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Catalyzed by the development of digital technologies, the amounts of digital 
images being produced, archived and transmitted are reaching enormous 
proportions. It is hence imperative to develop techniques that are able to index, 
and retrieve relevant images through user‘s information need. Image retrieval 
based on semantic learning of the image content has become a promising 
strategy to deal with these aspects recently. With semantic-based image retrieval 
(SBIR), the real semantic meanings of images are discovered and used to 
retrieve relevant images to the user query. Thus, digital images are automatically 
labeled by a set of semantic keywords describing the image content. Similar to 
the text document retrieval, these keywords are then collectively used to index, 
organize and locate images of interest from a database. Nevertheless, 
understanding and discovering the semantics of a visual scene are high-level 
cognitive tasks and hard to automate, which provide challenging research 
opportunities. Specifically, exploiting discriminatory features, handling the visual 
similarity between object classes and appearance diversity in each class, 
classification of low-level image visual features to appropriate semantic classes, 
comprehensively annotate images, and reliable indexing and ranking images 
through difficult queries are open issues to cope with. This study proposes new 
ideas to overcome these challenges.  
 
First, a discriminatory image feature vector is generated using texture as a 
distinguishable visual feature. In the proposed method, the image texture which 
is extracted by the Gabor wavelet and the curvelet transforms in the spectral 
domain is encoded into polynomial coefficients. It not only provides rotation 
invariant features but also generates texture feature vectors with the maximum 
power of discrimination.  
 
Second, a context-aware and semantic-consistent image descriptor is presented 
to exploit the image visual attributes in a contextual space. The high-level visual 
space is constructed by a Dirichlet process regardless of the semantic classes, 
and then, the posteriors are used to build the contextual space.  
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Third, the high-level feature similarities are employed to design a kernelized 
classification model which facilitates the reliable mapping of visual features to 
semantic concepts.  
 
Fourth, with the proposed semantic label discovery and the kernelized 
classification model, more image annotations such as regional, subjective and 
latent labels are integrated for efficient image retrieval. 
 
Finally, a probabilistic latent semantic indexing approach is proposed for a 
reliable multi-word image retrieval, where labeled images are represented by a 
finite mixture over latent topics. This structure enables multi-word querying and 
generates scalable indexing for ranked image retrieval based on the probability 
scores. 
 
The effectiveness of the proposed approaches in the semantic-based image 
retrieval is demonstrated through comparisons in terms of precision and recall 
with state-of-the-art methods on the widely-used databases including 
ImageCLEF, MSRC, and others, which shows more efficient results. The validity 
of the overall SBIR with the whole components connected together is also 
evaluated on the SAIAPR TC-12 database, which obtains 26.8 in terms of mean 
average precision. 
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Bermangkinkan pembangunan pesat teknologi digital, jumlah imej digital yang 
terhasil, terarkib dan dihantar sudah menjadi terlalu banyak. Oleh yang 
demikian, teknik-teknik pengindeksan dan dapatan-semula imej perlu dihasilkan 
berdasarkan keperluan pengguna. Dapatan-semula berdasarkan pembelajaran 
semantik kandungan imej adalah satu strategi yang menjanjikan bagi menangani 
masalah ini. Dengan dapatan-semula imej berdasarkan semantic (SBIR), makna 
semantik sebenar imej dapat ditentukan dan digunakan bagi mendapatkan 
semula imej releven berdasarkan kueri pengguna. Ini membenarkan imej digital 
dilabel secara otometik dengan satu set kata kunci yang menerangkan 
kandungan imej berkenaan. Sama seperti dapatan semual dokumen teks, kata-
kata kunci ini kemudian digunakan secara kolektif untuk tujuan pengindeksan, 
penyusunan semula dan pengesanan lokasi imej yang dikehendaki dari 
pangkalan data. Namun, memahami dan mengenalpasti semantik bagi scene 
visual merupakan satu tugasan pemikiran kognitif tahap tinggi dan sukar untuk 
diotomasi. Ini membuka ruang bagi peluang-peluang penyelidikan yang 
mencabar. Secara khusus, mengeksploitasi ciri-ciri pembezaan imej, 
pengendalian persamaan visual antara kelas-kelas objek dan kepelbagaian 
penampilan dalam setiap kelas, pengklasifikasian ciri-ciri visual tahap rendah 
imej kepada kelas semantik yang sesuai, anotasi imej secara komprehensif, dan 
pengindeksan dan pemberian kedudukan yang boleh dipercayai melalui kueri-
kueri sukar, merupakan isu-isu terbuka untuk diatasi. Kajian ini mencadangkan 
ide-ide baharu untuk mengatasi cabaran-cabaran ini.        
 
