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NOISELESS CHANNEL  
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ABUDHAHIR BUHARI 
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Chairperson: Associate Prof. Zuriati Ahmad Zukarnain, PhD 

Faculty: Computer Science and Information Technology 

 

 

Quantum Cryptography (QC) is the emerging field of the current world and the 

potential player of the future.  Quantum Key Distribution (QKD) is the matured 

discipline of QC and available in the market to establish a secret key between parties. 

In order to achieve in multiparty, basically quantum entanglement has been applied 

over a theoretical settings. However, due to practical limitation, entanglement based 

research has a feasible difficulty with current technology.  

 

 

The thesis principal goal is to propose a framework for quantum protocol layer for 

secure key management without entanglement over multiparty environment. In the 

secret key management, conference key or Multiparty QKD (MQKD) and joint-venture 

key or Public Shared Secret Quantum Key (PSSQK) protocols acted as a top layer and 

quantum user authentication scheme as a middle layer and the standard QKD operation 

as a bottom layer. 

 

 

 The proposed secrete key management protocols are based on secret key between 

parties using QKD, modified error correction code and linear independent matrix. 

These protocols require only classical communication and yield higher secret key rate 

regardless of distance and noise. The security analysis using guessing entropy has 

applied and results shows only negligible amount information can be extracted during 

eavesdropping. 

 

 

The challenge-challenge response technique has been applied to proposed quantum 

user authentication scheme for verification of quantum user. This is a bidirectional 

authentication scheme and requires both quantum and classical channel to execute and 

has two modes of operation, i.e., initial and session authentication.Due to deterministic 

key distribution orientation, the efficiency of protocol reaches up to 100% in terms of 

reduction of photon wastage during communication. Further, this scheme is resilient to 
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various quantum security attacks However, this scheme requires noiseless quantum 

channel in order to detect the insider and outsider attacks during authentication. 

 

 

A GUI based discrete event simulation has developed using OptiSystem™ in order to 

test the practical feasibility of proposed quantum cryptography protocol layer. The 

polarized based discrete variable QKD protocols have been designed and analyzed. 

Due to lack of real receiver setup, the results have showed lower quantum bit error rate. 

Further, we analyzed the impact of polarization structure of qubit due to noise, loss and 

distance over fiber optics and free space. A multiparty QKD setuphas been designed 

based on frequency division multiplexing (FDM) centralized quantum channel server. 

This approach reduces the requirement of total quantum channel from N*(N-1)/2 to N 

and each party requires one quantum channel to communicate with all other parties. 

The bit commitment protocol and message authentication in the layer has considered 

for the future research direction.  
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ABUDHAHIR BUHARI  

 

Februari 2015 

 

 

Pengerusi:     Profesor Madya Zuriati Ahmad Zukarnain, PhD 

Fakulti:      Sains Komputer dan Teknologi Maklumat 

 

 

Kriptografi kuantum adalah bidang baru di dalam dunia semasa dan berpotensi menjadi 

keutamaan dari segi penggunaannya di masa hadapan.Pengagihan kunci kuantum 

adalah disiplin yang agak matang di dalam kriptografi kuantum dan didapati di dalam 

pasaran untuk mewujudkan satu kunci rahsia di antara pihak-pihak tertentu. Untuk 

dicapai oleh berbilang pihak, pada asasnya simpulan atau entanglement kuantum  telah 

digunakan di dalam  penetapan teoritikal. Bagaimanapun, disebabkan had praktikal, 

penyelidikan berasakan simpulan sukar dilaksanakan dengan teknologi semasa. 

 

Matlamat utama tesis ialah untuk mencadangkan satu rangka kerja bagi lapisan 

protocol kuantum untuk pengurusan kunci rahsia tanpa simpulan ke atas persekitaran 

berbilang pihak. Dalam pengurusan kunci rahsia, protocol-protokol kunci persidangan 

mahupun pengagihan kunci kuantum pelbagai pihak dan kunci usaha sama atau kunci 

rahsia kuantum awam yang dikongsi bersama bertindak di lapisan atas dan skim 

pengesahan pengguna di lapisan tengah dan operasi standard pengagihan kunci 

kuantum di lapisan bawah. 

 

Protokol-protokol pengurusan kunci rahsia yang dicadangkan adalah berdasarkan kunci 

rahsia diantara pelbagai pihak yang menggunakan pengagihan kunci kuantum, kod 

pembetulan ralat yang diubahsuai dan matriks bebas linear. Protokol-protokol ini 

memerlukan komunikasi yang klasik dan menghasilkankadar kunci rahsia yang lebih 

tinggi tanpa mengira jarak dan gangguan.Analisis sekuriti yang menggunakan kaedah 

meneka entropy telah digunakan dan hasil penggunaannya menunjukkan hanya 

maklumat yang tidak penting mahupun boleh diabaikan boleh diekstrak semasa intipan. 

