</td>
</tr>
<tr>
<td>3.4</td>
<td>Maximum values of total SAR induced in water in pyramidal, cylindrical, rectangular and square models for vertical polarization at 300, 900 and 2400 MHz</td>
<td>32</td>
</tr>
<tr>
<td>3.5</td>
<td>Point SAR distributions induced in water in pyramidal</td>
<td>33</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>Point SAR distributions induced in water in rectangular container model for vertical polarization at (a) 300, (b) 900 and (c) 2400 MHz</td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>Point SAR distributions induced in water in square container model for vertical polarization at (a) 300, (b) 900 and (c) 2400 MHz</td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>Point SAR distributions induced in water in cylindrical container model for vertical polarization at (a) 300, (b) 900 and (c) 2400 MHz</td>
<td></td>
</tr>
<tr>
<td>3.9</td>
<td>Maximum value of E (a) and H (b) fields induced in water in pyramidal, cylindrical, rectangular and square models for horizontal polarization at 300, 900 and 2400 MHz</td>
<td></td>
</tr>
<tr>
<td>3.10</td>
<td>Maximum value of total SAR induced in water in pyramidal, cylindrical, rectangular and square models for horizontal polarization at 300, 900 and 2400 MHz</td>
<td></td>
</tr>
<tr>
<td>3.11</td>
<td>Point SAR distributions induced in water in pyramidal container model for vertical polarization at (a) 300, (b) 900 and (c) 2400 MHz</td>
<td></td>
</tr>
<tr>
<td>3.12</td>
<td>Point SAR distributions induced in water in rectangular container model for vertical polarization at (a) 300, (b) 900 and (c) 2400 MHz</td>
<td></td>
</tr>
<tr>
<td>3.13</td>
<td>Point SAR distributions induced in water in square container model for vertical polarization at 300, 900 and 2400 MHz</td>
<td></td>
</tr>
<tr>
<td>3.14</td>
<td>Point SAR distributions induced in water in cylindrical container model for vertical polarization at (a) 300, (b) 900 and (c) 2400 MHz</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Eight methylmethacrylate containers</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Exposure scenarios of electromagnetic fields and water quality parameters</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Microwave exposure system scheme</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Reverberation chamber equipped with (a) dipole antenna, (b) four PMMA containers and (c) signal generator connected to power amplifier</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Maximum values of electric field induced in water in pyramidal, cylindrical, rectangular and square models for</td>
<td></td>
</tr>
</tbody>
</table>
vertical (a) and horizontal (b) polarizations at 2400 MHz with respect to θ angles

4.6 Maximum values of electric field induced in water in pyramidal, cylindrical, rectangular and square models for vertical (a) and horizontal (b) polarizations at 2400 MHz with respect to θ angles

4.7 Maximum point SAR induced in water in pyramidal, cylindrical, rectangular and square models for vertical (a) and horizontal (b) polarizations at 2400 MHz

4.8 Maximum values of electric field induced in natural mineral drinking water in pyramidal, cylindrical, rectangular and square models exposed to continues EM waves of 1 W emitted from dipole antenna at 2400 MHz inside the reverberation chamber

4.9 Values of total SAR induced in natural mineral drinking water in pyramidal, cylindrical, rectangular and square models exposed to continues EM waves of 1 W emitted from dipole antenna at 2400 MHz inside the reverberation chamber

5.1 Polymethyl methacrylate (PMMA) containers

5.2 Exposure scenarios of electromagnetic fields, and spectroscopic techniques used in the analysis of the samples

5.3 Exposure system scheme of 2.45MHz EM waves

5.4 Maximum values of electric field induced in H2O-NaCl in pyramidal, cylindrical, rectangular and square models for vertical (a) and horizontal (b) polarizations at 2400 MHz with respect to θ angles

5.5 Maximum values of total SAR induced in H2O-NaCl in pyramidal, cylindrical, rectangular and square models for vertical (a) and horizontal (b) polarizations at 2400 MHz with respect to θ angles

