

UNIVERSITI PUTRA MALAYSIA

QUALITY OF SERVICE MANAGEMENT ALGORITHMS IN WIMAX NETWORKS

IBRAHIM SAIDU

FSKTM 2015 17

QUALITY OF SERVICE MANAGEMENT ALGORITHMS IN WiMAX NETWORKS

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

September 2015

COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial uses of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright©Universiti Putra Malaysia

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Doctor of Philosophy

Quality Of Service Management Algorithms In WiMAX Networks

By

IBRAHIM SAIDU

September 2015

Chairman: Shamala Subramaniam, PhD Faculty: Computer Science and Information Technology

The IEEE 802.16 standard, popularly known as WiMAX, addresses broadband access technology for Wireless Metropolitan Area Networks (WMANs). It is anticipated to be a viable alternative to traditional wired broadband techniques due to its cost-competitiveness, ubiquitous access, and Quality of Service (QoS) capabilities. Because it is a wireless technology, in which resources are limited such as bandwidth and power; how to manage these resources while maintaining QoS to diverse applications become a critical issue. Therefore, efficient admission control, scheduling, and power saving schemes are essential in this network. Four algorithms have been proposed and developed in this research.

Firstly, a QoS-Aware CAC scheme for Mobile WiMAX networks is proposed to prevent the starvation problem of the highest and the lowest service classes due to the linear adaptation technique used to accommodate more users into the network as well as inefficient bandwidth utilization because of the way the adaptive reserved bandwidth threshold for handoff is adjusted. This scheme determines an admission criteria based on scheduling service classes. In the admission criteria, a bandwidth-degradation policy is used to admit more users in order to prevent starvation. An adaptive threshold has been introduced dynamically to adjust the reserved bandwidth threshold for handoff connections based on the traffic intensity of handoff requests to improve bandwidth utilization. In addition, an analytical model for the proposed scheme is developed.

Secondly, a Load-Aware Weighted Round Robin algorithm (LAWRR) packet scheduling discipline for downlink traffic in 802.16 networks is proposed to

improve the poor performance of scheduling algorithm that use static weights under bursty traffic. It dynamically determines the weight of each queue in the various classes based on current traffic characteristics and the static weight at the beginning of each base-station round.

Thirdly, an energy algorithm called the Efficient Battery Life-aware Power Saving (EBLAPS) algorithm is proposed to address the problems of minimizing energy at the expense of response due to how energy sleep parameters are adjusted based on the residual energy and the use of standard sleep mode algorithms consumes high energy because of frequent transition to listening mode in the case of light traffic. The energy sleep parameters: idle threshold, initial sleep parameters and final sleep parameters are adjusted according to the downlink stochastic traffic arrival pattern of a mobile station(MS) in order to reduce the high response delay as well as the high energy consumption. Moreover, an improved sleep mode control algorithm has been introduced to reduce the high energy consumption of the standard sleep mode algorithm. Simulation have been extensively used to evaluate the proposed algorithm.

Finally, Discrete Event Simulator (DES) is designed and developed in order to evaluate the performance of the proposed algorithms. The DES is validated by comparing its results with the results obtained from Qualnet, OPNET, and C simulators.

Substantial simulations have been extensively conducted to evaluate the performance of the proposed algorithms in comparison to the existing bandwidth and power management algorithms. Simulation results illustrate that the proposed QoS-Aware CAC scheme outperforms the compared schemes significantly in terms of reducing the New Connection Blocking Probability (NCBP), Handoff Connection Dropping Rate (HCDP), and also increase the throughput of the highest and the lowest service classes as well as the numerical results show similar performance with the simulation results. The results also show that the proposed LAWRR algorithm reduces average delay and packet loss. Furthermore, the results also show that the proposed EBLAPS algorithm outperforms the compared schemes significantly in terms of both the average response delay and the average energy consumption.

The results show that the proposed algorithms provide enhanced efficient bandwidth and power utilization, grant more connections, assure QoS guarantees to all service classes, and also extend the battery life. Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

Kualiti Algoritma Pengurusan Perkhidmatan dalam Rangkaian WiMAX.

Oleh

IBRAHIM SAIDU

September 2015

Pengerusi: Shamala Subramaniam, PhD Fakulti: Sains Komputer dan Teknolologi Maklumat

Piawaian IEEE 802,16, yang lebih dikenali sebagai WiMAX, memperkenalkan teknologi akses jalur lebar untuk Rangkaian Kawasan Metropolitan Tanpa Wayar (WMANs). Ia dijangka akan menjadi alternatif yang berdaya maju kepada teknik tradisional jalur lebar berwayar kerana kos daya saing, akses yang menyeluruh, dan keupayaan Kualiti Perkhidmatan (QoS). Oleh kerana ia adalah satu teknologi tanpa wayar, di mana sumber-sumber yang terhad seperti jalur lebar dan tenaga; persoalan untuk menguruskan sumber-sumber ini di samping mengekalkan QoS untuk aplikasi yang pelbagai menjadi isu kritikal. Oleh itu, skim kawalan kemasukan cekap, penjadualan, dan menjimatkan kuasa adalah penting di dalam rangkaian ini.

Pertama, skim CAC Kesedaran-QoS untuk rangkaian Mobile WiMAX dicadangkan untuk mengelakkan masalah ketandusan sumber yang paling tinggi dan kelas perkhidmatan yang paling rendah kerana teknik penyesuaian selari yang digunakan untuk menampung lebih ramai pengguna ke dalam rangkaian serta penggunaan jalur lebar yang tidak cekap disebabkan oleh cara penyesuaian simpanan pemulaan jalur lebar ketika pengambilalihan telah diselaraskan. Skim ini menentukan kriteria kemasukan berdasarkan kelas perkhidmatan penjadualan. Dalam kriteria kemasukan, dasar jalur lebar degradasi digunakan untuk menerima lebih ramai pengguna bagi mengelakkan ketandusan sumber. Penyesuaian permulaan telah diperkenalkan secara dinamik bagi menyesuaikan lebar jalur yang dikhaskan untuk pengambilalihan sambungan berdasarkan permintaan pengambilalihan penentuan trafik supaya dapat meningkatkan penggunaan jalur lebar. Di samping itu, model analisis untuk skim yang dicadangkan telah dibangunkan. Empat algoritma telah
di cadangkan dan dibangunkan dalam penyelidikan ini.

Kedua, algoritma Wajaran Kesedaran-Memuatkan Round Robin (LAWRR) disiplin penjadualan paket untuk trafik pautan turun di dalam rangkaian 802,16 telah dicadangkan untuk meningkatkan prestasi algoritma penjadualan yang menggunakan berat statik ketika pecahan trafik. Ia secara dinamik menentukan berat setiap giliran di dalam pelbagai kelas berdasarkan ciriciri trafik semasa dan berat statik pada permulaan setiap pusingan stesen pangkalan.

Ketiga, algoritma tenaga yang dipanggil Kesedaran-Hayat Bateri Jimat Tenaga Cekap (EBLAPS) algoritma telah dicadangkan untuk mengatasi masalah meminimumkan tenaga yang digunakan disebakan oleh persoalan bagaimana parameter tidur tenaga diselaraskan berdasarkan baki tenaga dan penggunaan piawaian algoritma mod tidur yang memerlukan tenaga yang tinggi disebabkan oleh kekerapan peralihan ke mod pendengaran di dalam kes trafik rendah. Parameter tenaga tidur: pemulaan tidak aktif, parameter permulaan tidur dan parameter pengakhiran tidur diselaraskan mengikut reka bentuk ketibaan trafik pautan turun stokastik stesen mudah alih (MS) untuk mengurangkan kelewatan respon yang tinggi serta penggunaan tenaga yang tinggi. Selain itu, penambahbaikan algoritma kawalan mod tidur telah diperkenalkan bagi mengurangkan penggunaan tenaga yang tinggi oleh algoritma mod tidur yang sedia ada. Simulasi telah digunakan secara meluas untuk mengukur prestasi algoritma yang dicadangkan.