 

Teknik sambutan cabaran  telah digunakan untuk mencadangkan skim pengesahan 

penggunakuantum  mengesahkan pengguna kuantum. Ia adalah skim pengesahan 

dwiarah dan memerlukan kedua-dua kuantum dansaluran klasik untuk 

melaksanakannya dan mempunyai dua cara operasi, iaitu, awal danpengesahan sesi. 

Disebabkan orientasi pengedaran kunci yang berketentuan, kecekapan 

protokolmencapai sehingga 100% dalam kadar pengurangan pembaziran foton 

semasakomunikasi. Tambahan pula, skim ini kukuh mahupun bertahan kepada pelbagai 
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serangan keselamatan kuantum.Walau bagaimanapun, skim ini memerlukan saluran 

kuantum yang tanpa gangguan untuk mengesan serangan luaran dan dalaman semasa 

pengesahan. 

 

Satu antara muka pengguna grafik berpangkalan simulasi acara yang diskret telah 

dibangunkan menggunakan OptiSystem™ untuk menguji kebolehlaksanaan praktikal 

lapisan protokol kriptografi kuantum yang dicadangkan.Pembolehubah protokol-

protokol diskret pengagihan kunci kuantum yang berasaskan polarisasi telah direka 

bentuk dan dianalisis. Disebabkan kekurangan persediaan penerima yang sebenar, 

keputusan yang diperolehi mencerminkan kadar ralat bit kuantum yang lebih rendah. 

Tambahan pula, kami juga menganalisis kesan struktur polarisasi qubit yang 

disebabkan oleh gangguan, kehilangan dan jarak ke atas optik gentian dan ruang bebas. 

Pengagihan kunci kuantum berbilang pihak telah dibangunkan dan direka bentuk 

berdasarkan pemultipleksan pembahagian frekuensi yang memusatkan pelayan saluran 

kuantum. Pendekatan ini mengurangkan keperluan jumlah saluran kuantum dari   

N*(N-1)/2 kepada N dan setiap pihak memerlukan satu saluran kuantum untuk 

berkomunikasi dengan pihak-pihak yang lain. Protokol komitmen bit dan pengesahan 

mesej di dalam lapisan boleh diterokai untuk penyelidikan masa depan. 
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CHAPTER 1 
 

INTRODUCTION 
 

1.1 Background 

Cryptography is the mechanism to provide users with the four main factors of 
security which are confidentiality, authentication, integrity and non-repudiation 
(CIANR). Depends upon the applications, there is a trade-off among the factors. 
One of the important branches and the ever challenging task of cryptography is the 
secure transmission.  
 

The field of secure transmission has a long cloak-and-dagger history with various 
turning points. In 1917, Vernam introduced the One-Time Pad (OTP) encryption, 
which uses a symmetric random secret key shared between sender and receiver. 
This scheme in principle is unbreakable, if the key is not reused. Later in 1948, 
Claude Shannon presented the concept of perfect secrecy in his ground- breaking 
thesis. Shannon listed out various conditions to achieve perfect secrecy and also 
pointed out OTP is optimal, if satisfied the prescribed conditions. However, the 
concept of perfect secrecy is not practically feasible due to different serious 
drawbacks as follows,  

• Perfect random OTP 
• Secure generation and transmission of OTP 
• Secure storage and treatment 

 

Therefore, perfect secrecy is only possible in theory. Currently no cryptosystem 
offers a perfect secrecy in real implementations. But the development of 
unconventional cryptography based on quantum and DNA promise to break the 
barriers and reach the door of perfect secrecy. So far, quantum based cryptography 
has achieved random generation and secure key distribution. Thus, perfect secrecy 
will be no more fiction in the future. Despite its promises, Quantum Cryptography 
(QC) is still in the early stage of the development phase from the emerging field of 
Quantum Information Science (QIS). To reach the height of conventional 
cryptography or digital cryptography’s pinnacle of success, QC needs to undergo 
various challenges and tasks. This thesis focuses mainly on authenticated secret 
key distribution using a combination of quantum protocols and digital 
cryptography techniques. Thus, the contributions suit towards hybrid cryptography 
of QC and digital cryptography. For completeness, a tabular summary of the 
history of classical, modern or digital cryptography with the importance of the key 
distribution problem is presented in Table1.1 and Table 1.2.  
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Table 1.1 History of classical cryptosystem. Source: (A.Weis, 2007) 

No
o Name Year / 

Inventor Mechanism Picture / Illustration 

1 Scytale  Transposition 

 

 

2 Ceaser 
Cipher  

Substitution 

 

 

  

3 Vigenere 
Cipher 

Giovan 
Battista 
Bellaso : 

1553 

Blaise de 
Vigenère : 
19 century 

Polyalphabetic 
substitution 

 

-4 Rotor based 
cipher  Polyalphabetic 

 

 

5 Affine cipher  

Mono-
alphabetic 

substitution 
cipher 

 

 

6 Baconian Sir Francis 
Bacon 

Substitution 
cipher 

 