5.6 Maximum point SAR distributions induced in H2O-NaCl stored in pyramidal, rectangular, square and cylindrical models for vertical (A) and horizontal (B) polarization at 2400 MH

5.7 Maximum values of electric field induced in H2O-NaCl in pyramidal, cylindrical, rectangular and square models exposed to continues EM waves of 1 W emitted from dipole antenna at 2400 MHz inside the reverberation chamber
5.8 Maximum values of total SAR induced in water in pyramidal, cylindrical, rectangular and square models exposed to continues EM waves of 1 W emitted from dipole antenna at 2400 MHz inside the reverberation chamber

5.9 Raman spectra of H2O-NaCl samples stored inside EMF shielded (sham exposure) and unshielded groups

5.10 17O NMR line-width of different H2O-NaCl samples stored inside unshielded (A) pyramidal, (B) rectangular, (C) square and (D) cylindrical containers

5.11 17O NMR line-width of different H2O-NaCl samples stored inside shielded (sham exposure) (E) pyramidal, (F) rectangular, (G) square and (H) cylindrical containers

5.12 17O NMR line-width of different H2O-NaCl samples stored inside reverberation chamber and exposed to 1W EMF (A) pyramidal, (B) rectangular, (C) square and (D) cylindrical containers

5.13 Raman spectra of natural mineral drinking water samples stored inside reverberation chamber and exposed to continues 1W EM waves at 2400MHz for 7 days

5.14 17O NMR line-width of natural mineral drinking water samples stored inside unshielded (sham exposure) (A) pyramidal, (B) rectangular, (C) square and (D) cylindrical containers

6.1 Exposure scenarios of electromagnetic fields, and techniques used in the analysis of the samples

6.2 VP-SEM micrographs of natural mineral drinking water samples at -12°C and 100 Pa stored inside unshielded (a) pyramidal, (b) rectangular, (c) square and (d) cylindrical containers and exposed to environmentally abundant EMF for 7 days

6.3 VP-SEM micrographs of natural mineral drinking water samples at -12°C and 100 Pa stored inside shielded (sham exposure) (a) pyramidal, (b) rectangular, (c) square and (d) cylindrical containers for 7 days

6.4 VP-SEM micrographs of natural mineral drinking water samples at -12°C and 100 Pa stored inside (a) pyramidal, (b) rectangular, (c) square and (d) cylindrical containers in a reverberation chamber for 7 days and exposed to a continues 1W EM waves at 2450MHz for 7 days

6.5 VP-SEM micrographs of natural mineral drinking water
samples at -12°C and 100 Pa stored inside unshielded (sham exposure) (a) pyramidal, (b) rectangular, (c) square and (d) cylindrical containers for 7 days

6.6 VP-SEM micrographs of natural mineral drinking water samples at -12°C and 100 Pa stored inside shielded (sham exposure) (a) pyramidal, (b) rectangular, (c) square and (d) cylindrical containers for 7 days