Keempat, Simulasi Berkeadaan Diskrit(DES) telah direka dan dibangunkan untuk menilai prestasi algoritma yang dicadangkan. DES disahkan dengan membandingkan keputusan dengan keputusan yang diperolehi daripada Qualnet, OPNET, dan C simulator.

Beberapa simulasi telah dijalankan secara meluas untuk menilai prestasi algoritma yang dicadangkan bagi membandingkan jalur lebar dan pengurusan kuasa algoritma yang telah sedia ada. Keputusan simulasi menggambarkan bahawa skim CAC Kesedaran-QoS yang dicadangkan mengatasi skim yang dibandingkan secara ketara dari segi mengurangkan Kebarangkalian Sekatan Sambungan Baru (NCBP), Kadar Kejatuhan Penyambungan Ambil Alih (HCDP), dan juga mening- katkan daya pemprosesan bagi kelas perkhidmatan yang tertinggi dan yang terendah termasuk keputusan berangka yang menunjukkan prestasi yang sama dengan keputusan simulasi. Keputusan yang diperolehi juga menunjukkan bahawa algoritma LAWRR yang dicadangkan mengurangkan purata kelewatan dan kehilangan paket. Selain daripada itu, keputusan yang di perolehi juga menunjukkan bahawa algoritma EBLAPS yang dicadangkan mengatasi skim yang dibandingkan dengan ketara dari kedua-dua segi purata kelewatan hasil dan juga purata penggunaan tenaga. Keputusan yang diperolehi menunjukkan bahawa algoritma yang dicadangkan memberi hasil jalur lebar dan penggunaan kuasa yang efisien, penyambungan yang lebih, member jaminan QoS untuk semua kelas perkhidmatan, dan juga memanjangkan hayat bateri.

ACKNOWLEDGEMENTS

First and most importantly, all praise is for *Allah Subhanahu Wa Taala* for given me the courage, strength, guidance and patience to complete this program. I thank Allah for His immense grace and blessings for every stage of my entire life. May blessings and peace be upon Prophet Muhammad *Sallalahu Alaihi Wasallam*, who was sent for mercy to the world.

I wish to express my sincere gratitude to all those who helped me during the course of this program. I gratefully acknowledge my supervisor Prof. Dr. Shamala Subramainiam and the co-supervisors in persons of Associate Prof. Dr. Azmi Jaafar and Associate Prof. Dr. Zuriati Ahmad Zukarnain for their patience, guidance and advice.

I wish also to express my appreciation to all the academic staff of the Department of Communication Technology and Networks, Faculty of Computer Science and Information Technology, Universiti Putra Malaysia (UPM) for their moral, social and academic support during the trying time. I also acknowledge the support of the UPM for providing me with International Grant Research Fellowship for the period of two years during my PhD program.

More personally, I am thankful to College of Agriculture Zuru, Kebbi State, Nigeria for support given to me to pursue this program. The support I enjoyed from Engineer Atiku Maiyama, Samaila Jibrin, and Director Jega.

Finally, to my brothers, Alhaji Muhammad Muazu, Dr. Aliyu Muazu, and Alhaji Shehu Muazu thank you for listening to all my agonies in life and providing solutions. To my family Zainab Lawal Mande, Muhammad Ibrahim, Fatimah Ibrahim, and Khadijah Ibrahim, the pains suffered as a result of long absence with our country is indelibly noted.

APPROVAL

I certify that a Thesis Examination Committee has met on 10th September, 2015 to conduct the final examination of Ibrahim Saidu on his thesis entitled Bandwidth and Power Management Algorithms in WiMAX Networks in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Nur Izura Udzir, PhD

Associate Professor Faculty of Computer Science and Information Technology Universiti Putra Malaysia (Chairman)

Mohamed Othman, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Azizol Abdullah, PhD

Senior Lecturer Faculty of Computer Science and Information Technology Universiti Putra Malaysia (Internal Examiner)

Ki-Hyung Kim, PhD

Professor School of Information and Computer Engineering Ajou University, South Korea (External Examiner)

ZULKARNAIN ZAINAL, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Shamala Subramaniam, PhD

Professor Faculty of Computer Science and Information Technology Universiti Putra Malaysia (Chairman)

Azmi bn Jaafar, PhD

Associate Professor Faculty of Computer Science and Information Technology Universiti Putra Malaysia (Member)

Zuriati Ahmad Zukarnain, PhD

Associate Professor Faculty of Computer Science and Information Technology Universiti Putra Malaysia (Member)

BUJANG BIN KIM HUAT, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature:

Date:

Name and Matric No.: Ibrahim Saidu, GS26843

Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: _

Name of Chairman of Supervisory Committee: Shamala Subramaniam, PhD

Signature: ______ Name of Member of Supervisory Committee: Azmi bn Jaafar, PhD

Signature: ______ Name of Member of Supervisory Committee: Zuriati Ahmad Zukarnain, PhD

TABLE OF CONTENTS

ABSTRACTiABSTRAKiiiABSTRAKiiiACKNOWLEDGEMENTSviAPPROVALviiLIST OF TABLESxvLIST OF FIGURESxviLIST OF ABBREVIATIONSxviii		Page
ABSTRAKiiiACKNOWLEDGEMENTSviAPPROVALviiLIST OF TABLESxvLIST OF FIGURESxviLIST OF ABBREVIATIONSxviii	ABSTRACT	i
ACKNOWLEDGEMENTSviAPPROVALviiLIST OF TABLESxvLIST OF FIGURESxviLIST OF ABBREVIATIONSxviii	ABSTRAK	iii
APPROVALviiLIST OF TABLESxvLIST OF FIGURESxviLIST OF ABBREVIATIONSxviii	ACKNOWLEDGEMENTS	vi
LIST OF TABLES xv LIST OF FIGURES xvi LIST OF ABBREVIATIONS xviii	APPROVAL	vii
LIST OF FIGURES xvi LIST OF ABBREVIATIONS xviii	LIST OF TABLES	xv
LIST OF ABBREVIATIONS xviii	LIST OF FIGURES	xvi
	LIST OF ABBREVIATIONS	xviii

CHAPTER

1	INT	TRODUCTION	1
	1.1	Background	1
	1.2	Problem Statement	2
	1.3	Motivation	3
	1.4	Research Objectives	3
	1.5	Research Scope	4
	1.6	Research Significance	4
	1.0	Research Contributions	4
	1.1	Theorie Organization	-1
	1.0	Thesis Organization	5
າ	ыт	TERATURE REVIEW	7
4			-
	2.1	Introduction	7
	2.2	Evolution of the 802.16 Standard	7
		2.2.1 WiMAX PHY Layer	9
		2.2.2 WiMAX MAC Layer	9
	2.3	Related Works on CAC Algorithms	11
		2.3.1 CAC with Bandwidth Reservation (BR)	12
		2.3.2 CAC with Bandwidth Degradation (BD)	14
		2.3.3 CAC with BR and BD	16
		2.3.4 Analysis of CAC Algorithms	17
	2.4	Related Works on Scheduling Algorithms	20
		2.4.1 First-in, first-out (FIFO)	21
		2.4.2 Round Robin (RR)	21
		2.4.3 Weighted Round Robin (WRR)	21
		2.4.4 Modified Weighted Round Robin (MWRR)	22
		2.4.5 Adaptive Weighted Round Robin (AWRR)	22
		2.4.6 Low Latency-Weighted Round Robin (LL-WRR)	23