 

http://en.wikipedia.org/wiki/Monoalphabetic_substitution_cipher
http://en.wikipedia.org/wiki/Monoalphabetic_substitution_cipher
http://en.wikipedia.org/wiki/Monoalphabetic_substitution_cipher
http://en.wikipedia.org/wiki/Monoalphabetic_substitution_cipher
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7 
Codes & 

Nomenclatur
e Cipher 

15 century 
~ 18 

century 
 

 

 

8 Beaufort 
Cipher 

Sir Francis 
Beaufort 

~ 1838 

polyalphabetic 
substitution 

cipher 

 

 

9 Four-square 
cipher 

Felix 
Delastelle 

1902 

Encrypts pair 
of letter : 

Significant 
stronger than 
Substitution 
cipher and 

much resistant 
to frequency 

analysis attack 
 

10 Play fair 
cipher 

Charles 
Wheatston

e 1852 

First practical 
digraph 

substitution 
cipher 

 

 

11 
ADFGVX 

Cipher 

 

Colonel 
Fritz Nebel 

: 1918 

 

 

 

 

 

  

http://en.wikipedia.org/wiki/Francis_Beaufort
http://en.wikipedia.org/wiki/Francis_Beaufort
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12 

 

 

 

Bifid Cipher 

 
Felix 

Delastelle 

Polybius 
square with 

transposition, 
and uses 

fractionation 
to achieve 
diffusion 

  

13 
Trifid Cipher 

 
Felix 

Delastelle 

Combines 
substitution 

with 
transposition 

and 
fractionation 

 

14 Rail fence 
cipher  

Simple 
transposition 

cipher 

 
 

15 

Straddle 
Checkerboar

d Cipher 

 

Variable substitution 
changing an 

alphabetic plaintext into digi
ts while simultaneously 

achieving fractionation. A 
kind of information 

diffusion. 

Data compression relative to 
other schemes using digits. It 
is also known as a monôme-

binôme cipher. 
 

  
Table 1.2 Overview of digital cryptography & problem. Source: (A.Weis, 

2007) 
No Cryptosystem / Problems Description 

1 Classical Cryptography o Modern computers became 
nemesis to pen and paper, and 
mechanical cryptosystem. 
 

o Construction were unplanned 
and no available security 
proofs for the public 
 

o Only military and intelligence 
unit has the cryptographic 
knowledge 
 

http://en.wikipedia.org/wiki/Alphabet
http://en.wikipedia.org/wiki/Numerical_digit
http://en.wikipedia.org/wiki/Numerical_digit
http://en.wikipedia.org/wiki/Transposition_cipher#Fractionation
http://en.wikipedia.org/wiki/Data_compression
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o Key distribution: The 

number of keys in the system 
grows quadratically with the 
number of parties increases. 

 Modern Cryptographic Epoch 

• Standardization of cryptographic primitives 
• Invention of public key cryptography 
• Formalization of security definitions 
• Growth of computing and the internet 
• Liberalization of cryptographic restrictions 

2 Diffie-Hellman Key Exchange 

 

Diffie-Hellman-Merkle 
(1976) / Williamson (1974): 

 

 Generate a shared secret with a stranger over a public channel. 

1. Alice picks a group G, generator g, and a random value x 

2. Alice computes A = g^x and sends Bob (G, g, A) 

3. Bob picks a random y, computes B = gy, and sends Alice B 

4. Alice computes K = B^x = g^(xy) 

5. Bob computes K = A^y = g^(xy) 

 Eve’s Information and Complexity 

 Eve's : (G, g, A, B) = (G, g, g^x, g^y) 

Hardness to compute g^(xy) 

 Problems 

 •  Need to establish n^2 keys for n people or conduct 
• Interactive key exchange protocols for each message. 
• Expensive Computation over appropriate groups. 
• Vulnerable to a man in the middle attack 

3 Public Key Encryption 

 A public key cryptosystem consists of 
(G, E, and D). 

2. Alice generates a key pair: 
G(r)→(PKa, SKa) 

3. Alice publishes her public key PKa 

4. Bob encrypts a message with her 
public key: E(PKa,m) → c 

5. Alice decrypts a cipher text with her 
secret key: D(SKa,c) →m 

Only one key per person, not 
per pair. 

Can communicate with a 
stranger without agreeing on a 
key. 
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 Problem 

 • To get alice's public key 
• To trust the cipher text  

4 RSA Encryption Published in 1977 / Cocks 
1973 

 Based on hardness of factoring products of large primes. 

1. Setup: n = pq, PK = (e, n), SK = d, ed = 1 mod (p-1)(q-1) 

2. E(PK, m) = m^e (mod n) = c 

3. D(SK, c) = c^d (mod n) = m^(ed) (mod n) = m 

 Problems 

 • Fixed size of cipher text 
• Expensive Computation  
• Trust of modified of cipher text 
• No semantic secure  

 Authentication 

 • Verification of Alice is Alice 
• Verification of orientation of message  
• Confidentiality of Alice message during transmission 

5 Message Authentication Codes 

 Alice and Bob share a secret key k. 

