UNIVERSITI PUTRA MALAYSIA

OPTIMIZATION AND CHARACTERIZATION OF HALAL LIPSTICK FORMULATION CONTAINING PITAYA (HYLOCEREOUS POLYRHIZHUS (WEBER) BRITTON & ROSE) SEED OIL

NORSUHAILI KAMAIRUDIN

IPPH 2015 3
OPTIMIZATION AND CHARACTERIZATION OF HALAL LIPSTICK FORMULATION CONTAINING PITAYA (*HYLOCEREOUS POLYRHIZHUS* (WEBER) BRITTON & ROSE) SEED OIL

By

NORSUHAILI KAMAIRUDIN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Master of Science

October 2015
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Masters of Science

OPTIMIZATION AND CHARACTERIZATION OF HALAL LIPSTICK FORMULATION CONTAINING PITAYA (*HYLOCEREUS POLYRHZIHZUS* (WEBER) BRITTON & ROSE) SEED OIL

By

NORSUHAILI BINTI KAMAIRUDIN

October 2015

Chairman : Siti Salwa binti Abd Gani, PhD
Institute : Halal Products Research Institute

Cosmetic is one of the important industries worldwide. Lipstick is one of the decorative cosmetics that have high demand in the market. In this research, pitaya seed oil (PSO) was extracted using two solvents which are n-hexane and ethanol, solvent extraction. Pitaya seed oil (PSO) from both solvents extraction was used in the lipstick formulation with ratio 3:2 (n-hexane: ethanol). Pitaya seed oil was used in this formulation because it has high content of linoleic acid and linolenic acid which are classified as unsaturated fatty acids (UFAs).

D-Optimal Mixture Experimental Design was utilized to investigate the influence of the main composition in the lipstick formulation; pitaya seed oil (10-35 % w/w), virgin coconut oil (25-45 % w/w), beeswax (5-25 % w/w), candelilla wax (1-5 % w/w) and carnauba wax (1-5 % w/w) on the physicochemical properties of lipstick. The response variable used is melting point which is one of the important properties of lipstick. Optimization of the five independent variables was carried out to determine an optimum lipstick. The D-Optimal Mixture Experimental Design analysis was showed that the variation in the response (melting point) could be depicted as quadratic model of the main compositions of the formulation. The experimental data fitted sufficiently well into a second-order polynomial model. The predicted melting point gave by D-optimal Mixture Experimental Design (MED) was 45.5°C.

Artificial Neural Network (ANN) was designed as another tools to optimize the ingredients in the lipstick formulation. ANN- Batch Backpropagation give the better prediction of melting point compared to D-optimal MED with the value 45.6°C. The optimal ingredients determined by the D-Optimal Mixture Experimental Design and Artificial Neural Network was established to be pitaya seed oil (25% w/w), virgin coconut oil (37% w/w), beeswax (17% w/w), candelilla wax (2% w/w) and carnauba wax (2% w/w). The others ingredients were totaling up to 100% w/w. The actual
melting point of the optimized lipstick is 46.0°C. Hence, ANN-Batch Backpropagation give better prediction compared to D-optimal Mixture Experimental Design.

The other physicochemical properties of the lipstick formulation were also studied. The melting point of the optimized PSO lipstick is 46.0±1.00°C with the pH of 6.93±0.01. The texture profiles (hardness, stiffness, brittleness) of the optimized PSO lipstick were (29.759±0.00 g; 5.002±0.01 g/sec; 4.675±0.03 mm, respectively) which are almost like conventional lipstick in the market. From the antioxidant analysis, optimized PSO lipstick showed higher 1,1-diphenyl-2-picryl-hydrazine (DPPH) scavenging activity compared to optimized lipstick without PSO. The optimized PSO lipstick was stable after undergoing stability test at 5°C, 27°C, 37°C and free-thaw cycle for 3 months and the color remained unchanged. The total microbial counts for the optimum PSO lipstick were <1000 cfug⁻¹ and complied with Malaysia Cosmetic Directive microbial limit test. The toxic contaminants had also been studied. Three metals were analyzed which are lead, arsenic and cadmium which is the content of the metals in optimum lipstick are 0.09 ppm, 0.034 ppm and 0.027 ppm, respectively. The halal lipstick containing pitaya seed oil was successfully developed and characterized. It is safe and efficient for human lips care.
Abstrak tesis yang dikemukan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan Ijazah Sarjana Sains