		2.4.7 Analysis of Scheduling Algorithms	23
	2.5	Related Works on Energy Saving Algorithms	24
		2.5.1 Traditional Power Savings schemes	25
		2.5.2 Enhanced Energy Saving Mechanism (EESM)	26
		2.5.3 Heuristic Scheme	26
		2.5.4 Adaptive Power Saving Scheme	27
		2.5.5 Adaptive Power Saving Mechanism (APSM)	27
		2.5.6 Dynamic Traffic Load-aware Sleep Mode Scheme	27
		2.5.7 Adaptive Waiting Time Threshold Estimation scheme	28
		2.5.8 Remaining Energy-Aware Power Management (REAPM)	28
		2.5.9 QoS Power Scheme	29
		2.5.10 Predictive and Dynamic Energy-Efficient Mechanisms	29
		2.5.11 Battery Lifetime-Aware Power Scheme(BLAPS)	29
		2.5.12 Analysis of Power Saving schemes	31
	2.6	Summary	31
3	RES	SEARCH METHODOLOGY	32
	3.1	Introduction	32
	2.0	Existing WiMAX Simulators	20 20
	ა.⊿ ეე	Existing WIMAA Simulators	04 25
	3.3 Performance Analysis Strategies in WiMAX		55 97
	3.4	Notations and Definitions	37
		3.4.1 Notations	38
	٥.٣	5.4.2 Demittions and Conventions	30
	3.5	The Research Framework	39
		3.5.1 Problem Formulation	40
		3.5.2 Previous Schemes Implementation	40
		3.5.4 Conducting Simulation Experiments	$\frac{40}{41}$
		3.5.5 Performance Metrics Evaluation	41 41
	26	Evenenimenta Environment	11
	3.0	3.6.1 Computer Besources	41 42
		3.6.2 Network Topologies	$\frac{42}{42}$
		3.6.3 Experimental Setup	42
	3.7	Performance Metrics	45
	0.1	371 Metrics for CAC Algorithm	46
		3.7.2 Metrics for Packet Scheduling Algorithm	47
		3.7.3 Metrics for Energy Saving Algorithm	48
	3.8	Proposed Discrete Event Simulator	48
		3.8.1 Traffic Generator	49
		3.8.2 Classifier	50
		3.8.3 MAC Queue	50
		3.8.4 Downlink Scheduler	50
		3.8.5 Call Admision Control	50
		3.8.6 Sleep Controls	51

	3.8.7	Initialization	51
	3.8.8	Event Derivation	52
	3.8.9	Scheduler Events	53
3.9	Traffic	Models	54
	3.9.1	VoIP Traffic Model	54
	3.9.2	Video Conference Traffic Model	54
	3.9.3	FTP Traffic Model	55
	3.9.4	HTTP Traffic Model	55
3.10	Discret	e Event Simulator Validation	55
	3.10.1	Results of CAC algorithm	56
	3.10.2	Results of Scheduling Algorithm	57
	3.10.3	Results of Energy Saving Algorithm	59
3.11	Summ	ary	61

4 A QOS-AWARE CAC WITH BR and BD ALGORITHM IN IEEE 802.16e NETWORKS

IN	IN IEEE 802.16e NETWORKS 62				
4.1	Introduction 6				
4.2	Propos 4.2.1 4.2.2 4.2.3 4.2.4	sed QoS-Aware CAC With BR and BD Algorithm Limitations of Joint CAC and BR Algorithm Admission Criterion Adaptive Reservation Bandwidth Threshold for Handoff OoS Awara CAC With BR and BD Operation Algorithm	62 63 64 66 67		
4.3	4.2.4 Analy	tical Model	67		
4.4	Perfor 4.4.1 4.4.2 4.4.3	mance Evaluation Simulation Scenarios Simulation Results and Discussion Numerical Results and Discussion	71 72 72 76		
4.5	Summ	ary	77		

5 A LOAD-AWARE WEIGHTED ROUND-ROBIN (LAWRR) ALGORITHM FOR IEEE 802.16 NETWORKS

 $\mathbf{78}$

5.1	Introduction	78		
5.2	5.2 Proposed LAWRR Algorithm			
	5.2.1 Limitations of WRR Algorithm	78		
	5.2.2 Dynamic Weight Computation	81		
	5.2.3 Operation Of LAWRR Algorithm	82		
5.3	Performance Evaluation	85		
	5.3.1 Simulation scenarios	85		
	5.3.2 Results and Discussions	86		
5.4	Summary			

6	AN EFFICIENT BATTERY LIFETIME AWARE POWER			
	SAV WC	/ING (EBLA RKS	APS) ALGORITHM IN IEEE 802.16e NET-	93
	6.1	Introduction		93
	6.2	Proposed EB 6.2.1 Limit	BLAPS Algorithm ations of Battery Lifetime-aware Power-Saving Sche	94 eme 94
		6.2.2 Adap 6.2.3 Adap 6.2.4 Optim 6.2.5 Oper	tive Initial Sleep Window nized Final Sleep Window ration Of EBLAPS Algorithm	94 96 96 98
	6.3	Performance 6.3.1 Simul 6.3.2 Resul	Evaluation ation scenarios ts and Discussion	99 99 100
	6.4	Summary		103
7	CO	NCLUSION	AND FUTURE WORKS	104
	7.1	Conclusion		104
	7.2	Future Resea	urch	105
\mathbf{R}	EFE	RENCES		106
B	IOD	TA OF STU	UDENT	114
L	IST (OF PUBLIC	ATIONS	116

LIST OF TABLES

Table		Page
2.1	Air Interface Nomenclature	9
2.2	CAC schemes with their adaptability, strengths and weaknesses	18
2.3	Various scheduling schemes with their adaptability, strengths and	
	weaknesses	24
2.4	Various energy schemes with their adaptability, strengths and weak-	
	nesses	30
0.1		90
3.1	The various ns-2 and ns-3 modules in W1MAX networks	36
3.2	Other simulator platforms for WiMAX networks	37
3.3	Notations used in the Analysis	38
3.4	Parameters for IEEE 802.16e PHY data rates	44
3.5	Bandwidth ratios for the service classes.	44
3.6	Modulation and coding parameters for 10 MHz Channel	44
3.7	Parameters for IEEE 802.16e PHY data rates	44
3.8	Simulation parameters in [90]	45
3.9	The settings of the parameters used in the simulations	46
3.10	VoIP traffic Parameters	54
3.11	Video streaming parameters	55
4.1	State transitions of the Markov chain	71
4.2	Parameters for IEEE 802.16e PHY data rates.	72
		0.9
5.1	Computation of dynamic weights	83

LIST OF FIGURES

Figur	e	Page
3.1	Framework of the Research	39
3.2	Simulation topology for CAC	42
3.3	Simulation network topology for packet scheduling and energy sav-	
	ing scheme	43
3.4	Framework of the Proposed DES	49
3.5	Blocking rates of new connections.	57
3.6	Dropping rates of handoff connections.	57
3.7	Average throughput per SS for the BE class.	58
3.8	Average delay per SS.	58
3.9	Packet loss per SS.	59
3.10	Effect of time on average energy consumption	60
3.11	Effect of time on average response delay	60
3.12	Effect of mean arrival rate on average energy consumption	61
3.13	Effect of mean arrival rate on average response delay.	61
0.20		-
4.1	The process of connection admissions with the dynamic CAC and	
	BR scheme	64
4.2	A QoS-Aware CAC With BR and BD Scheme.	68
4.3	Throughput of UGS traffic class with different CAC schemes.	73
4.4	Throughput of BE traffic class with different CAC schemes.	74
4.5	Blocking rates of new connections .	74
4.6	Dropping rates of handoff connections.	75
4.7	Analytical and simulation results for new connection blocking prob- ability	76
18	Applytical and simulation results for handoff connection drapping	10
4.0	probability.	77
51	Illustration of the WBB algorithm	80
5.2	State of the WBB algorithm before a counter reset	80
53	LAWBB Scheduling Algorithm	82
5.4	Illustration of the LAWBB algorithm	84
5.5	State of the LAWRB algorithm before the next counter reset	84
5.6	Average delay per SS for the rtPS class	86
5.7	Packet loss per SS for the rtPS class	87
5.8	Average throughput per SS for the rtPS class	88
5.9	Average throughput per SS for the nrtPS class.	88
5.10	Average throughput per SS for the BE class	89
5 11	Average delay per SS for the rtPS class	89
5 19	Packet loss per SS for the rtPS class	90
5.12	Average throughput per SS for the rtPS class	91 91
5.14	Average throughput per SS for the nrtPS class	91
5 15	Average throughput per SS for the BE class	92