Pertamanya, satu vektor ciri imej yang membezakan, dijana menggunakan 
tekstur sebagai ciri visual. Dalam metod yang dicadangkan, ciri tekstur diekstrak 
menggunakan transformasi-transformasi wavelet Gabor dan curvelet dalam 
domain spektral dan kemudian dikod ke dalam bentuk pekali-pekali polinomial. 
Pendekatan ini bukan sekadar menawarkan ciri-ciri tidak berubah dari segi 
putaran, tetapi juga dapat menjana vektor-vektor ciri tekstur dengan 
kebolehupayaan pembezaan yang maksimum.    
 
Kedua, satu penghurai yang sedar-konteks dan konsistent-semantik 
dibentangkan bagi mengeksploitasi sifat-sifat imej dalam ruangan kontekstual. 
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Ruangan visual tahap-tinggi ini dibina menggunakan satu proses Dirichlet, tanpa 
mengambil kira kelas semantik, dan kemudiannya posterioir-posterior digunakan 
bagi membina ruangan kontekstual. 
 
Ketiga, persamaan-persamaan ciri tahap-tinggi digunapakai untuk merekabentuk 
satu model klasifikasi ber-kernel yang memudahkan pemetaan ciri-ciri visual 
kepada konsep-konsep semantik. 
 
Keempat, dengan kaedah penemuan label-semantik dan model klasifikasi ber-
kernel yang dicadangkan, anotasi-anotasi imej tambahan seperti pada rantauan, 
subjektif dan label-label terpendam dapat diintegrasi bagi dapatan semula imej 
yang cekap. 
 
Akhirnya, satu pendekatan pengindeksan semantik terpendam bagi dapatan 
semula imej pelbagai-perkataan yang lebih efektif dicadangkan, di mana imej-
imej terlabel diwakili oleh campuran terhingga melalui tajuk-tajuk terpendam. 
Struktur ini membenarkan kebolehan kueri pelbagai-perkataan dan menjana 
pengindeksan mampu-skala untuk dapatan semula imej berkedudukan 
berdasarkan markah kebarangkalian. 
 
Keberkesanan pendekatan-pendekatan yang dicadangkan dibentangkan melalui 
perbandingan dengan metod-metod state-of-the-art sedia ada, berdasarkan 
terma-terma kepersisan dan penggilan balik. Pangkalan data imej digital terkenal 
digunakan iaitu ImageCLEF, MSRC dan lain-lain. Kesahihan keseluruhan 
komponen SBIR yang digabungkan juga dinilai menggunakan pangkalan data 
SAIAPR TC-12, di mana purata kepersisan pertengahan 26.8 diperolehi.  
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1 CHAPTER 1 
 
 

INTRODUCTION 
 
 

―Image is everything‖ – This is a commercial promotional statement that shows 
images are becoming the ―universal language‖ as they are rising stars of the 
Internet. An image captures a mood, an individual‘s character, and a moment 
in time, therefore image is everything, and very complex entity. The popularity 
of digital cameras and online communities have given individuals the privilege 
to capture their worlds in pictures, and suitably share them with others. 
Undoubtedly, both technology push and application pull have caused the rapid 
increase in the amount of digital images being produced, archived and 
transmitted. Confronted by this profusion of images, searching for required 
information from image documents is a crucial need whereby the more images 
are available, the more difficult to locate accurate and relevant information 
similar to written documents.  
 