Either can sign (or MAC) a message: Sign(k, m)→ σ 

The recipient can verify the signature: Verify(k, m, σ) 

Often built from other primitives 

Similar key distribution problems to ciphers 

6 Public Key Signatures 

 Only you can sign messages, but anyone in the world can verify them. 
Public-key analog of a MAC. 

 A public key signature scheme consists of (G, Sign, Ver). 

2. Alice generates a key pair: G(r)→(VKa, SKa) 

3. Alice publishes her verifying key VKa 

4. Alice signs a message: Sign(SKa, m) → σ 

5. Bob verifies a signature with her verifying key: Ver(VKa,m) 

 Problems 

 Feasibility of public key signature scheme 

 Distribution of verification keys 
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RSA is fixed size. Issues of sign of big messages 

7 Message Digests 

 Message digests compress input to fixed length strings. 

No keys involved. 

One-way: It is hard to find an input that hashes to a pre-specified value. 

Collision resistance: Finding any two inputs having the same hash-value 
is difficult. 

Fixed-length public signature schemes can sign digests instead of the 
actual message. 

 

 

7 Key Distribution: Evergreen Problem 

 Problem: To verify the owner of the public key  

o Current Solutions: Certificates - A signature on a public key or 
another certificate 

o PKI: A graph of relationships between keys. 
o Certificate authorities : A "web-of-trust" social graph 

Revocation of keys 

o Expiration dates 
o Certificate Revocation Lists 

 

Most of digital cryptography based security protocols are based on hard prime 
factorization which takes Non-Polynomial time (NP Problem) to solve. From the 
view of computational complexity theory, is a branch of the theory of computation 
in theoretical computer science and mathematics that focuses on classifying 
computational problems according to their inherent difficulty, and relating those 
categories to each other. A computational problem is solved by a computer. Non-
deterministic Polynomial-time, hard (NP-hard) is a class of problems and as at 
least as hard as any NP-problem. The examples are decision subset sum problem, 
halting problem and often attempted in areas which are rule-based languages.  
 

NPC (Non-deterministic Polynomial Complete) is a class of problem which is 
mostly dealing with decision problems. There are many sets of problems studied 
under this class, namely, isomorphism problems, graph problem and the decision 
problem, such as Knapsack problem, travelling salesman problem, vertex 
problem, clique problem, Hamiltonian graph problem and so on so forth. Hence, 
digital cryptography offers a computational security which means a security 
mechanism which is bounded by technology limit. On the other hand, key 
distribution using quantum mechanics so-called quantum key distribution (QKD) 
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offers an unconditional security which means a security mechanism is not 
bounded by technology limit.  
 

QIS deals with several disciplines of information science through quantum 
mechanics principles. A brief classification of QIS is presented in Figure 1.1. The 
strong cruxes of QKD are No-Cloning theorem and the Heisenberg Uncertainty 
Principle. In the following section, we will briefly discuss some aspects of 
quantum theory relevant for quantum information science.  
 

 
Figure 1.1 Fields of Quantum Information Science 

 
In computer, bit (binary digit) is the smallest unit of data which represents a single 
binary value either 0 or 1. Likewise, in quantum world the basic unit of quantum 
information is referred as qubit (quantum bit). Basically, qubit is a two-state 
quantum-mechanical state such as polarization (horizontal or vertical) of a single 
photon (elementary particle). Further, a qubit can be represented in geometrical 
coordinates of a sphere and commonly illustrated in the Bloch Sphere as shown in 
Figure 1.2. However, quantum mechanics allows qubit to have a third state called 
superposition which is a mixture of both states at the same time. This property 
distinguishes the application based on quantum mechanics and holds the key for 
qubit phenomenal properties, i.e., parallel process, entanglement, teleportation and 
etc. 
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Figure 1.2 Qubit's Bloch Sphere View. Source: (Sphere, 2009) 

 
No-Cloning theorem: 
This is a type of no-go theorem of quantum mechanics which prohibits the 
creation of identical copies of an arbitrary unknown quantum state. This property 
is also the core of quantum computing and perfectly varies from the digital world.  
 

Heisenberg Uncertainty Principle: 
This is another dazzling property of quantum mechanics which makes its 
application is quite subtle. The correct result can be only obtained by correct 
measurement. Specific to QKD, the right (or correct) polarization of a photon 
(qubit) can be measured only by right polarizer otherwise, photon collapse itself. 
Any wrong measurement of photon (qubit) results in wrong outcome. 
 