6

6.1	EBLAPS Algorithm.	99
6.2	Effect of time on average energy consumption	100
6.3	Effect of time on average energy consumption	101
6.4	Effect of mean arrival rate on average energy consumption	101
6.5	Effect of mean arrival rate on average response delay.	102

 \bigcirc

LIST OF ABBREVIATIONS

AAS	Adaptive Antenna Systems
AMR	Adaptive Multi-Rate
ARQ	Automatic Repeat-request
ATM	Asynchronous Transmission Mode
APSM	Adaptive Power Saving Mechanism
AWRR	Adaptive Weighted Round Robin
BD	Bandwidth Degradation
BE	Best-Effort service
BLAPS	Battery Lifetime-Aware Power Saving
BPSK	Binary Phase-Shift Keying
BR	Bandwidth Reservation
BS	Base Station
BWA	Broadband Wireless Access
CAC	Connection Admission Control
CID	Connection Identifier
CNL	Computer Networks Laboratory
CPS	Common Part Sub-layer
CS	Convergence Sub-layer
CWS	Comprehensive WiMAX Simulator
DEE	Dipartimento di Elettrotecnica ed Elettronica
DES	Discrete Event Simulator
DL	Downlink

C

DSL	Digital Subscriber Line
EBLAPS	Efficient Battery Lifetime Aware Power Saving
EESM	Enhanced Energy Saving Mechanism
ertPS	extended real-time Polling Service
FDD	Frequency Division Duplex
FFT	Fast Fourier Transform
FIFO	First-In, first-Out
FTP	File Transfer Protocol
GPSS	Grant Per Subscriber Station
GSCAC	Greedy Shaper Call Admission Control
HCDP	Handoff Connection Dropping Probability
HP	High-Priority
IEEE	Institute of Electronics and Electrical Engineers
IMT-Advanced	International Mobile Telecommunications-Advanced
IPTV	Internet Protocol Television
IPv4	Internet Protocol version 4
IPv6	Internet Protocol version 6
ITU-R	International Telecommunication Union-Radio
LAWRR	Load-Aware Weighted Round-Robin
LB	Low-priority Buffer
LL-WRR	Low-Latency Weighted Round Robin
LOS	Line Of Sight
LSI	Last Sleep Interval

	LWX	Light WiMAX Simulator
	MAC	Media Access Control
	MCS	Modulation and Coding Scheme
	MIB	Management Information Base
	MIMO	Multiple Input Multiple Output
	MOB-SLP-REQ	Mobilization Sleep Request
	MOB-SLP-RES	Mobilization Sleep Request
	MOB-TRF-IND	Mobilization Traffic Indication
	MRTR	Minimum Reserved Traffic Rate
	mSIR	Maximum Signal to Interference Ratio
	MSTR	Maximum Sustained Traffic Rate
	MTU	Maximum Transfer Units
	MWRR	Modified Weighted Round Robin
	NCBP	New Connection Blocking Probability
	NDSL	Network and Distributed Systems Laboratory
	NIST	National Institute of Standards and Technology
	NLOS	Non-Line Of Sight
	nrtPS	non–real-time Polling Service
	ns-2	Network Simulator 2
	ns-3	Network Simulator 3
	Numbat	New ubiquitous mobility basic analysis tools
	OFDM	Orthogonal Frequency Division Multiplexing
	OFDMA	Orthogonal Frequency Division Multiple Access

xx

OPNET	Optimized Network Engineering Tools
PDUs	Protocol Data Units
PSCs	Power Saving Classes
РНҮ	Physical
PSC I	Power Saving Class type I
PSC II	Power Saving Class type I
PSC III	Power Saving Class type I
QoS	Quality of Service
QPSK	Quadra-Phase-Shift Keying
REAPM	Remaining Energy-Aware Power Management
RPI	Rensselaer Polytechnic Institute
RR	Round Robin
RRM	Radio Resource Management
rtPS	real-time Polling Service
SAPs	Service Access Points
SC	Single Carrier
SDUs	Service Data Units
SFID	Service Flow Identifier
TDD	Time Division Duplex
TRS	Temporary Removal Scheduler
UGS	Unsolicited Grant Service
UP	Uplink
VoIP	Voice over Internet Protocol

WiMAX	Worldwide Interoperability for Microwave Access
WINSE	WiMAX ns-2 Extension
WFIAC	Wireless Fair Intelligent Admission Control
WMAN	Wireless Metropolitan Area Network
WMAN	Wireless Metropolitan Area Network
WRR	Weighted Round Robin
WUSTL	Washington University in St. Louis

 \mathbf{G}

CHAPTER 1

INTRODUCTION

This chapter introduces the background for this research, identifies the research problems and motivations. It also presents the research objectives, the scope of the research and research significance. In addition, its research contributions, which justifies the benefits, and clarifies the implication of this research. Finally, this chapter summarizes the organization of this thesis.

1.1 Background

Broadband Wireless Access (BWA) has gained growing acceptance worldwide recently. Due to the increasing demand for wireless multimedia applications such as Voice over Internet Protocol (VoIP), Internet Protocol Television (IPTV), interactive gaming and multimedia conferencing, to efficiently manage bandwidth becomes a challenge. In order to support these applications, mobile (MS) undergo frequent battery drain due to inappropriate power saving model. Hence, energy conservation is also a challenge. In this research, these two key issues will be studied in BWA networks. Several BWA technologies are used in wireless networks but this research work focuses on the technologies based on IEEE 802.16 standard. The IEEE 802.16 standard had its first completed version in 2004 [1], and is a fixed BWA also known as Worldwide Interoperability for Microwave Access (WiMAX).

The term 'WiMAX' was coined by the WiMAX Forum to support the WiMAX technology and promote its commercial use. The WiMAX Forum is an industry consortium with hundreds of members, including WiMAX operators, equipment vendors and component vendors, which was formed in June, 2001. The goal of the Forum is to prepare profiles for equipments that comply with the 802.16 standard and carry out interoperability tests to ensure that equipment of the various vendors can coexist. The second version of IEEE 802.16e was completed in 2005 [2] with the addition of mobility features. Since then, several versions have been evolving to address the constantly emerging problems, such as Management Information Base (MIB), management and procedures, support relay topology and centralized/distributed control, and Advanced Air Interface targeting data rates of 100 Mbit/s mobile and 1 Gbit/s fixed.

Therefore, WiMAX supports fixed, nomadic, portable, and mobile wireless broadband connectivity without the need for direct Line-Of-Sight (LOS) communication with a Base Station (BS). It also uses three licensed spectrum bands including 2.3 GHz, 2.5 GHz and 3.5 GHz with channel bandwidths of 5 MHz–20 MHz and a frame size of 5 ms. These spectrum bands and channel bandwidths as well as this frame size allows WiMAX to offer theoretical

rates of up to 75 Mbps with coverage of up to 50 km. However, demographic conditions, such as buildings, weather, and terrain, limit the range to about 10 km.

Furthermore, WiMAX provides a wider service coverage, a high speed data rate, and QoS guaranteed services. These features can be achieved by the use of radio resources such as bandwidth and transmission power. Radio resource is anything to allocate to each service class in order to provide its requested service. The use of these resources present several challenges which include wireless medium with limited bandwidth, QoS to service classes, handoff, and lifetime of battery-powered devices. Bandwidth and power management techniques are highly needed in order to efficiently managed these resources as well as guaranteed QoS requirements to service traffics.