The practice of archiving written documents can be traced back to the time 
when Greek and Roman scholars started to compile the various sorts of the 
data. They found that organizing the data would facilitate the process of 
retrieving certain passages. A small slip was attached to papyrus scrolls with 
the work title and the name of the author. The idea of using computers to 
search for relevant pieces of information was born by Vannevar Bush in the 
article entitled ―as we may think‖ in 1945 (Singhal, 2001). Today, this is called 
―information retrieval‖ (IR), which is the science of searching for relevant 
documents from a collection of document resources. Unlike the data retrieval, 
the information is not structured in IR systems. They provide a set of methods 
and techniques for retrieving users‘ information needs in forms of queries. IR 
systems usually assign index terms of keywords to the documents, and retrieve 
ranked items based on their relevancy to the user query keywords. 
 
In written text documents, text information is used for the efficient retrieval, 
whether documents are organized manually or automatically such as modern 
digital libraries. However, organizing images manually outperforms machine as 
unlike text that is man‘s creation, images are carriers of visual objects and 
scenes, and hence, they are concrete descriptions of which are relatively 
elusive. Usually, the interpretation of what we see is hard to describe, and even 
harder to teach a machine. In the past few years, a plenty of researches have 
been conducted by even more ambitious attempts to make computers 
understand, index and annotate images efficiently (Ritendra, Joshi, Li, & Wang, 
2008). Earlier approaches to utilizing computers in image retrieval used text 
retrieval techniques on the textual descriptions of images. Nevertheless, 
images do not have full-text data, and manual annotations are inherently 
incomplete as translating some images in words is unfeasible.  
 
To organize digital images by their visual content, content-based image 
retrieval (CBIR) was introduced in the early 1980s (Y. Liu, Zhang, Lu, & Ma, 
2007). It includes computer vision technologies to support efficient image 
searching and browsing on the basis of automatically derived imagery features. 
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However, relying on the low-level visual features which are readily extracted 
from the images causes an inconsistency with the high-level image 
abstractions. This is semantic gap, a well-known challenge in CBIR research 
community, which is a key obstacle. To alleviate this problem, image retrieval 
based on semantic learning has recently gained more attention. Semantic-
based image retrieval (SBIR) (Jaimes & Chang, 2000; Luo, Savakis, & Singhal, 
2005; H.-C. Yang & Lee, 2008) approach tries to discover semantics from the 
image content. Therefore, the real semantic meaning of images can be 
detected and searched regardless to the low-level features. In this study, we 
focus on the enhancing the SBIR to be applicable on the real-world images by 
investigating underlying issues and aspects of this emerging technology.  
 
 
1.1 Semantic-based image retrieval 

 
Although there is no simple answer to the question of how search will evolve in 
the future, but it is absolutely predictable that search would become 
increasingly graph-based and semantic-based. Google has taken an important 
step towards the future of search by providing the knowledge graph. It is simply 
a machine that tries to think like a human when it encounters a massive 
database of information and facts on the Internet to bring more relevant 
information to the users. On the other hand, semantic search focuses on the 
user intention, the contextual relevance and the real meaning of the data to 
return relevant results. Clearly, the aim of both graph-based and semantic 
search is to improve the search algorithms to produce relevant, accurate and 
qualitative results with the high users‘ satisfaction. Using natural language 
processing and sophisticated artificial intelligence approaches, semantic 
search technology is becoming the core of text retrieval systems. However, the 
current improvement in semantic-based image retrieval is still in the research 
phase.  
 