1.1.1 Limitations of Digital Cryptography 

The property of the Heisenberg Uncertainty and No-Cloning theorems of quantum 
mechanics builds QKD’s pillars of unconditional security and totally distinguish 
from the digital cryptography. In digital communication, a bit can be copied as 
many as possible without any notification. In quantum communication, a qubit 
cannot copy perfectly and measure (read) the value with wrong measurement 
causes a qubit loss its complete original information. In other words, the self-
destruction of information occurs in the case of wrong measurement. Thus, 
detection of eavesdropping is an intrinsic property of QKD and outsmarts the 
digital communication. Moreover, digital cryptography is highly vulnerable due to 
perfect copy of data without any notification. Brute force technique is a simple but 
powerful technique to break the current cryptosystem provided by digital 
cryptography. A brief summary of hacking activities on digital cryptography and 
its impact is presented in Table 1.3, Table 1.4 and Table 1.5. Cyber hacking threat 
trends are represented in Figure 1.2 and Figure 1.3. 
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Table 1.3 Hash functions security summary. Source: (Wikipedia, 2014c) 

Algorith
m Output size (bits) 

Best known attacks 

(Complexity: rounds) [c 2] 

Collision 

Second 

Preimage Preimage 

GOST 256 Yes (2105) Yes (2192) Yes (2192) 

HAVAL 

256/224/192/160/12
8 

Yes No No 

MD2 128 Yes (263.3) No Yes (273) 

MD4 128 Yes (3) Yes (264) Yes (278.4) 

MD5 128 Yes (220.96) No Yes (2123.4) 

PANAMA 256 Yes No No 

RadioGatú
n 

Up to 608/1,216 (19 
words) 

With flaws (2352 or 
2704) 

No No 

RIPEMD 128 Yes (218) No No 

RIPEMD-
128/256 128/256 

No No No 

RIPEMD-
160 160 Yes (251 :48) No No 

RIPEMD-
320 320 No No No 

SHA-0 160 Yes (233.6) No No 

SHA-1 160 Yes (251) No No 
SHA-

256/224 256/224 Yes (228.5 :24) No Yes (2248.4:42) 
SHA-

512/384 512/384 Yes (232.5 :24) No Yes (2494.6:42) 

SHA-3 

224/256/384/512[c 
3] 

No No No 

Tiger(2)-
192/160/1

28 192/160/128 Yes (262 :19) 
No 

Yes (2184.3) 
WHIRLP

OOL 512 Yes (2120 :4.5) No No 

 
 

Table 1.4 Block cipher security summary. Source: (Wikipedia, 2014a) 

Cipher Security 
claim 

Best attack Attack 
date 

Comment 

AES128 2128 2126.1 time, 288 data, 2011- Independent biclique 

http://en.wikipedia.org/wiki/GOST_(hash_function)
http://en.wikipedia.org/wiki/HAVAL
http://en.wikipedia.org/wiki/MD2_(cryptography)
http://en.wikipedia.org/wiki/MD4
http://en.wikipedia.org/wiki/MD5
http://en.wikipedia.org/wiki/PANAMA
http://en.wikipedia.org/wiki/RadioGat%C3%BAn
http://en.wikipedia.org/wiki/RadioGat%C3%BAn
http://en.wikipedia.org/wiki/RIPEMD
http://en.wikipedia.org/wiki/RIPEMD
http://en.wikipedia.org/wiki/RIPEMD
http://en.wikipedia.org/wiki/RIPEMD
http://en.wikipedia.org/wiki/RIPEMD
http://en.wikipedia.org/wiki/RIPEMD
http://en.wikipedia.org/wiki/RIPEMD
http://en.wikipedia.org/wiki/SHA-1
http://en.wikipedia.org/wiki/SHA-2
http://en.wikipedia.org/wiki/SHA-2
http://en.wikipedia.org/wiki/SHA-2
http://en.wikipedia.org/wiki/SHA-2
http://en.wikipedia.org/wiki/SHA-3
http://en.wikipedia.org/wiki/Cryptographic_hash_function#cite_note-16
http://en.wikipedia.org/wiki/Cryptographic_hash_function#cite_note-16
http://en.wikipedia.org/wiki/Tiger_(cryptography)
http://en.wikipedia.org/wiki/Tiger_(cryptography)
http://en.wikipedia.org/wiki/Tiger_(cryptography)
http://en.wikipedia.org/wiki/WHIRLPOOL
http://en.wikipedia.org/wiki/WHIRLPOOL
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
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28 memory 08-17 attacks 

AES192 2192 2189.7 time, 280 data, 
28 memory 

AES256 2256 2254.4 time, 240 data, 
28 memory 

Blowfish 2448 4 of 16 rounds 1997 The author 
recommends using 
Twofish instead.  

DES 256 239 – 243 time, 
243 known plaintexts 

2001 Linear cryptanalysis. 
In addition, broken by 
brute force in 
256 time, no later than 
1998-07-17, see EFF 
DES cracker. Cracking 
hardware is available 
for purchase since 
2006.  

Triple 
DES 

2168 2113 time, 232 data, 
288 memory 

1998-
03-23 

 

KASUMI 2128 232 time, 226 data, 
230 memory, 4 related 
keys 

2010-
01-10 

The cipher used 
in 3G cell phone 
networks. This attack 
takes less than two 
hours on a single PC, 
but isn't applicable to 
3G due to known 
plaintext and related 
key requirements. 