1.2 Problem Statement

Numerous studies have been conducted on how bandwidth and power resources can be efficiently utilized while maintaining the QoS requirements to various application. Although some studies focus on Call Admission Control (CAC) schemes [3–7] and scheduling algorithms [8–11], others target power saving algorithms [12–15]. Despite these studies, several challenges are left unresolved in the main research resource management issue, which include:

Current CAC algorithms, involve the use of linear adaptation technique to create more opportunities to both the new and the handoff connections into the networks, which leads to starvation of the highest priority service class and the lowest priority service class. The schemes also use an adaptive threshold which dynamically changes, based on either the arrival of handoff or new connections by considering a fixed maximum reserved bandwidth threshold for handoff connections. This may lead to inefficient resource utilization when the new and the handoff connection arrival rate occur frequently.

The adoption of static weights in scheduling algorithms to differentiate QoS requirements for the various service classes lead to increasing queue sizes under bursts of input traffic because the algorithms send fixed numbers of packets. Moreover, packet loss may occur in the presence of heavy input bursts, hence reducing throughput. Therefore, the use of fixed weights is adequate for constant-rate classes because of its fixed weighting priority for each queue. However, it is not suitable for variable-rate classes, because of the need for variable weighting of priority levels. These algorithms distinguish classes according to their QoS requirements but performs poorly under bursty traffic.

The existing energy saving algorithms prolong the battery life of an MS by adaptively adjusting the three-sleep parameters: idle threshold, initial sleep window, and final sleep window according to the residual energy and the traffic load. However, the algorithms minimizes the energy consumption of the MS at the expense of the average response delay due to the effect of the remaining energy.

These schemes also use the standard sleep mode algorithm to adjust the sleep interval and the listening mode but frequently goes into listening mode when the traffic is low, which leads to high-energy consumption.

1.3 Motivation

WiMAX networks are one of the BWA technologies that support high data rates, large coverage, and QoS to various applications. Due to the scarce resources in WiMAX networks, such as bandwidth and transmission power, resource utilization becomes a critical challenge.

Three issue which have high impact on this are CAC, packet scheduling, and power saving.

1.4 Research Objectives

The main objective of this research is to propose resource management algorithms, which consists of CAC, packet scheduling, and power saving as well as the DES, for WiMAX networks. The detailed objectives are as follows:

1. To propose a QoS-Aware CAC With Bandwidth Reservation (BR) and Bandwidth Degradation (BD) algorithm in IEEE 802.16e Networks by introducing new admission criteria and an adaptive threshold in order to efficiently utilize the resources and assure QoS to various applications. In addition, to propose an analytical model for the proposed QoS-Aware CAC With BR and BD algorithm.

2. To propose a Load-Aware Weighted Round-Robin (LAWRR) algorithm for IEEE 802.16 networks that dynamically adjusts the weight based on the traffic load and the static weight in order to improve the QoS of different applications.

3. To propose an Efficient Battery Lifetime Aware Power Saving (EBLAPS) algorithm in IEEE 802.16e Networks that uses three energy saving parameters (idle threshold, initial sleep parameter and final sleep parameter) and an improved sleep mode control algorithm to extend the battery life of an MS and QoS guarantee to service classes.

4. To design and develop a DES for the resource management algorithms in WiMAX networks.

1.5 Research Scope

This research focuses on QoS provisioning to various applications and the battery-life extension for MSs at the Media Access Control (MAC) layer in WiMAX networks. It first concentrates on how new and handoff connections are admitted into the 802.16e networks while ensuring the QoS of all the service classes as well as the best use of network resources. More focus is given to the admission criteria policy, an adaptive reserve threshold, for handoff connections. Then, on how to increase the service rate of the algorithms in 802.16 networks in order to increase the number of queued packets to be served under bursty traffic condition considering only four service classes in the Downlink (DL) direction. Finally, the adaptive adjustment of three energy saving parameters, idle threshold, the initial sleep window, and the optimized final sleep window, will be studied analytically to prolong the energy battery-life in IEEE 802.16e networks considering only the non-real time traffic in the DL direction.

1.6 Research Significance

Wireless communication is the leading communication technology with the highest number of subscribers worldwide because of its mobility feature. To satisfy the service requirements of these subscribers, there is need to have an effective and efficient way in assuring QoS and longer connectivity to the network by these subscribers as well as simultaneously optimize the available resources as the bandwidth and the transmission power are limited. The use of traditional approaches to achieve these requirements may lead to an inefficient resource utilization and failure to achieve subscriber's QoS requirements as well as quick depletion of the battery which leads loss of connectivity to the network.

WiMAX being one of the emerging broadband wireless technology is anticipated to efficiently managed the available resources and guaranteed QoS to each subscriber. With the efficient algorithms such as CAC, packet scheduling and energy saving, the QoS and longer connectivity to the work will be guaranteed for the subscribers; thereby attract more subscribers and hence the network capacity will be optimized. Thus, the overall revenue generated by the service providers will be increased.

1.7 Research Contributions

1. A QoS-Aware CAC With bandwidth reservation and degradation algorithm in IEEE 802.16e Networks has been proposed. The proposed algorithm determines bandwidth admission criteria based on a scheduling service class.

In these admission criteria, a bandwidth-degradation policy is used to admit more users in order to prevent starvation. An adaptive threshold has been introduced to dynamically adjust the quantity of reserved bandwidth for handoff-connections based on the traffic intensity of handoff requests to improve the efficient utilization of bandwidth. In addition, an analytical model for the proposed QoS-Aware CAC With BR and BD algorithm is also developed.

2. A LAWRR algorithm for downlink traffic in 802.16 networks has been proposed to improve the performance of WRR. It dynamically determines the weight of each queue in the various classes, based on current traffic characteristics, using the static WRR weight at the beginning of each base-station round.

3. An EBLAPS algorithm for the IEEE 802.16e networks has been proposed that extends the battery life of an MS. The three sleep parameters are analytically enhanced according to the downlink stochastic traffic arrival pattern of an MS in order to reduce the response delay as well as energy consumption. Moreover, an improved sleep mode control algorithm has been introduced to reduce the frequent transition to listening mode in case of low traffic.

4. DES has been designed and developed for the resource management algorithms such as CAC, packet scheduling, and power saving.

1.8 Thesis Organization

The rest of this thesis is organized as follows: Chapter two presents the evolution of the 802.16 standard and related research that address the CAC, packet scheduling and energy saving algorithms.

Chapter 3 presents the performance analysis strategies, research framework, and the proposed discrete event simulator used in this research and explores the stages in detail. The experimental setup and topologies as well as the performance metrics and validation of the model have been presented in this chapter.

Chapter 4 explores the design of the proposed QoS-Aware CAC With Bandwidth Degradation and Reservation Algorithm in IEEE 802.16e Networks. It presents the algorithm, and the analytical model of the algorithm. The chapter also presents the evaluation of the proposed scheme in terms of the throughput, new-connection blocking rate, and handoff-dropping rate. In addition, the numerical results and the simulation results have been compared.

Chapter 5 presents the proposed LAWRR algorithm for IEEE 802.16 networks. The chapter also presents the performance evaluation of the algorithm

and compares it with WRR algorithm.

Ĉ

Chapter 6 presents the proposed EBLAPS algorithm in IEEE 802.16e Networks. The chapter also presents the performance evaluation of the algorithm and compares it with other algorithms.

Chapter 7 concludes the work and recommends some promising directions for further research.