The existing methods are usually based on a general framework to describe 
the image content in different levels. Jaimes & Chang (2000) presented an 
SBIR scheme consisting of five levels of region level, perceptual region level, 
object part level, object level, and scene level. Particularly, three layers of 
abstraction are distinguishable in images; raw data, feature and semantic 
layers. The raw data shows images in the form of a matrix of pixels. The 
feature layer describes the key characteristics of the pixel patterns. The 
semantic layer is about meaning of detected objects in images. A general 
paradigm of such multi-layer approach is shown in Figure 1.1, where the object 
characterization plays an important role with two important tasks, i.e., 
extracting meaningful regions and identification of interesting objects (Luo et 
al., 2005). However, identification of image objects for object detection is an 
extremely difficult task, and latent semantics which are not extractable from 
visual appearance are not considered in this scheme. It also does not take into 
account the ranking of the results. An alternative general framework is 
presented in (Spyrou et al., 2014) which uses semantic mapping to show the 
similar images to the user, based on a text query. It is illustrated in Figure 1.2.  
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Figure 1.1. A general paradigm for SBIR (Luo et al., 2005)  

 
 

 

 
 
Figure 1.2. An alternative SBIR paradigm (Spyrou et al., 2014) 

 
 
However, to teach the computer to really know the semantics of an image, it is 
promising to consider the way humans learn image semantics. Human beings 
actively search for key changes in a large section of the visual field, which 
cannot be achieved without visual attention. For rapid visual classification of 
new natural scenes, very little or no focal attention is required while semantic 
understanding of images needs features to be automatically registered in 
parallel across the visual field.  
 
 

1.2 Motivation  

 
Although SBIR has appeared as a solution for image retrieval with the aim of 
satisfying user‘s information needs, understanding the semantics within images 
is a high-level cognitive task, and very tough to automate. Many systems have 
been proposed and implemented using SBIR technologies, e.g., shared-
subspace learning (SSL) (Ji, Tang, Yu, & Ye, 2010), hidden-concept driven 
image annotation and label ranking (HDIALR) (Bao, Li, & Yan, 2012), and 
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multifaceted indexing (Fauzi & Belkhatir, 2013). Recent studies in SBIR have 
mainly focused on automatic image annotation (AIA) to associate low level 
image features with high level semantics through machine learning techniques 
(Amiri & Jamzad, 2015; Bannour & Hudelot, 2014; Y. Yuan, Wu, Shao, & 
Zhuang, 2013; S. Zhang, Tian, Hua, Huang, & Gao, 2014). AIA enables 
effective indexing and retrieval of images in large scale image databases, 
where manual image labeling is labor-intensive task. Primary AIA approaches 
grouped images into different classes using image features, and then 
annotated each image with a class concept. Therefore, each image was 
labelled with only one concept while natural images often contain several 
semantic concepts. This is a challenging problem in SBIR where each image 
can cover multiple semantic concepts. A considerable solution is region-based 
image retrieval (RBIR) which treats an image as a bag of regions by 
segmenting the image into primitive regions (Ying Liu, Dengsheng Zhang, 
2008; D. Zhang, Islam, & Lu, 2012; D. Zhang, Monirul Islam, & Lu, 2013). The 
regional features are then matched the concept model for the image 
annotations. To distinguish visual regions separately, selecting discriminatory 
features is an essential factor. Most image retrieval systems apply three well-
known color, shape and texture features. Among these low level image 
features, texture has shown to be effective and objective in image retrieval as it 
can distinguish regions with similar colors and shapes. Therefore, extracting 
texture features consistent with human perceptual intuitions of the objects 
inherently enhances the overall performance.  
 
Although employing the local region descriptors for AIA is remarkable, and 
detection of the meaningless image regions is relatively simple, the 
performance of the system is limited due to the degrading the semantic 
integration. This is because by the projection of the 3D real scenes to the 2D 
images, only one view of the object appearances is captured. Hence, 
separating the semantic inference from the visual detection to reduce their 
confusions, and to boost each phase with the related information will be 
reasonably robust. 
 