Serpent-
128 

2128 10 of 32 rounds 
(289 time, 2118data) 

2002-
02-04 

Linear cryptanalysis 

Serpent-
192 

2192 11 of 32 rounds 
(2187 time, 2118data) 

Serpent-
256 

2256 

http://en.wikipedia.org/wiki/Blowfish_(cipher)
http://en.wikipedia.org/wiki/Data_Encryption_Standard
http://en.wikipedia.org/wiki/Known_plaintext
http://en.wikipedia.org/wiki/Linear_cryptanalysis
http://en.wikipedia.org/wiki/EFF_DES_cracker
http://en.wikipedia.org/wiki/EFF_DES_cracker
http://en.wikipedia.org/wiki/Triple_DES
http://en.wikipedia.org/wiki/Triple_DES
http://en.wikipedia.org/wiki/KASUMI_(block_cipher)
http://en.wikipedia.org/wiki/3G
http://en.wikipedia.org/wiki/Serpent_(cipher)
http://en.wikipedia.org/wiki/Linear_cryptanalysis
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Twofish 2128 – 
2256 

6 of 16 rounds 
(2256 time) 

1999-
10-05 

 

 
 

 
Figure 1.3 Progress of Cyber Security Threats. Source: (Baylor, 2006, 

September 1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://en.wikipedia.org/wiki/Twofish
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Table 1.5 Anatomy of hacking. Source: (TWINCLING™, 2013) 
No Stages Techniques 

1 Reconnaissance Preparatory phase: Monitoring and 
Probing Network 
Foot printing, Pre-scanning & 
Enumeration 

2 Scanning  Port scanning:  

3 Gaining Access System Hacking , Sniffers, Social 
Engineering 

 Denial of Service, Session Hijacking, 
Buffer Overflows, Rootkits, Hacking Web 
servers, Web application vulnerabilities, 
Web based password cracking, SQL 
injection, Hacking Wireless networks, 
Virus and Worms, Evading IDS, firewalls, 
Honeypots, Cryptography 

4 Maintaining 
Access 

Rootkits, Trojans and Backdoors 

5 Clearing tracks Tunneling, Altering/Clearing log files, 
Disabling auditing 
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Figure 1.4 Security Issues – 2013. Source: (Micro, 2013) 
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Presently, digital world grows at an exponential way in which ubiquitous 
computing, smart technology, sensor mechanism, broadband communication are 
all evolved into borderless world and inevitable part of the life. For all these 
technologies, the sole security mechanism is provided by digital cryptography. 
However, the current digital cryptographic mechanism has vulnerable threats from 
both quantum computer and smart phone technology. Smart phones potent are 
already making serious threats (Zineddine & Kindi), while quantum computer on 
its way to reach its full form (Ladd et al., 2010). Thus, an alternative security 
solution is imminent for current world. On the other hand, QC promises 
unconditional security. Further, QC is the mature application of quantum 
mechanics.  
 

1.1.2 BB84 Protocol – Birth of QKD 

In 1984 Charles Bennett and Gilles Brassard published the first QKD protocol 
(Bennett & Brassard, 1984). The fundamental concept for this protocol is that 
Alice can transmit a random secret key to Bob by sending a string of photons 
where the secret key's bits are encoded in the polarization of the photons. 
Heisenberg's uncertainty principle can be used to guarantee that an eavesdropper 
cannot measure these photons and transmit them on to Bob without disturbing the 
photon's state in a noticeable way thus revealing her existence. 
 

Figure 1.5 illustrates how a bit can be encoded in the polarization state of a photon 
in BB84. Binary 0 is characterized as a polarization of 0 degrees in the rectilinear 
bases or 45 degrees in the diagonal bases (CKI, 2001; Nicolas Gisin, Ribordy, 
Tittel, & Zbinden, 2002). Similarly a binary 1 can be 90 degrees in the rectilinear 
bases or 135 in diagonal bases. Thus a bit can be represented by polarizing the 
photon in either one of two bases. 
  

 
Figure 1.5 BB84 Bit Encoding. Source:(Haitjema)  
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In the first stage, Alice transmits to Bob over a quantum channel. Alice begins by 
choosing a random string of bits and for each bit, Alice will randomly choose a 
basis, rectilinear or diagonal, by which to encode the bit. She will transmit a 
photon for each bit with the corresponding polarization, as just described, to Bob. 
For every photon Bob receives, he will measure the photon's polarization by a 
randomly chosen basis. If, for a particular photon, Bob chose the same basis as 
Alice, then in principle, Bob should measure the same polarization and thus he can 
correctly deduce the bit that Alice calculated to send. If he chose the wrong basis, 
his result, and thus the bit he reads, will be wrong. 
 
 In the second stage, Bob will notify Alice over any insecure channel what basis 
he used to measure each photon. Alice will report back to Bob whether he chose 
the correct basis for each photon. At this point Alice and Bob will discard the bits 
corresponding to the photons which Bob measured with a different basis. Provided 
no errors occurred or no one manipulated the photons, Bob and Alice should now 
both have an identical string of bits which is called a sifted key. The example 
below shows the bits Alice chose, the bases she encoded them in, the bases Bob 
used for measurement, and the resulting sifted key after Bob and Alice discarded 
their bits as just mentioned (Wikipedia, 2014f). The operation of sifted key is 
presented in Figure 1.6. 
  