PENGOPTIMUMAN DAN PENCIRIAN FORMULASI GINCU HALAL YANG MENGANDUNGI MINYAK BIJI BUAH NAGA (HYLOCEREOUS POLYRHIZIUS (WEBER) BRITTON & ROSE)

Oleh

NORSUHAILI BINTI KAMAIRUDIN

Oktobe 2015

Pengerusi : Siti Salwa binti Abd Gani, PhD
Institut : Institut Penyelidikan Produk Halal

Eksperimen Rekabentuk Campuran D-Optimum telah digunakan untuk mengkaji pengaruh komposisi utama dalam formulasi gincu; iaitu, minyak biji buah naga (10-35% w/w), minyak kelapa dara (25-45% w/w), lilin lebah (5-25% w/w), lilin candelilla (1-5% w/w) dan lilin Bogo (1-5% w/w) ke atas sifat fizikokimia gincu. Takat lebur dijadikan sebagai pembolehubah tindakbalas yang mana merupakan salah satu ciri penting dalam formulasi gincu. Pengoptimuman lima pembolehubah telah dijalankan untuk menentukan satu formulasi gincu yang optimum. Analisis eksperimen rekabentuk campuran D-optimum telah menunjukkan bahawa perubahan dalam tindakbalas (takat lebur) boleh digambarkan sebagai model kuadratik daripada komposisi utama formulasi. Data eksperimen dipasang cukup baik kedalam model polynomial tertib kedua. Takat lebur yang diramalkan oleh eksperimen rekabentuk campuran D-optimum (MED) adalah 45.5°C.

Rangkaian Saraf Tiruan (ANN) telah direka sebagai satu lagi alat untuk mengoptimumkan bahan-bahan dalam formulasi gincu. ANN- kumpulan rambatan balik (BBP) memberikan ramalan takat lebur yang lebih baik berbanding eksperimen rekabentuk campuran D-optimum (MED) dengan nilai 45.6°C. Bahan-bahan yang optimum ditentukan oleh eksperimen rekabentuk campuran D-Optimum dan rangkaian saraf tiruan telah dibangunkan, menjadikan minyak biji buah naga (25% w/w), minyak
kelapa dara (37% w/w), lilin lebah (17% w/w), lilin candelilla (2% w/w) dan lilin Bogo (2% w/w). Bahan-bahan lain telah ditambah menjadikan jumlah sehingga 100% w/w. Takat lebur sebenar gincu PSO yang optimum adalah 46.0°C. Oleh itu, ANN-kumpulan rambatan balik (BBP) memberikan ramalan yang lebih baik berbanding dengan eksperimen rekabentuk campuran D-optimum.

Ciri-ciri fizikokimia yang lain bagi formulasi gincu PSO yang optimum juga telah dikaji. Takat lebur gincu PSO yang optimum adalah 46.0±1.00°C dengan nilai pH 6.93±0.01. Profil tekstur (kekerasan, kekejangan, kerapuhan) daripada gincu PSO yang optimum masing-masing adalah (29.759±0.00 g; 5.002±0.01 g/saat; 4.675±0.03 mm,) yang standing dengan gincu konvensional di pasaran. Dari analisis antioksidan, gincu PSO yang optimum menunjukkan aktiviti memerangkap 1,1-diphenyl-2-picyrl-hydrazine (DPPH) lebih tinggi, berbanding dengan gincu tanpa PSO yang optimum. Gincu PSO yang optimum stabil selepas menjalani ujian kestabilan pada 5, 27, 37°C dan kitaran bebas cair selama 3 bulan manakala warna pada gincu masih tidak berubah. Jumlah bilangan mikrob untuk gincu PSO yang optimum ialah <1000 cfug\(^{-1}\) dan memenuh. Peraturan Kosmetik Malaysia terhadap ujian had mikrob. Bahan-bahan toksik logam juga telah dikaji. Tiga logam telah dianalisis iaitu plumbum, arsenic dan cadmium, dimana kandungan logam dalam gincu PSO yang optimum, masing-masing adalah 0.09 ppm, 0.034 ppm dan 0.027 ppm. Gincu halal yang mengandungi minyak biji buah naga (PSO) telah berjaya dibangunkan dan dicirikan. Gincu ini selamat dan berkesan digunakan untuk penjagaan bibir manusia.
ACKNOWLEDGEMENT