REFERENCES

- IEEE 802.16 Working Group and others, IEEE Standard for Local and Metropolitan Area Networks, Part 16: Air Interface for Fixed Broadband Wireless Access Systems, IEEE Std., 2004.
- [2] IEEE LAN/MAN Standards Committee and others, IEEE Standard for local and metropolitan area networks Part 16: Air interface for fixed and mobile broadband wireless access systems amendment 2: Physical and medium access control layers for combined fixed and mobile operation in licensed bands and corrigendum 1, IEEE Std., 2005.
- [3] H. Wang, W. Li, and D. Agrawal, "Dynamic admission control and QoS for 802.16 wireless MAN," in Wireless Telecommunications Symposium, 2005, pp. 60–66, 2005.
- [4] S. B. Chaudhry and R. K. Guha, "Adaptive connection admission control and packet scheduling for QoS provisioning in mobile WiMAX," in *IEEE International Conference on Signal Processing and Communications ICSPC'07*, pp. 1355–1358, 2007.
- [5] C. Wang, W.-J. Yan, and H.-K. Lo, "Dynamic admission control and bandwidth reservation for IEEE 802.16 e mobile WiMAX networks," *EURASIP Journal on Wireless Communications and Networking*, vol. 1, pp. 1–20, 2012.
- [6] A. Saddoud, L. C. Fourati, and L. Kamoun, "A new CAC and packet scheduling scheme for mobile WiMAX networks," *Transactions on Emerging Telecommunications Technologies*, vol. 25, no. 10, pp. 981–992, 2014.
- [7] C. V. and N. N., "A hybrid CAC scheme for effective resource allocation in IEEE 802.16 wireless networks," *Journal of Theoretical and Applied Information Technology*, vol. 16, no. 2, pp. 437–446, 2014.
- [8] M. Katevenis, S. Sidiropoulos, and C. Courcoubetis, "Weighted roundrobin cell multiplexing in a general-purpose ATM switch chip," *IEEE Journal on Selected Areas in Communications*, vol. 9, no. 8, pp. 1265– 1279, 1991.
- W. Mardini and M. A. Alfool, "Modified WRR scheduling algorithm for WiMAX networks," *Network Protocols and Algorithms*, vol. 3, no. 2, pp. 24–53, 2011.
- [10] M.-e.-A. Brahmia, A. Abouaissa, and P. Lorenz, "Adaptive scheduling mechanism for IPTV over WiMAX IEEE 802.16 j networks," *International Journal of Communication Systems*, vol. 27, no. 7, pp. 1009–1019, 2014.

- [11] Z. Patel and U. Dalal, "Design and Implementation of Low Latency Weighted Round Robin (LL-WRR) Scheduling for High Speed Networks," *International Journal of Wireless & Mobile Networks*, vol. 6, no. 4, pp. 59–71, 2014.
- [12] L.-D. Chou, D. C. Li, and W.-Y. Hong, "Improving energy-efficient communications with a battery lifetime-aware mechanism in IEEE 802.
 16e wireless networks," *Concurrency and Computation: Practice and Experience*, vol. 25, pp. 94–111, 2013.
- [13] M.-G. Kim, M. Kang, and J. Y. Choi, "Remaining energy-aware power management mechanism in the 802.16e mac," in 5th IEEE Consumer Communications and Networking Conference CCNC'08, pp. 222–226, 2008.
- [14] Y.-W. Lin and J.-S. Wang, " An Adaptive QoS Power Saving Scheme for Mobile WiMAX," *Wireless Personal Communications*, vol. 69, no. 4, pp. 1435–1462, 2013.
- [15] H.-W. Ferng and H.-Y. Li, "Design of predictive and dynamic energyefficient mechanisms for IEEE 802.16e," Wireless Personal Communications, vol. 68,no. 4, pp. 1807–1835, 2013.
- [16] H. Shimonishi, M. Yoshida, R. Fan, and H. Suzuki, "An improvement of weighted round robin cell scheduling in ATM networks," in *IEEE Global Telecommunications Conference*, *GLOBECOM'97*, vol. 2., pp. 1119–1123, 1997.
- [17] H.-H. Y. H. K. Changhwan and O. K. Kim, "A queue length-based scheduling scheme in ATM networks," in *Proceedings of the IEEE Re*gion 10 Conference TENCON'99, vol. 1, pp. 234–237, 1999.
- [18] R. Marks, "A technical overview of the WirelessMAN[™] air interface for broadband wireless access," *IEEE C802*, pp. 16–02, 2002.
- [19] IEEE 802.16 Working Group and others, IEEE Standard for Local and metropolitan area networks—Part 16: Air Interface for Fixed Broadband Wireless Access Systems; Amendment 1: Detailed System Profiles for 10-66 GHz, IEEE Std 802.16c-2002, IEEE Std., 2003. [Online]. Available: http://standards.ieee.org/getieee802/download/802.16c-2002.eps
- [20] IEEE P802.16a-2003, Amendment to IEEE Standard for Local and Metropolitan Area Networks—Part 16: Air Interface for Fixed Wireless Access Systems—Medium Access Control Modifications and Additional Physical Layers Specifications for 2–11 GHz, IEEE Std., 2003.
- [21] IEEE 802.16f, IEEE standard for Local and Metropolitan Area Networks—Part 16: Air Interface for Fixed Broadband Wireless Access Systems—Management Information Base, IEEE Std., December 2005.

- [22] IEEE 802.16g, IEEE standard for Local and Metropolitan Area Networks—Part 16: Air Interface for Fixed Broadband Wireless Access Systems—Amendment 3: Management Plane Procedures and Services, IEEE Std., December 2007.
- [23] IEEE 802.16h/D9, IEEE standard for Local and Metropolitan Area Networks—Part 16: Air Interface for Fixed Broadband Wireless Access—Improved Coexistence Mechanisms for License-Exempt Operation, Draft D9, IEEE Std., March 2009.
- [24] IEEE 802.16 Working Group and others, IEEE 802.16j, IEEE standard for Local and Metropolitan Area Networks—Part 16: Air Interface for Fixed Broadband Wireless Access Systems—Multihop Relay Specification, IEEE Std., May 2009.
- [25] IEEE 802.16 Working Group and others, IEEE 802.16, IEEE standard for Local and Metropolitan Area Networks—Part 16: Air Interface for Fixed Broadband Wireless Access Systems, IEEE Std., May 2009.
- [26] IEEE Std 802.16m/D2 (amendment to IEEE Std 802.16-2009, developed by Task Group m Working Document), IEEE Std. [Online]. Available: http://wirelessman.org/pubs/80216m.html
- [27] K. Wongthavarawat and A. Ganz, "Packet scheduling for QoS support in IEEE 802.16 broadband wireless access systems," *International Journal* of Communication Systems, vol. 16, no. 1, pp. 81–96, 2003.
- [28] C.-H. Jiang and T.-C. Tsai, "Token bucket based CAC and packet scheduling for IEEE 802.16 broadband wireless access networks," in 3rd IEEE Consumer Communications and Networking Conference CCNC'06, vol. 1., pp. 183–187, 2006.
- [29] Y. Ge and G.-S. Kuo, "An efficient admission control scheme for adaptive multimedia services in IEEE 802.16 e networks," in 64th IEEE Vehicular Technology Conference VTC'06, pp. 1–5, 2006.
- [30] S. Kalikivayi, I. S. Misra, and K. Saha, "Bandwidth and delay guaranteed call admission control scheme for QOS provisioning in IEEE 802.16 e mobile WiMAX," in *IEEE Global Telecommunications Confer*ence GLOBECOM'08. IEEE, pp. 1–6, 2008.
- [31] F. Furqan and D. B. Hoang, "Wireless fair intelligent admission control– WFIAC," in 27th IEEE International Conference on Advanced Information Networking and Applications AINA'13, pp. 1001–1008, 2013.
- [32] F. Furqan and D. B. Hoang, "Wireless fair intelligent congestion control—a QoS performance evaluation," *Journal of Interconnection Networks*, vol. 14, no. 03, 2013.
- [33] P. Chowdhury and I. S. Misra, "An improved call admission control mechanism with prioritized handoff queuing scheme for BWA networks,"

Journal of Interconnection IOP Conference Series: Materials Science and Engineering, vol. 67, no. 1, pp. 10-16, 2014.