 
Figure 1.6 Sifted Key. Source:(Haitjema) 

 
Prior to the end, Alice and Bob agree upon a random subset of the bits to compare 
to ensure consistency. If the bits agree, they are discarded and the remaining bits 
form the shared secret key. In the absence of noise or any other measurement 
error, a disagreement in any of the bits compared would indicate the presence of 
an eavesdropper on the quantum channel. This is because if the eavesdropper, 
Eve, were attempting to determine the key, she would have no choice but to 
measure the photons sent by Alice before sending them on to Bob. This is true 
because the no cloning theorem assures that she cannot replicate a particle of 
unknown state (Wootters & Zurek, 1982). Since Eve do not know what bases 
Alice used to encode the bit until after Alice and Bob discuss their measurements, 
Eve will be forced to guess. If she measures on the incorrect bases, the 
Heisenberg’s uncertainty principle ensures that the information encoded on the 
other bases is now lost. Thus when the photon reaches Bob, his measurement will 
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now be random and he will read a bit incorrectly 50% of the time. Given that Eve 
will choose the measurement basis incorrectly on average 50% of the time, 25% of 
Bob's measured bits will differ from Alice (Rieffel & Polak, 2000). The chance 
that an eavesdropper learned the secret is thus negligible if sufficiently long 
sequences of the bits are compared. 
 

Free space QKD was first demonstrated in 1989 by Bennett and his co-workers 
over 30 cm optical link (Bennett, Bessette, Brassard, Salvail, & Smolin, 1992). 
The first experimental implementation of QKD was proposed in (Buttler et al., 
1998), since then a lot of research effort has been dedicated by researchers to 
develop the technology for use in future optical communication systems, to 
support security critical information flows. While the experimental setup was able 
to send quantum signal over distances of 100 km in optical fiber link, in free-space 
quantum signal was sent over a distance of 23.3 km. Recently, advances have led 
to demonstrations of QKD over point-to-point optical links (Christian Kurtsiefer et 
al., 2002). These rather promising transmission distances have stressed the high 
possibility of obtaining practical QKD systems. In order to implement QKD 
between any two locations on the globe, a satellite is needed to be used as a secure 
relay station. Feasibility studies by researchers have shown that the ground-to-
satellite, satellite-to-ground and satellite-to-satellite QKD demonstrations are 
feasible (Hughes, Nordholt, Derkacs, & Peterson, 2002; Rarity, Tapster, Gorman, 
& Knight, 2002). In (J. Zhu & Zeng, 2005) a stratospheric quantum 
communication model based on the characteristics of the stratosphere was 
proposed. Besides, a study by (Gabay & Arnon, 2006) on the effect of turbulence 
on a quantum key distribution system can be found in (Gabay & Arnon, 2005). 
Moreover, to improve the transmission bit rate of free space systems, two authors 
conducted a study on quantum key distribution by free-space MIMO system 
(Gabay & Arnon, 2006). Furthermore, to evaluate the performance of various 
QKD systems, the QBER and secure communication rate are considered as 
important criteria. 
 

The QBER which is indicative of the security and post-error-correction 
communication key rate is taken in to account when evaluating the link 
performance. Any information learnt by an unauthorized third party about the 
exchanged key leads to an increase in the QBER. A high QBER enables an 
unauthorized user or more correctly the eavesdropper to learn more information 
about the transmitted key at the expense of the legitimate recipient. Thus, it should 
be taken into account that obtaining high QBER values in QKD systems can 
resultantly lower the secure communication key rate during error correction stage 
of the protocol. It has been shown that, as long as the QBER of the sifted key is 
below a certain threshold, Alice and Bob can still distill a secure key by means of 
classical error correction and privacy amplification. Besides, past studies have 
shown that any QBERs of the sifted key above 15% give room for an 
eavesdropper to actually learn more information than the intended recipient. When 
the obtained QBER is more than 15%, no form of classical privacy amplification 
techniques can be used effectively (Kumavor, Beal, Yelin, Donkor, & Wang, 
2005). 
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Thus, any proper design a QKD link should ensure a baseline QBER of below 15 
% threshold if privacy amplification strategies are to be used to eliminate any 
knowledge gained by the eavesdropper. If the QBER goes above 15% limit value, 
depending on the restrictions on the eavesdropper's abilities, it will no longer be 
possible to extract as secure communication bit rate. This baseline QBER 
considers a QKD link in which a one-way classical processing by Alice and Bob is 
observed. 
 

1.1.3 Limitations of Quantum Cryptography 

The comparison between the quantum cryptography and the digital cryptography 
is like a comparison between a novice and expert. Still, QC is in an early stage of 
the limelight, but with various developments in quantum hardware shows 
promising transformation from novice to expert. QC is still lacking in a 
comprehensive structure of digital cryptography. Moreover, QC cannot provide 
any full crypto-system and so far secure transmission is the milestone 
achievement. 
 