In The Name of ALLAH, the Most Gracious and Most Merciful

I would like to express my deepest gratitude to ALLAH S.W.T. for the opportunity and strength given in completing this study. Million appreciations to my helpful supervisor, Dr. Siti Salwa bt Abd Gani for all the guidance and knowledge given throughout this hard-earned success but yet beautiful journey. Thank you for all the patience and advice. My appreciation also goes to my co-supervisor, Dr. Puziah bt Hashim for sparing her time for discussions, encouragement and moral supports. Special thanks to the staffs of the Halal Products Research Institute, Centre of Foundation Studies and Faculty of Science, University Putra Malaysia for providing their facilities and lending their hands in this research. To my labmates and friends, I really thanks to them for their help and supports.

My endless appreciation to my family especially my parents; Mr. Kamairudin b Ismail and Mrs. Halimah bt Mat Jusoh for supporting me this whole time with patience. Not to be missed, I would like to thank to all my uncles and aunts for their directly or indirectly help. Last but not least, I would like to acknowledge Universiti Putra Malaysia and Ministry of Higher Education (MOHE) for the financial support via GRF scholarship and MyMaster under MyBrain15 program respectively. This scientific research project could not be achieved without the cooperation of all aforementioned people as well as numerous individuals who have directly or indirectly affected my research experience at UPM.
I certify that a Thesis Examination Committee has met on 19 October 2015 to conduct the final examination of Norsuhaili binti Kamairudin on her thesis entitled “Optimization and Characterization of Halal Lipstick Containing Pitaya (Hylocereous polyrhizhus (Weber) Britton & Rose) Seed Oil” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Amin bin Ismail, PhD
Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Chairman)

Mohamad Zaki bin Abd Rahman, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Salina Mat Radzi, PhD
Associate Professor
Universiti Sains Islam Malaysia
Malaysia
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 17 November 2015
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committees were as follows:

Siti Salwa binti Abd Gani, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Chairperson)

Puziah binti Hashim, PhD
Fellow Researcher
Halal Products Research Institute
Universiti Putra Malaysia
(Member)

BUJANG KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: __________________

Name and Matric No.: Norsuhaili binti Kamairudin (GS37771)
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:
Name of Chairman of Supervisory Committee:
Dr. Siti Salwa binti Abd Gani

Signature:
Name of Member of Supervisory Committee:
Dr. Puziah binti Hashim
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Background of study 1
1.2 Problem statement 2
1.3 Significance of study 2
1.4 Scope of study 3
1.5 Objectives of study 3

2 LITERATURE REVIEW

2.1 Cosmeceuticals 4
 2.1.1 Cosmeceuticals and their market values 4
2.2 Human lip skin physiology 6
2.3 Lipstick 7
2.4 Lipstick ingredients 7
 2.4.1 Waxes 8
 2.4.2 Oils 9
 2.4.3 Coloring agent 10
2.4.4 Protection properties 11
 2.4.4.1 Preservatives 11
 2.4.4.2 Antioxidant 11
2.5 Pitaya seed oil in lipstick formulation 12
 2.5.1 Pitaya (*Hylocereus polyrhizus*) 12
 2.5.2 Red pitaya seed oil 14
2.6 Methods of optimization 16
 2.6.1 D-optimal Mixture Experimental Design (MED) 16
 2.6.2 Artificial Neural Networks (ANNs) 17
2.7 Characterizations of lipstick 19
2.8 Concept of halal, toyyiban and safety of cosmetic products 21
2.9 Halal cosmetics market 23