- [34] F. Hou, P.-H. Ho, and X. Shen, "WLC17-1: Performance analysis of a reservation based connection admission scheme in 802.16 networks," in *IEEE Global Telecommunications Conference GLOBECOM'06*, pp. 1–5, 2006.
- [35] L. Wang, F. Liu, Y. Ji, and N. Ruangchaijatupon, "Admission control for non-preprovisioned service flow in wireless metropolitan area networks," in *Fourth European Conference on Universal Multiservice Networks ECUMN'07*, pp. 243–249, 2007.
- [36] N. A. Ali, P. Dhrona, and H. Hassanein, "A performance study of uplink scheduling algorithms in point-to-multipoint WiMAX networks," *Computer Communications*, vol. 32, no. 3, pp. 511–521, 2009.
- [37] S. Chuck, "Supporting differentiated service classes: queue scheduling disciplines", White Paper, Part Number: 200020-001 12/01 Juniper Network, 1–27, 2001.
- [38] E. L. Hahne and R. G. Gallager, "Round robin scheduling for fair flow control in data communication networks," NASA STI/Recon, Tech. Rep. 30047, 1986.
- [39] M. Xiaojing, "An efficient scheduling for diverse QoS requirements in WiMAX", Masters thesis Department of Electrical and Computer Engineering University of Waterloo, Ontario, Canada 2007,
- [40] S. Mahasweta and S. Harpreet, "A QoS aware packet scheduling scheme for WiMAX", Proceedings of IAENG Conference on World Congress on Engineering and Computer Science, Berkeley, 1 Berkeley, California, USA, 2009.
- [41] Y. Xiao, "Energy saving mechanism in the IEEE 802.16e wireless MAN," *IEEE Communications Letters*, vol. 9, pp. 595–597, 2005.
- [42] Y. Xiao, "Performance analysis of an energy saving mechanism in the IEEE 802.16 e wireless MAN," in 3rd IEEE Conference on Consumer Communications and Networking CCNC'06, vol. 1, pp. 406–410, 2006.
- [43] Y. Zhang and M. Fujise, "Energy management in the IEEE 802.16 e MAC," *IEEE Communications Letters*, vol. 10, pp. 311–313, 2006.
- [44] J. Xiao, S. Zou, B. Ren, and S. Cheng, "WLC17-6: An enhanced energy saving mechanism in IEEE 802.16 e," in *IEEE Global Telecommunica*tions Conference GLOBECOM'06, pp.1–5, 2006.
- [45] S. Zhu and T. Wang, "Enhanced power efficient sleep mode operation for IEEE 802.16 e based WiMAX," in *IEEE Mobile WiMAX Symposium*, 2007, pp. 43–47, 2007.

- [46] S. Zhu, X. Ma, and L. Wang, "A delay-aware auto sleep mode operation for power saving WiMAX," in *Proceedings of 16th International Conference on Computer Communications and Networks ICCCN'07*, pp. 997–1001, 2007.
- [47] O. J. Vatsa, M. Raj, K. Ritesh Kumar, D. Panigrahy, and D. Das, "Adaptive power saving algorithm for mobile subscriber station in 802.16e," in 2nd International Conference on Communication Systems Software and Middleware COMSWARE'07, pp. 1–7, 2007.
- [48] M.-G. Kim, J. Choi, and M. Kang, "Adaptive power saving mechanism considering the request period of each initiation of awakening in the IEEE 802.16 e system," *IEEE Communications Letters*, vol. 12, no. 2, pp. 106–108, 2008.
- [49] J. Xue, Z. Yuan, and Q. Zhang, "Traffic load-aware power-saving mechanism for IEEE 802.16 e sleep mode," in 4th IEEE International Conference on Wireless Communications, Networking and Mobile Computing WiCOM'08, pp. 1–4, 2008.
- [50] K. Sanghvi, P. K. Jain, A. Lele, and D. Das, "Adaptive waiting time threshold estimation algorithm for power saving in sleep mode of IEEE 802.16e," in 3rd IEEE International Conference on Communication Systems Software and Middleware and Workshops COMSWARE'08, pp. 334–340, 2008.
- [51] M. Kassab, J.-M. Bonnin, and M. Mahdi, "WiMAX Simulation module with management architecture and signaling exchanges," in *Proceed*ings of the Fourth International Conference on Performance Evaluation Methodologies and Tools ICST'09. Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, p. 6, 2009.
- [52] S. Kim, M. Lee, and I. Yeom, "Simulating IEEE 802.16 uplink scheduler using NS-2," . [online]. Available http: cnlab.kaist.ac, Accessed, 2008.
- [53] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy, P. Huang, S. McCanne, K. Varadhan, Y. Xu, and and others, "Advances in network simulation," *Computer*, vol. 33, no. 5, pp. 59–67, 2000.
- [54] K. Wehrle, M. Güneş, and J. Gross, Modeling and Tools for Network Simulation. Berlin: Springer-Verlag, 2010.
- [55] A. M. Law, "How to build valid and credible simulation models," in *IEEE Proceedings of the Winter 2009 Simulation Conference WSC'09*, pp. 24–33, 2009.
- [56] J. Banks, J. Carson II, B. Nelson, and D. Nicol, *Discrete-event System Simulation*. Upper Saddle River, NJ: Prentice-Hall, 2005.

- [57] K. Fall and K. Varadhan, "The network simulator NS-2," 2007. [Online]. Available: http://www.isi.edu/nsnam/ns
- [58] OPNET Technologies Inc., "Modeler, OPNET," 2009.
- [59] "Technologies, scalable network, Qualnet simulator,".[Online]. Available: www.qualnet.com, 2011.
- [60] A. Mohammed, A., B. Mohd A., N. Kamariah N., and H. Mohamad, "Fair uplink bandwidth allocation and latency guarantee for mobile WiMAX using fuzzy adaptive deficit round robin," *Journal of Network* and Computer Applications, vol. 39, pp. 17–25, 2014.
- [61] S.-F. Yang, J.-S. Wu, and B.-J. Hwang, "Performance evaluation of priority based adaptive multiguard channel call admission control for multiclass services in mobile networks," *International Journal of Communication Systems*, vol. 26, no. 5, pp. 597–609, 2013.
- [62] T. M. Nguyen, T. Yim, Y. Jeon, Y. Kyung, and J. Park, "QoS-aware dynamic resource allocation for wireless broadband access networks," *EURASIP Journal on Wireless Communications and Networking*, vol. 1, pp. 1–12, 2014.
- [63] Y.-W. Chen, Y.-Y. Chu, and I.-H. Peng, "Energy-saving centric uplink scheduling scheme for broadband wireless access networks," *EURASIP Journal on Wireless Communications and Networking*, vol. 1, no. 70,pp. 1–15, 2014.
- [64] J. B. Othman, L. Mokdad, and S. Ghazal, "Performance analysis of WiMAX networks ac," Wireless Personal Communications, vol. 74, no. 1, pp. 133–146, 2014.
- [65] W. P. Furlong and R. Guha, "OFDMA Extension of NS-3 WiMAX Module," in *IEEE Fourth UKSim European Symposium on Computer* Modeling and Simulation (EMS'10), pp. 426–431, 2010,
- [66] J. F. Borin and N. L. da Fonseca, "Simulator for WiMAX networks," Simulation Modelling Practice and Theory, vol. 16, no. 7, pp. 817–833, 2008.
- [67] A. Golaup and H. Aghvami, "A multimedia traffic modeling framework for simulation-based performance evaluation studies," *Computer Net*works, vol. 50, no. 12, pp. 2071–2087, 2006.
- [68] J. Chen, C.-C. Wang, F. C.-D. Tsai, C.-W. Chang, S.-S. Liu, J. Guo, W.-J. Lien, J.-H. Sum, and C.-H. Hung, "The design and implementation of WiMAX module for ns-2 simulator," in ACM Proceeding from the 2006 workshop on ns-2: the IP network simulator, p. 5, 2006.
- [69] R. Rouil, "The Network Simulator NS-2 NIST add-on-IEEE 802.16 model (MAC+ PHY)", National Institute of Standards and Technology Std., Online]. Available: ://community.4gdeveloper.com/, 2007.