To annotate an image, most existing methods generate a visual codebook by 
grouping the low-level features into a predefined number of clusters, treat the 
center of each cluster as a visual word, and then annotate an unseen image by 
finding the closest entry in the codebook with the extracted features of the 
image (Bolovinou, Pratikakis, & Perantonis, 2013; Gemert, Snoek, Veenman, 
Smeulders, & Geusebroek, 2010; Lei Wu, Hoi, & Yu, 2010). This is called Bag-
of-visual Words (BoW) model (Csurka, Dance, Fan, Willamowski, & Bray, 
2004), which is inspired by the traditional bag-of-words model for text 
processing. However, AIA can be formulated as a multi-label classification 
problem where an image is associated with multiple labels. Therefore, 
specializing the classification model to incorporate the high-level image 
features will be a promising solution as the domain specific knowledge 
positively affects the performance of the image classification. Given the visual 
features of the image regions, the probabilities that they belong to different 
classes can be computed and ranked. The high ranked classes constitute the 
image annotations.  
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By the auto-annotation, the image retrieval issue is turned into a text retrieval 
task, which can efficiently benefit from the robustness and reliability of the 
traditional text retrieval approaches (Bannour & Hudelot, 2014; Z. Ma, Nie, 
Yang, Uijlings, & Sebe, 2012; Maier, Kwasnicka, & Stanek, 2012; Ntalianis, 
Tsapatsoulis, Doulamis, & Matsatsinis, 2012; Y. Yang et al., 2012; Zagoris, 
Chatzichristofis, Papamarkos, & Boutalis, 2010). However, the image 
annotations can even be enhanced by incorporating hidden semantic labels. In 
this situation, discovering the dependencies between individual image 
keywords and the latent semantic spaces which are not evident can improve 
the conceptual understanding of the images. Moreover, generating an index 
structure over these latent semantics, which can support complex and multi-
word querying, and returning a ranked list of results will be promising for SBIR.  
 
 
1.3 Problem statement   

 
In spite of significant advances in SBIR, there are still some challenging open 
problems. In this thesis, main difficulties of SBIR that need to be tackled are 
investigated separately in five research issues as follows.  
 
1) One research direction of SBIR is to explore discriminant features. 
Particularly, texture feature can overcome the limitations of color and shape 
features and determine the class a region belongs to. Two robust approaches 
in literature to model texture features are Gabor and curvelet features (Pang, 
Choi, & Qin, 2013; D. Zhang, Islam, Lu, & Sumana, 2012). However, although 
both features are close to human visual perception, they capture a large 
volume of unnecessary information which reduces their distinguishing power in 
texture classification. Therefore, sufficient information must be extracted from 
their sub-bands for efficient texture classification. A discriminant texture 
descriptor also needs to be scale- and rotation-invariant.  
 
2)  Though the BoW model is a preferred image representation technique (C.-
F. Tsai, 2012; Lei Wu et al., 2010), the semantic ambiguity limits its 
effectiveness for SBIR. Moreover, generating discriminative and representative 
visual words for the high-dimensional image data is hard to achieve due to the 
visual similarity between object classes, and appearance diversity in each 
class. 
 
3)  Existing methods (Y. Liu et al., 2007; C. Zhang, Liu, Tian, Liang, & Huang, 
2013; D. Zhang, Islam, & Lu, 2012; X. Zhou, Yu, Zhang, & Huang, 2010) 
usually assign a set of tags to each image using general kernel-based 
classification models. Nevertheless, since these models are built to be 
generally applicable in different applications, they do not satisfy the specific 
representations of images. Hence, the classification accuracy is degraded. 
Additionally, different image features pose different representations with 
differing weights, and thus, simply using a classifier with a single kernel for 
entire image feature space is not reasonable.  
 
4)  Although images can be described by the regional labels extracted from 
low-level regional features (Y. Wang, Mei, Gong, & Hua, 2009; Ying Liu, 
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Dengsheng Zhang, 2008; D. Zhang et al., 2013), there are some subjective 
labels such as names of the places that cannot directly be modeled. In 
addition, even with the collection of the regional and subjective labels, the 
image annotation is not descriptive enough. 
 
5)  AIA enables indexing and ranking of images by the text retrieval 
approaches. However, subjectivity of the text descriptions can potentially lead 
to classic information retrieval problems, namely polysemy and synonymy 
(Golder & Huberman, 2006). In addition, users tend to send multi-word queries 
to clarify their information needs. Therefore, developing an efficient indexing 
scheme over image keywords, which considers semantic meaning of the 
images, and enables multi-word querying is an open issue in SBIR.  
 