3 MATERIALS AND METHODS

3.1 Materials 24
3.2 Research flowchart 25
3.3 Extraction of pitaya seed oil 25
3.4 Preparation of lipstick
3.5 Optimizations of lipstick formulation
 3.5.1 D-Optimal Mixture Experimental Design (MED)
 3.5.2 Artificial Neural Network (ANNs)
3.6 Characterizations of optimum lipstick
 3.6.1 Physicochemical characterizations
 3.6.1.1 Melting point
 3.6.1.2 Texture profile analysis
 3.6.1.3 pH measurement
 3.6.1.4 Antioxidant analysis
 3.6.1.5 Thermo gravimetric analysis (TGA)
 3.6.1.6 Stability study
 3.6.1.7 Color stability
 3.6.2 Safety evaluations
 3.6.2.1 Microbiological analysis
 3.6.2.2 Heavy metals analysis
 3.6.3 Statistical analysis
4 RESULTS AND DISCUSSION
 4.1 Extraction yield
 4.2 Optimization of lipstick formulation
 4.2.1 D-Optimal Mixture Experimental Design
 4.2.2 Artificial Neural Network
 4.2.3 Model comparison of ANN and D-optimal (MED)
 4.3 Characterizations of optimum lipstick
 4.3.1 Compositions of optimum PSO lipstick
 4.3.2 Physicochemical characterizations
 4.3.2.1 Melting point
 4.3.2.2 Texture profile analysis
 4.3.2.3 pH measurement
 4.3.2.4 Antioxidant analysis
 4.3.2.5 Thermo gravimetric analysis (TGA)
 4.3.2.6 Stability study
 4.3.2.7 Color stability
 4.3.3 Safety evaluations
 4.3.3.1 Microbiological analysis
 4.3.3.2 Heavy metals analysis
5 CONCLUSIONS
REFERENCE
APPENDICES
BIODATA OF STUDENT
LIST OF PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Tables</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 General nutrition facts of pitaya fruits</td>
<td>13</td>
</tr>
<tr>
<td>2.2 Antioxidants properties contain in pitaya fruits (peel and pulp)</td>
<td>14</td>
</tr>
<tr>
<td>2.3 Fatty acids composition in red pitaya seed oil</td>
<td>15</td>
</tr>
<tr>
<td>2.4 Theoretical maximum amounts of heavy metals presents in cosmetic ingredients</td>
<td>21</td>
</tr>
<tr>
<td>3.1 List of chemicals, materials and sources of raw materials used in lipstick formulation</td>
<td>24</td>
</tr>
<tr>
<td>3.2 Constraints of independent variable proportion</td>
<td>27</td>
</tr>
<tr>
<td>3.3 D-optimal mixture experimental design (MED) with 20 out of 25 experiments (Design Expert Software)</td>
<td>28</td>
</tr>
<tr>
<td>3.4 Coded levels values of the variables taken for learning (training) and test sets of artificial neural networks</td>
<td>30</td>
</tr>
<tr>
<td>3.5 Settings for texture profile analysis</td>
<td>33</td>
</tr>
<tr>
<td>3.6 Materials for agar preparation</td>
<td>36</td>
</tr>
<tr>
<td>4.1 Extraction and percent yield of pitaya seed oil using two different solvents</td>
<td>38</td>
</tr>
<tr>
<td>4.2 Experimental data and response (melting point) obtained from D-optimal mixture experimental design (MED)</td>
<td>39</td>
</tr>
<tr>
<td>4.3 Analysis of variance (ANOVA) for D-optimal mixture experimental design (MED) of quadratic model</td>
<td>40</td>
</tr>
<tr>
<td>4.4 Regression coefficient values for the final reduced model</td>
<td>41</td>
</tr>
<tr>
<td>4.5 Optimal condition derived by D-optimal mixture experimental design (MED) for lipstick formulation</td>
<td>46</td>
</tr>
<tr>
<td>4.6 Actual and predicted values of ANN-IBP model of PSO lipstick formulation</td>
<td>47</td>
</tr>
<tr>
<td>4.7 Actual and predicted values of ANN-QP model of PSO lipstick formulation</td>
<td>51</td>
</tr>
<tr>
<td>4.8 Actual and predicted values of ANN-BBP model of PSO lipstick formulation</td>
<td>54</td>
</tr>
<tr>
<td>4.9 Actual and predicted values of ANN-LM model of PSO lipstick formulation</td>
<td>58</td>
</tr>
<tr>
<td>4.10 Actual and predicted values of ANN-GA model of PSO lipstick formulation</td>
<td>62</td>
</tr>
<tr>
<td>4.11 Summaries of RMSE, R^2 and AAD data for each algorithm</td>
<td>65</td>
</tr>
<tr>
<td>4.12 Optimum conditions derived by ANNs based on BPP algorithm and D-optimal (MED) model for lipstick formulation</td>
<td>67</td>
</tr>
<tr>
<td>4.13 Compositions of optimum PSO lipstick</td>
<td>68</td>
</tr>
<tr>
<td>4.14 Melting point of optimized PSO lipstick and conventional lipstick</td>