- [70] KAIST, Dept. of Computer Science, "IEEE 802.16 simulation," 2006.
 [Online]. Available: http://cnlab.kaist.ac.kr/802.16/ieee802.16.html
- [71] S. Kim and I. Yeom, "Tcp-aware uplink scheduling for IEEE 802.16," IEEE Communications Letters, vol. 11, no. 2, pp. 146–148, 2007.
- [72] S. Kim and I. Yeom, "Performance analysis of best effort traffic in IEEE 802.16 networks," *Department of Computer Science, Korea Advanced Inst. Sci. Technology*, Tech. Rep. CS-TR-2008-285, 2006.
- [73] I. C. Msadaa, F. Filali, and F. Kamoun, "An 802.16 model for NS2 simulator with an integrated QoS architecture," in *Proceedings of the* 1st International Conference on Simulation Tools and Techniques for Communications, Networks and Systems & Workshops. Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, p. 29, 2008.
- [74] A. Sayenko, O. Alanen, H. Martikainen, V. Tykhomyrov, O. Puchko, V. Hytönen, and T. Hämäläinen, "Winse: Wimax ns-2 extension," *Simulation*, vol. 87, no. 1-2, pp. 24–44, 2011.
- [75] Y.-C. Lai and Y.-H. Chen, "Designing and implementing an IEEE 802.16 network simulator for performance evaluation of bandwidth allocation algorithms," in 11th IEEE International Conference on High Performance Computing and Communications HPCC'09, pp. 432–437, , 2009.
- [76] J. Farooq and T. Turletti, "An ieee 802.16 wimax module for the ns-3 simulator," in *Proceedings of the 2nd International Conference on Simulation Tools and Techniques.* Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, p. 8, 2009.
- [77] J. Freitag and N. L. da Fonseca, "Wimax module for the ns-2 simulator," in *IEEE Personal, Indoor and Mobile Radio Communications PIMRC'07. IEEE 18th International Symposium on*, pp. 1–6, 2007.
- [78] A. Andreadis, S. Rizzuto, and R. Zambon, "A new NS2 tool to investigate QoS management over mobile WiMAX," in *Proceedings of the 4th International ICST Conference on Simulation Tools and Techniques ICS*. Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, p. 240–248, 2011.
- [79] R. NS-2 Development Team (Contacts: Shyam Parekh, Alcatel-Lucent; Biplab Sikdar, "WiMAX Forum System Level Simulator NS-2 MAC+PHY Add-On for WiMAX," Tech. Rep., 2009.
- [80] A. Belghith and L. Nuaymi, "Design and implementation of a QoSincluded WiMAX module for NS-2 simulator," in *Proceedings of the* 1st International Conference on Simulation Tools and Techniques for Communications, Networks and Systems & Workshops. Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, p. 28, 2008.

- [81] A. Sayenko, O. Alanen, H. Martikainen, V. Tykhomyrov, O. Puchko, V. Hytönen, and T. Hämäläinen, "Scheduling solution for the IEEE 802.16 base station", *Computer Networks*. vol. 52, no. 1, pp. 96–115, 2008.
- [82] A. Sayenko, O. Alanen, H. Martikainen, V. Tykhomyrov, O. Puchko, V. Hytönen, and T. Hämäläinen, "Ensuring the QoS requirements in 802.16 scheduling", *Proceedings of the 9th ACM international sympo*sium on Modeling analysis and simulation of wireless and mobile systems, 2006, pp. 108–117.
- [83] J. Chen, T.-C. Lien, and H.-M. Yang, "The implementation of IEEE 802.16 m protocol module for ns-3 simulator," *Simulation Modelling Practice and Theory*, vol. 49, pp. 41–56, 2014.
- [84] M. A. Ismail, G. Piro, L. A. Grieco, and T. Turletti, "An improved IEEE 802.16 WiMAX module for the ns-3 simulator," in *Proceedings of the* 3rd International ICST Conference on Simulation Tools and Techniques. Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, p. 63, 2010.
- [85] "Numbat—new ubiquitous mobility basic analysis tools: WiMAX, dhcpv6 implementation in omnet++," 2010. [Online]. Available: http://klub.com.pl/numbat/
- [86] S.-M. Huang, Y.-C. Sung, S.-Y. Wang, and Y.-B. Lin, "NCTUNS simulation tool for WiMax modeling," in *Proceedings of the 3rd International Conference on Wireless Internet*. Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, p. 20, 2007.
- [87] N. Abbas, H. Hajj, and A. Borghol, "A comprehensive WiMAX simulator," in *IEEE Consumer Communications and Networking Conference CCNC'11*, pp. 4–6, 2011.
- [88] J. Pan and R. Jain, "A survey of network simulation tools: Current status and future developments," Email: jp10@ cse. wustl. edu, 2008.
- [89] N. F. Abbas, "Advanced WiMAX simulator with optimal downlink bursts construction," PhD dissertation, American University of Beirut, 2011.
- [90] W. Nie, H. Wang, and J. H. Park, "Packet scheduling with QoS and fairness for downlink traffic in WiMAX networks," *Journal of Information Processing System*, vol. 7, no. 2, pp. 261–270, 2011.
- [91] W. Forum, System Evaluation Methodology Version 2.1, Std., 2006. [Online]. Available: http://www.cse.wustl.edu/ jain/wimax/ftp/wimaxsystem-evaluation-methodology-v2-1.pdf
- [92] TR, ETSI, 101 112 V3. 2.0. Universal Mobile Telecommunications System (UMTS); Selection procedures for the choice of radio transmission

technologies of the UMTS; (UMTS 30.03 version 3.2. 0)[S/OL]. (1998-04) [2011-03-17], Std.

- [93] D. Staehle, K. Leibnitz, and P. Tran-Gia, "Source traffic modeling of wireless applications," *AEU-International Journal of Electronics and Communications*, vol. 55, no. 1, pp. 27–36, 2001.
- [94] W3GPP2 WG5 Evaluation Ad Hoc, SIxEV-DV Evaluation Methodology—Addendum (V6), Std., 2001.
- [95] 3GPP2 C.R1002-0, cdma2000 Evaluation Methodology revision 0, Std., 2004.
- [96] H. Wang and L. Dittmann, "Downlink resource management for QoS scheduling in IEEE 802.16 WiMAX networks," *Computer Communications*, vol. 33, no. 8, pp. 940–953, 2010.
- [97] W. Forum, WiMAX-Part, Mobile I: A technical overview and performance evaluation, Std., 2006.
- [98] R. G. Sargent, "Verification and validation of simulation models," *Journal of Simulation*, vol. 7, no. 1, pp. 12–24, 2013.
- [99] C. Hoymann, "Analysis and performance evaluation of the ofdm-based metropolitan area network IEEE 802.16," *Computer Networks*, vol. 49, no. 3, pp. 341–363, 2005.
- [100] E. Nummelin, General Irreducible Markov Chains and Non-Negative Operators. Cambridge University Press, 2004.
- [101] L. Kleinrock, Queueing Systems, Volume 1: Theory, New York, 1975.
- [102] A. Antonopoulos, C. Skianis, and C. Verikoukis, "Traffic-aware connection admission control scheme for broadband mobile systems," in *IEEE Global Telecommunications Conference GLOBECOM'10*, pp. 1–5, 2010.
- [103] I. Yoshihiro, T. Shuji and I. Yutaka, "Variably weighted round robin queueing for core IP routers," in *IEEE Performance, Computing, and Communications Conference, IEEE*, pp. 159–166, 2002.
- [104] L. Jia and R. Fengyuan and L. Chuang,"A dual-threshold power saving mechanism in WiMAX", *IEEE/ACIS 9th International Conference on Computer and Information Science ICIS*'10,pp.465–470,2010,
- [105] X. Fangmin ,Z. Wei, and Z. Zheng , "A novel adaptive energy saving mode in IEEE 802.16 e system," in *IEEE Military Communications Conference MILCOM'06*, pp. 1–6, 2006.
- [106] L. Meng, S. Han, K. Yu, and Y. Chao, "Research on sleep mode in WANDAS," in *Instrumentation, Measurement, Circuits and Systems*. Berlin: Springer-Verlag, pp. 127–136, 2012.