 
1.4 Objectives 

 
The major aim of this study is to propose new algorithms and methods to cover 
relevant aspects and issues of image retrieval in SBIR. The research objectives 
of this thesis can hence be summarized as follows: 
 
● To propose a new texture feature vector with the maximum power of 
discrimination which is scale- and rotation-invariant, and it can enhance the 
precision and recall for the retrieval purposes. 
 
● To propose innovative high-level image descriptors which convey semantics 
in the contextual space. These descriptors need to be discriminative and 
representative of the image appearances in the high-level visual space such 
that their application for image annotation results in a high annotation results in 
terms of the area under the ROC curve (AUC) and annotation accuracy.  
 
● To design an especial kernel-based classification model using high-level 
feature similarities. This model must exploit the domain knowledge of the 
image features, and control the data scatter with a high recognition rate.  
 
● To propose a novel automatic image annotation method with high precision 
and recall, which leverages three types of regional, subjective and latent labels 
to significantly enrich image description by incorporating semantic labels. 
 
● To propose a novel indexing structure for efficient image retrieval, which 
enables latent topic extraction and allows multi-word querying. It needs to 
generate a scalable indexing for ranked image retrieval based on the 
probability scores. It can outperform the existing methods in terms of mean 
average precision (MAP) and break-even point (BEP).  
 
 
1.5 Contributions  

 
The contributions of this thesis are innovative approaches that address the 
above research issues as follows:  
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● A new discriminatory texture descriptor that uses polynomial coefficients to 
encode texture information. It can increase the texture classification rate and 
produce a high discrimination power in the scale- and rotation-invariant texture 
classification. 
 
● A new image descriptor called contextual-aware and semantic-consistent 
(CASC) descriptor. Specifically, this image descriptor can exploit co-occurrence 
relationships in a contextual space which itself is modeled in a high-level visual 
space. Therefore, CASC descriptors can be visually representative of the 
image patches/regions, and contextually discriminative of the semantic classes, 
whereby their application for the AIA can generate a high annotation accuracy.  
 
● A kernelized classification model that uses a new high-level kernel based on 
the high-level image feature similarities. It can leverage the specific domain 
knowledge of the image information in the classification process with a high 
recognition rate.  
 
● A new image annotation method that benefits from different types of regional, 
subjective, and latent labels. Incorporating these semantic labels can 
significantly enhance the precision and recall of the image annotation. 
 
● A novel indexing method called RBM-LDA (Restricted Boltzmann Machine-
Latent Dirichlet Allocation) method that can index images based on uncovered 
latent topics and word dependencies. It enables multi-word querying with high 
precision and recall for the ranked image retrieval.  
 
 
1.6 Thesis outline  

 
This thesis is organized as follows. Chapter 2 provides the literature review of 
related works. Research methodologies are discussed in chapter 3. The 
contributions of this study are presented as four research works in chapter 4, 5, 
6, and 7, entitled as:  
 
● Chapter 4: Texture classification and discrimination for region-based image 
retrieval,  
 
● Chapter 5: Context-aware and semantic-consistent image feature extraction 
for automatic image annotation, 
 
● Chapter 6: Semantic label discovery for automatic image annotation, and  
 
● Chapter 7: Latent semantic learning in image retrieval for multi-word text 
queries.  
 
The first research problem of exploring discriminant features is the main 
considered issue in chapter 4.  A texture classification and discrimination 
approach is proposed in this chapter. The second research problem of 
generating discriminative and representative visual descriptors is addressed in 
chapter 5 by proposing CASC descriptors. The presented research work in 



© C
OPYRIG

HT U
PM

8 
 

chapter 6 deals with the third and fourth research problems, i.e., classification 
specialization, and comprehensive annotation. The last research problem, i.e., 
incorporating latent semantic of images in the indexing structure for multi-word 
queries is investigated in chapter 7 where RBM-LDA is proposed. Finally, 
chapter 8 concludes the thesis and discusses future work.   
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