<td>69</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>4.15</td>
<td>Texture profile analysis of the optimized PSO lipstick and conventional lipstick</td>
</tr>
<tr>
<td>4.16</td>
<td>pH measurement of the optimized PSO lipstick and conventional lipstick</td>
</tr>
<tr>
<td>4.17</td>
<td>Stability tests for optimized PSO lipstick for 3 months storage</td>
</tr>
<tr>
<td>4.18</td>
<td>Color intensity of the optimized PSO lipstick before and after undergoing stability study for 3 months</td>
</tr>
<tr>
<td>4.19</td>
<td>Microbiological analysis of optimized PSO lipstick</td>
</tr>
<tr>
<td>4.20</td>
<td>Heavy metals analysis in optimized PSO lipstick</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figures	Description	Page
2.1 | The global cosmetics industry segmented market | 5
2.2 | The top 10 global players in cosmetics industry | 5
2.3 | Structural physiology of human regular skin and lip skin | 6
2.4 | Types of pitaya fruits | 27
2.5 | Pitaya tree | 13
2.6 | Pitaya seed | 15
2.7 | Pitaya seed oil | 16
2.8 | Schematic of biological neurons (left) and configuration of multilayer artificial neural network (ANN) (right) | 18
3.1 | Research flowchart | 25
4.1a | Contour plot two-dimensional (2D) showing the interaction effect between three variables: (A) Pitaya seed oil; (B) Virgin coconut oil; (C) Beeswax; and two variables are kept constant: (D) Candelilla wax and (E) Carnauba wax with respect to melting point | 42
4.1b | Three-dimensional (3D) plot showing the interaction effect between three variables: (A) Pitaya seed oil; (B) Virgin coconut oil; (C) Beeswax; and two variables are kept constant: (D) Candelilla wax and (E) Carnauba wax with respect to melting point | 43
4.2a | Contour plot two-dimensional (2D) showing the interaction effect between three variables: (A) Pitaya seed oil; (D) Candelilla wax; (E) Carnauba wax; and two variables are kept constant: (B) Virgin coconut oil and (C) Beeswax with respect to melting point | 44
4.2b | Three dimensional (3D) plot showing the interaction effect between three variables: (A) Pitaya seed oil; (D) Candelilla wax; (E) Carnauba wax; and two variables are kept constant: (B) Virgin coconut oil and (C) Beeswax with respect to melting point | 45
4.3 | Performance of the network at different hidden nodes using incremental backpropagation (IBP) for test data set | 48
4.4 | Scatter plot of predicted melting point versus actual melting point from 15 data points ANN-IBP training set | 49
4.5 | Scatter plot of predicted melting point versus actual melting point from 8 data points ANN-IBP test set | 49
4.6 | Performance of the network at different hidden nodes using Quick propagation (QP) for test data set | 52
4.7 | Scatter plot of predicted melting point versus actual melting point from 15 data points ANN-QP training set | 53
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8</td>
<td>Scatter plot of predicted melting point versus actual melting point from 8 data points ANN-QP test set</td>
</tr>
<tr>
<td>4.9</td>
<td>Performance of the network at different hidden nodes using batch back propagation (BBP) for test data set</td>
</tr>
<tr>
<td>4.10</td>
<td>Scatter plot of predicted melting point versus actual melting point from 15 data points ANN-BBP training set</td>
</tr>
<tr>
<td>4.11</td>
<td>Scatter plot of predicted melting point versus actual melting point from 8 data points ANN-BBP test set</td>
</tr>
<tr>
<td>4.12</td>
<td>Performance of the network at different hidden nodes using Levenberg-Masquaredt (LM) for test data set</td>
</tr>
<tr>
<td>4.13</td>
<td>Scatter plot of predicted melting point versus actual melting point from 15 data points ANN-LM training set</td>
</tr>
<tr>
<td>4.14</td>
<td>Scatter plot of predicted melting point versus actual melting point from 8 data points ANN-LM test set</td>
</tr>
<tr>
<td>4.15</td>
<td>Performance of the network at different hidden nodes using Genetic algorithm (GA) for test data set</td>
</tr>
<tr>
<td>4.16</td>