6.7 VP-SEM micrographs of H2O-NaCl samples at -12°C and 100 Pa stored inside (a) pyramidal, (b) rectangular, (c) square and (d) cylindrical containers in a reverberation chamber for 7 days and exposed to a continues 1W EM waves at 2450MHz for 7 days
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>17O NMR</td>
<td>Oxygen-17 nuclear magnetic resonance</td>
</tr>
<tr>
<td>APHA</td>
<td>American public health association</td>
</tr>
<tr>
<td>BDE</td>
<td>Bond dissociation energy</td>
</tr>
<tr>
<td>CNC</td>
<td>Computerized numerical control</td>
</tr>
<tr>
<td>DLS</td>
<td>Dynamic light scattering</td>
</tr>
<tr>
<td>DO</td>
<td>Dissolved oxygen</td>
</tr>
<tr>
<td>EM</td>
<td>Electromagnetic</td>
</tr>
<tr>
<td>EMF</td>
<td>Electromagnetic fields</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental protection agency</td>
</tr>
<tr>
<td>FDTD</td>
<td>Finite-difference time-domain</td>
</tr>
<tr>
<td>FEM</td>
<td>Finite element method</td>
</tr>
<tr>
<td>HDPE</td>
<td>High-density polyethylene</td>
</tr>
<tr>
<td>HPC</td>
<td>Heterotrophic plate count</td>
</tr>
<tr>
<td>IARC</td>
<td>International Agency for Research on Cancer expert panel report</td>
</tr>
<tr>
<td>MCL</td>
<td>Maximum contaminant level</td>
</tr>
<tr>
<td>MOE</td>
<td>Ontario Ministry of the Environment</td>
</tr>
<tr>
<td>PC</td>
<td>Personal computer</td>
</tr>
<tr>
<td>PD</td>
<td>Power density</td>
</tr>
<tr>
<td>PEC</td>
<td>Perfect electric conductor</td>
</tr>
<tr>
<td>PET</td>
<td>Polyethylene terephthalate</td>
</tr>
<tr>
<td>PLD</td>
<td>Power loss density</td>
</tr>
<tr>
<td>PML</td>
<td>Perfectly matched layer</td>
</tr>
<tr>
<td>PML</td>
<td>Perfectly matched layer</td>
</tr>
<tr>
<td>PMMA</td>
<td>Polymethyl methacrylate</td>
</tr>
<tr>
<td>R&S</td>
<td>Rohde and Schwarz</td>
</tr>
<tr>
<td>RF</td>
<td>Radiofrequency</td>
</tr>
<tr>
<td>SAR</td>
<td>Specific absorption rate</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscopy</td>
</tr>
<tr>
<td>SF</td>
<td>Spectrometer frequency</td>
</tr>
<tr>
<td>TDS</td>
<td>Total dissolved solids</td>
</tr>
<tr>
<td>VNA</td>
<td>Vector network analyzer</td>
</tr>
<tr>
<td>VP-SEM</td>
<td>Variable pressure scanning electron microscopy</td>
</tr>
<tr>
<td>WHO</td>
<td>World health organization</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

The production of halal food is an integrated process, starting from the farm (which represents the source of the food) to the consumer’s fork or mouth. The process produces food that is not only ritually blessed but must also be safe, innocuous, and healthy which means (Tayyib). The halal standard for foods, MS1500:2009, was developed by Malaysia’s Department of Standards and covers the production, preparation, handling, and storage of halal foods (Malaysian Standard). The Malaysian standard stated that Halal food must be non-intoxicating, or non-hazardous to health, safe for consumption and non-poisonous. It was also stated that drinks, microorganisms, natural minerals and chemicals are all Halal except those that are poisonous, intoxicating or hazardous to health (Malaysian Standard). The proper storage and packaging are important as they protect the food from deterioration. Such deterioration results from inappropriate environmental conditions during storage that could promote harmful chemical reactions and encourage the growth of microorganisms. The exposure of water-based liquid food products to environmentally abundant EMFs that have thermal and non-thermal effects during short or long-term storage could promote harmful chemical reactions and encourage the growth of microorganisms, which in turn will affect the Tayyiban aspect of water-based liquid food products.

The advances in wireless communication technologies (such as Wi-Fi, WiMAX, and GSM) have made the exposure of biological and non-biological materials to electromagnetic waves emitted from various sources (such as mobile phone base stations, Wi-Fi antennas, and broadcasting stations) a universal phenomenon. In the last few years, the number of studies on the biological implications of low-intensity electromagnetic radiation within the radiofrequency/microwave range emitted from wireless communication sources have increased tremendously. The studies on the non-thermal biological effects of low-intensity electromagnetic radiation reported in The Bioinitiative Report 2012 were backed by considerable scientific evidence. The report summarized the findings of more than 1,800 studies that highlighted the biological effects of non-thermal low-intensity radiation (Group et al., 2012a).