<td>Scatter plot of predicted melting point versus actual melting point from 15 data points ANN-GA training set</td>
</tr>
<tr>
<td>4.17</td>
<td>Scatter plot of predicted melting point versus actual melting point from 8 data points ANN-GA test set</td>
</tr>
<tr>
<td>4.18</td>
<td>The scatter plots of the predicted melting point versus actual melting point for the testing data set that shows the performed R^2 of selected model BBP-5-2-1 consisting of 5 inputs, 1 hidden layer with 2 nodes and 1 outputs</td>
</tr>
<tr>
<td>4.19</td>
<td>The relative importance of lipstick formulation of input variables consists of pitaya seed oil, beeswax, carnauba wax and candelilla wax</td>
</tr>
<tr>
<td>4.20</td>
<td>DPPH Scavenging activity of oil/hexane, oil/EtOH, standard of BHT, without PSO lipstick, PSO lipstick and conventional lipstick</td>
</tr>
<tr>
<td>4.21</td>
<td>TGA thermo gram of the optimized lipstick</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAD</td>
<td>Absolute Average Deviation</td>
</tr>
<tr>
<td>ANNs</td>
<td>Artificial Neural Networks</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>APC</td>
<td>Aerobic Plate Count</td>
</tr>
<tr>
<td>ANN-BBP</td>
<td>Batch Backpropagation</td>
</tr>
<tr>
<td>ANN-GA</td>
<td>Genetic Algorithm</td>
</tr>
<tr>
<td>ANN-IBP</td>
<td>Incremental Backpropagation</td>
</tr>
<tr>
<td>ANN-LM</td>
<td>Levenberg-Madquaritized</td>
</tr>
<tr>
<td>ANN-QP</td>
<td>Quick Propagation</td>
</tr>
<tr>
<td>BHA</td>
<td>Butylated-hydroxyanisole</td>
</tr>
<tr>
<td>BHT</td>
<td>Butylated-hydroxytoluene</td>
</tr>
<tr>
<td>°C/min</td>
<td>Degree/minute</td>
</tr>
<tr>
<td>CAGR</td>
<td>Cumulative Average Growth Rate</td>
</tr>
<tr>
<td>cfug⁻¹</td>
<td>Bacteria Colony Forming Units</td>
</tr>
<tr>
<td>DOE</td>
<td>Design of Expert</td>
</tr>
<tr>
<td>DPPH</td>
<td>1,1-diphenyl-2-picryl-hydrazine</td>
</tr>
<tr>
<td>ET</td>
<td>Electron Transfer</td>
</tr>
<tr>
<td>°F</td>
<td>Fahrenheit</td>
</tr>
<tr>
<td>GAE</td>
<td>Garlic acid equivalents</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>h</td>
<td>Hours</td>
</tr>
<tr>
<td>ha</td>
<td>Hectares</td>
</tr>
<tr>
<td>HAT</td>
<td>Hydrogen Atom Transfer</td>
</tr>
<tr>
<td>HgS</td>
<td>Mercury (II) Sulphide</td>
</tr>
<tr>
<td>HNO₃</td>
<td>Nitric acid</td>
</tr>
<tr>
<td>MED</td>
<td>D-optimal Mixture Experimental Design</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>mL</td>
<td>Milliliter</td>
</tr>
<tr>
<td>MLA</td>
<td>Modified Letheen Agar</td>
</tr>
<tr>
<td>MLB</td>
<td>Modified LetheenBrooth</td>
</tr>
<tr>
<td>MLP</td>
<td>Multilayer Perceptron</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>MSE</td>
<td>Mean Square Error</td>
</tr>
<tr>
<td>p</td>
<td>Probability</td>
</tr>
<tr>
<td>PDA</td>
<td>Potato Dextrose Agar</td>
</tr>
<tr>
<td>PE</td>
<td>Processing Elements</td>
</tr>
<tr>
<td>ppm</td>
<td>Part per million</td>
</tr>
<tr>
<td>PSO</td>
<td>Pitaya Seed Oil</td>
</tr>
<tr>
<td>R²</td>
<td>Correlation of determination</td>
</tr>
<tr>
<td>RMSE</td>
<td>Root Mean Square Error</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolution per minute</td>
</tr>
<tr>
<td>RSM</td>
<td>Response Surface Methodology</td>
</tr>
<tr>
<td>t</td>
<td>Metric tons</td>
</tr>
<tr>
<td>TEWL</td>
<td>Trans-epidermal Water Loss</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermo-gravimetric Analysis</td>
</tr>
<tr>
<td>UFA</td>
<td>Unsaturated Fatty Acids</td>
</tr>
</tbody>
</table>
v/v Volume/volume
w/w Weight/weight
YMC Yeast Mould Count
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Pitaya seed oil</td>
</tr>
<tr>
<td>B</td>
<td>Virgin coconut oil</td>
</tr>
<tr>
<td>C</td>
<td>Beeswax</td>
</tr>
<tr>
<td>D</td>
<td>Candelilla wax</td>
</tr>
<tr>
<td>E</td>
<td>Carnauba wax</td>
</tr>
<tr>
<td>Lj</td>
<td>Lower form of proportions</td>
</tr>
<tr>
<td>Uj</td>
<td>Upper form of proportions</td>
</tr>
<tr>
<td>Xj</td>
<td>Component proportion</td>
</tr>
<tr>
<td>Y</td>
<td>Melting point</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of study

Cosmetic industry is one of the biggest and successful industries worldwide. Every day, many new cosmetic products are produced and improved as compared to the previous ones (Kamairudin et al., 2014). Cosmetic products comprise color cosmetics and personal care products. Examples of color cosmetics are lipsticks, face powders, eyeliners, eye shadow, and etc. Meanwhile, personal care products are skin care, hair care, oral care and body care products. The increasing approaches to the technologically advances in cosmetics products, which are natural and suitable to use as well as complied to certain requirements of religion, bring this study towards the realization of lipstick from safe and permissible sources (Hashim et al., 2009; Azwanida et al., 2014). Lipstick is one of the color cosmetics which is prepared by molding a dispersion of pigment color in oil-wax base (Schlossman, 1994; Schlossman and Shao, 2014). The lipstick is made up of oily ingredients and addition of various waxes would emphasize the physical ability. The pigment color like inorganic pigment should be finely dispersed in the oily phase. Usually, the lipstick is made in the form of crayon or stick which should be temperature resistance, flawless, smooth, and glossy and should not be crack or break. In the market, there are different characteristics of lipstick is available which is depend on the ingredients used in the formulation (Rajin et al., 2007; Butler, 2013).

Vegetable oils have some beneficial effects on human either used for consumption or external applications (Kamairudin et al., 2014). Pitaya seed oil was introduced as one of the new oil to replace other conventional oils in lipstick formulation. This oil is suitable to replace other oil like jojoba oil because it provides soothing effect and vitamins for cosmetic applications. Pitaya seed oil was used in this lipstick formulation because it contains high content of unsaturated fatty acids (UFAs) which are linolenic and linoleic acids (Ariffin et al., 2009). These UFAs help to balance the skin’s metabolism by controlling the flow of oils and nourishing collagen as well as supporting the structure beneath the skin. Incorporating the sought-after essential oil, omega-3, in food or cosmetic products are widely practiced (Darmstadt et al., 2002). Linoleic acids and linolenic acids are examples of antioxidant components.