Water plays a major role in absorbing electromagnetic radiation that has thermal and non-thermal biological effects. Water is a polar molecule. The polarization of liquid water increases with the rise in the number of clustered molecules (Lorence et al., 2009). The electromagnetic waves within the microwave range interact with individual molecules to a lesser extent than they do with clustered molecules. The clusters and individual molecules try to align with the applied electromagnetic field (Lorence et al., 2009). This phenomenon is called dipole relaxation, and it is the dominant electromagnetic energy absorption mechanism in liquid water (Lorence et al., 2009). Another dominant electromagnetic absorption mechanism is called ionic conduction. It involves the ions in water-electrolyte solutions moving in the direction of the applied electric field. The exposure of water or any biological material to electromagnetic
waves induces electric and magnetic fields in the exposed materials. These fields can be simulated by applying numerical techniques such as the finite-difference time-domain (FDTD) method or the finite element method (FEM) to solve Maxwell’s equations for given boundary conditions. Many studies were conducted using the FDTD and FEM techniques to determine the distribution and the absorption rate of electromagnetic energy in food (Chen et al., 2008; Geedipalli et al., 2007; Liu et al., 2013; Pitchai et al., 2014).

Polarity is the reason behind the ability of molecules and ions to dissolve in water. Water is a universal solvent. A wide range of polar molecules, such as amino acids, sugars, small nucleic acids, and proteins dissolve in water (Hanslmeier, 2010; Hopkins et al., 1995). Water plays a role as a metabolite in chemical reactions such as aerobic respiration (Hosler et al., 2003) and photosynthesis (Reece et al., 2013): It may be a product of a reaaction or a reactant. Water also plays a role as a living environment for microorganisms and a vehicle for pathogens such as Cryptosporidium, Giardia lamblia, Legionella, viruses (enteric) (Cabral, 2010; Hanslmeier, 2010), and indicators such as faecal coliform and Escherichia coli (E. coli) (Edberg et al., 2000). Moreover, water is used to manufacture a wide range of liquid pharmaceuticals whose quality and stability are of prime concern. Water is also the main constituent of liquid food products.

1.1. Problem Statement

It has been reported that the geometrical shape of human head models (which are flat, spherical, and ellipsoidal) significantly affect the absorption of EM energy at 900 MHz (Ruo, 1999). Furthermore, it is well known that the geometrical shapes of food products affect the absorption and distribution of electromagnetic energy in the microwave oven (Lorence et al., 2009). For example, the edge overheating phenomenon that occurs during the microwave heating process is due to the concentration of the amplitudes of the electromagnetic fields at the edges and corners of the food product (Lorence et al., 2009). Although the geometrical shape of biological materials affects the absorption of EM energy, the manufacturers of food products compete to develop innovative and attractive packaging shapes due to their role in the marketing process and influencing consumer purchasing decisions (Becker et al., 2011; Silayoi et al., 2004). No attempts have been made to explore the effects of the packaging shape of food products on the absorption of environmentally abundant electromagnetic radiation during storage. This absorption process could impact the physicochemical and microbiological characteristics of stored water-based food products in turn.

It appears from the aforementioned investigations that numerous investigations have been conducted on the impact of low-intensity electromagnetic radiation (within the radiofrequency/microwave range) on biological materials and water. However, no attempt has been made to investigate the relationship between environmentally abundant electromagnetic fields and packaging shapes or to study their effects on the physicochemical and microbiological characteristics of water-based food products during short-term or long-term storage.
The following factors have contributed to the rising significance of research on the relationship between the packaging shape of water-based food products and environmentally abundant electromagnetic fields: 1) the role of water as a universal solvent, metabolite, and living environment for microorganisms, 2) the increasing and widespread use of electromagnetic waves, 3) the ability of low-intensity electromagnetic radiation to induce non-thermal effects in biological materials and water solutions, 4) the exposure of water solutions such as water-based liquid-food products and liquid pharmaceuticals to low-intensity environmentally abundant electromagnetic radiation during short-term or long-term storage, and 5) the effect of the geometrical shape of food products on the absorption and distribution of electromagnetic energy. There is great demand for the study of the relationship between environmentally abundant electromagnetic fields and the packaging shape of food products and their effects on the physicochemical and microbiological characteristics of water during storage. Such efforts would help to obtain suitable parameters for storage and for packaging process optimization.