Hence, these fatty acids would enhance the ability of antioxidant against oxidization process. The onset of unsightly wrinkled chapped lip can be minimized due to presence of antioxidant properties and neutralized the free radical formed on the lips due to the external factor. In other word it prevents aging on the lips. Lipstick with a good properties and safe to users will attract consumer attention as well as efficient for cosmeceutical industry.

The halal market is set to grow rapidly and experience yearly increment (Kassim et al., 2014). Halal cosmetic products in particular the lipstick, from the allowable ingredients are one of the innovations in halal industry which can increase the halal market value. The market of halal industry is not only restricted to halal requirements but also covers
organic, natural, as well as safe product which will be convincing to consumer (Hashim et al., 2009; Azwanida et al., 2014).

The initiative to establish Halal Department/Division, halal cosmetic products manufacturing will further enhance Malaysia’s position in global halal cosmetic manufacturing. Lipstick is one of color cosmetic products that is suitable for Muslim and non-Muslim users because halal is not only cover shariah compliance but also include “toyyiban” aspects such as wholesomeness, quality, nutritive value and cleanliness (Alserhan, 2010).

1.2 Problem statements

Pitaya (Hylocereous polyrhizus) is one of the fruit that contain a lot of benefits such as increase the cell membrane fluidity, decrease trans-epidermal loss, and improves moisturizing and so on. In this present work, pitaya seed oil (PSO) is used as one of the main ingredients in this lipstick formulation. The common problem in the lipstick formulation is to obtain optimize mixture ingredients aimed to get a product with the required characteristics. This is a very challenging study because to obtain good quality lipstick with required characteristics because it is directly linked to the basic ingredients used in the formulation. To achieve optimization of ingredients, D-optimal Mixture Experimental Design (MED) and Artificial Neural Networks (ANNs) were used as statistical experimental designs as well as to reduce the time and cost consumed. In addition, the focus to produce halal lipstick is a challenge because the ingredients used must be ascertain only from halal sources and shall be safe for the user.

1.3 Significance of study

Formulation and optimization processes are two important issues in the manufacturing of cosmetics. The processes of optimizing ingredients not only increase the utility of the technologist but also the quality of the product as well. Since, the lack of any model or tool to optimize the use of PSO in lipstick formulation which led this study to find and optimal formulation with desirable melting point using MED and ANNs. By using this tool or model, the number of experiments, time and costs can be lowered. From this work, the natural and halal lipstick also had been developed with desirable properties which are same par as the conventional lipsticks in market. This lipstick also meets the criteria of “Halalan Toyyiban” that set by National Pharmaceutical Control Bureau (NPCB) and Department of Standard Malaysia (DSM).
1.4 Scope of study

In this present work, the lipstick containing pitaya seed oil (PSO) was designed and formulated. Various natural ingredients were used in this formulation to produce good and ideal lipstick. The formulation was optimized using D-optimal Mixture Experimental Design (MED) and Artificial Neural Networks (ANNs) statistical experimental designs. The effects of the ingredients were studied through these statistical experimental designs. Then, the optimized lipstick was characterized with respect to melting point, texture profile analysis, pH, antioxidant analysis, thermo gravimetric analysis, stability study and color stability. Safety of the optimized lipstick was evaluated by microbiological and heavy metals analysis.

1.5 Objectives of study

The objectives of this work are as follows:

1. To optimize the ingredients for formulating the lipstick with respect to melting point using D-optimal Mixture Design (MED) and Artificial Neural Networks (ANNs).
2. To characterize the physicochemical properties of the optimized lipstick with respect to melting point, texture profile analysis, pH, antioxidant analysis, thermo gravimetric analysis, stability study and color stability.
3. To evaluate the safety of optimized lipstick by microbiological and heavy metals analysis to comply the “Halalan Toyyiban” requirements.
REFERENCES

Sichina, W. J. (2000). Better characterization of multi-component materials using autostepwise TTGA. Perkin Elmer Instruments, 761 Main Avenue, Norwalk, CT 06859-0010 USA.