1.2. Scope of the Study

The prime and foremost goal of this research was to determine whether the packaging shape of water containers was capable of affecting the distribution and absorption of low-intensity electromagnetic radiation in stored water. Moreover, the research sought to determine whether that effect, in turn, would cause variations in the microbiological and physicochemical characteristics of water during storage. The study was accomplished through the following steps: 1) developing computer simulation models of rectangular, cylindrical, pyramidal, and square water containers of the same capacity, 2) manufacturing two identical groups of containers with the same dimensions and materials as those used to store water samples in the EM simulation, 3) determining the material properties of stored water and packaging material, 4) measuring the environmentally abundant EMF in the storage room during the storage period, 5) performing EM simulation by applying the finite-difference time-domain (FDTD) method to solve Maxwell’s equations for given boundary conditions using the measured values of electric field strength and material properties, 6) validating the computer simulation models by applying three exposure scenarios: 1) exposing water containers to environmentally abundant EMFs, 2) conducting a sham-exposure experiment by storing the second group of four containers in an EMF-shielded room as a control, 3) exposing water containers to continuous EM waves (of 1 W at the microwave frequency of 2.45 GHz) as a single frequency emitted from a 1-W dipole antenna, and then determining the physicochemical and microbiological characteristics of water during storage and comparing them with the EM simulation results. The sixth steps were addressed in the third, fourth, fifth and sixth chapters of the thesis. The rectangular, cylindrical, and square packaging shapes were selected in this study because they are commonly used in the food packaging industry and they were compared with the selected pyramidal packaging shape, which was shown to induce biological effects in the stored biological materials as reported in the previous literature (Bhat et al., 2007a; Bhat et al., 2007b, 2009; Gopinath et al., 2008; Murthy et al., 2013; Narimanov, 2001; Nayak et al., 2003).
1.3. Objectives

A high ionic content solution representing natural mineral drinking water was used as a sample. Standard methods were used to determine the water quality parameters (total dissolved solids (TDS), hardness, and total coliform count) in addition to the heterotrophic plate count (HPC). For the accurate study of the mechanisms by which EMFs affect water quality parameters, a low ionic content solution represented by H2O-NaCl was used. The water molecular structure, the zeta potential, and the crystallization mode of the water’s mineral content for both natural mineral drinking water and H2O-NaCl solution were determined by Oxygen-17 Nuclear Magnetic Resonance (17O NMR), Raman spectroscopy techniques, dynamic light scattering, and scanning electron microscopy, respectively. Therefore, this study was carried out with the main objective of studying the relationship between environmentally abundant low-intensity electromagnetic fields and packaging shapes, and their effects on the physicochemical and microbiological characteristics of water during storage. The specific objectives are:

1. To develop computer simulation models of rectangular, pyramidal, square, and cylindrical water containers, and to investigate the effects of packaging shape, polarization, irradiation geometry, and frequency on the computation of electric and magnetic fields and SAR in water containers and to study their relationship to the non-thermal biological effects of EMF;
2. To determine the relationship between the exposure to environmentally abundant EMFs, the 2.45-GHz EM waves, and packaging shape and their effects on the physicochemical and microbiological parameters of the natural mineral drinking water during storage;
3. To determine the relationship between the exposure to environmentally abundant EMFs, the 2.45-GHz EM waves, and packaging shape and their effects on 17O NMR and Raman spectra of the H2O-NaCl solution and natural mineral drinking water during storage;
4. To determine the relationship between the exposure to environmentally abundant EMFs, the 2.45-GHz EM waves, and packaging shape and their effects on the zeta potential and the crystallization mode of the mineral content of the H2O-NaCl solution and natural mineral drinking water after seven days of exposure.
REFERENCES

Operating Frequency of 430 MHz. *Biomedical Engineering, IEEE Transactions on*, 56(8), 2083-2094. doi:http://dx.doi.org/10.1109/TBME.2009.2021157