Secure key transmission / generation is the stronghold of QC and commonly refer 
as QKD. For the current digital world security mechanism, secret key is the most 
vital for any crypto-system. Further, the generation rate, reusability, secure 
storage, cost, secure transmission and privacy are all performance metric or 
attributes of the secret key. Current security mechanism requires a higher rate key 
to accomplish its task. Therefore, key rate with minimum cost is the first and 
foremost priority of the crypto-system.  
 

QKD offers unconditional secure key transmission, but due to the lower key rate, 
only small scope set of jobs is possible to achieve. In contrast to digital 
cryptography, the cost of key generation in QKD is expensive and even 
incomparable.  
 

The critical factors, i.e. noise and distance are the main hurdles in the QKD to 
perform like its counterpart digital cryptography’s key distribution mechanism. In 
fact, both factors are directly related to the intrinsic properties of QKD’s 
components and need for efficient source, detectors, and quantum storage and 
quantum repeaters. Different with the computer bit, quantum bits or qubits are 
sensitive to channel and apparatus. Further, the development of photonic 
components to produce results like theoretical QKD’s result is another major 
research area. This clearly shows that still a long road to achieve the heights of 
digital cryptography. However, the recent progress in the development of photonic 
components is the promising sign to achieve the height. Indeed, QKD only 
achieved short distance transmission over fiber and free-space. As the distance 
grows qubits' drops its composure and extinct. Entanglement and repeaters are the 
ultimate solution for this problem. However, the recent improvements in the 
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photonic devices are clearly showing that QKD can be achieved over large 
distances in near future. 
 

QKD’s hardware improvements would surely bring achievements into another 
height. However, usage of digital cryptography key derivation function (KDF), 
Error Correction Codes (ECC), and key strengthening in QKD algorithms would 
aid or improve the key generation rate.  
 

This thesis mainly focuses on the QKD in the multi-party environment without the 
use of entanglement. In some research papers, the term multi-party refers to multi-
user. As a matter-of- fact, QKD is strong in two-party or two-user system to 
establish a secret key. However, with quantum entanglement property, secret key 
distribution is possible for many users. Indeed, QKD mechanism is not a 
deterministic process, but rather it is a stochastic process. 
 

Multiparty QKD (MQKD) is an analogue of conference key sharing in digital 
cryptography. The distribution of conference key to all users is an easy achievable 
task in digital cryptography, but in quantum cryptography is still hard. To achieve 
a conference key using QKD without entanglement is a challenging task. Most of 
the current QKD market products are not based on entanglement mechanism, so 
without or with small changes in current market QKD product to attain MQKD 
would be beneficial to the end users as well as developers. Another secure key 
management task is shared secret key or joint-venture key. Joint-venture secret 
key management plays vital role in many aspects of day-to-life. A shared secret 
key management is a secret key which is divided into many parts and each part of 
the key is held by an authorized user. In quantum terminology, joint-venture key 
mechanism refers as quantum shared secret key (QSSK). The foundation for 
QSSK research is the various types of entangled states.  
 

QKD mechanism without utilizing entanglement suffers big blow in reaching 
reusable and higher rate secret key. Further, in the multi-party environment, it 
escalates the deficiency and prone to more challenges, namely dishonest party, 
topology, channel management in addition to basic problems such as eavesdropper 
issues, imperfect devices, losses and noise factors. Hence, if any mechanism or 
algorithm by using the standard QKD operation can solve the above problems 
then, it considers as a milestone in the QKD history.  
 

The authentication process is the norm for any security mechanism. Certainly, 
quantum message authentication researches have attracted many and still on-going 
active research areas. Message authentication scheme using entanglement can 
cover both user and message at a same time. Recently, quantum hacking activities 
prove that an attacker can attack the quantum user apparatus or hardware 
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components. This widens man-in-the-middle based attacks with assorted options. 
There is an urgent need of a quantum user authentication scheme in every QKD 
operation. Further, in multi-party system, the situation is worse due to presence of 
dishonest member.  
 

The composable quantum cryptography protocol researches are widely based on 
entanglement. However, these schemes are not applicable to the current QKD 
market product to overcome the quantum hacking activities. Here, in the thesis, 
we propose MQKD, QSSK , quantum user authentication protocols based on key 
derivation function (KDF), challenge-response scheme, error correction code 
(ECC) and linear independent matrix and combined as a single protocol suite, 
which can operate similar to conventional network layering protocols and fulfill 
the composable quantum cryptography (Müller-Quade & Renner, 2009). 
Basically, there is a big gap between theoretical QKD research and experimental 
QKD research. This gap is studied and presented by various research groups. 
Recent research shows that theoretically QKD is proven secure, but that 
implementation is totally insecure against a strong eavesdropper that has a one-
time access to the receiver's equipment(Boyer, Gelles, & Mor, 2012). Further, 
practical limitations are ignored in the QKD's security proofs. 
 

One of the main limitations in QC research is the absence of effective simulation 
study to evaluate the performance of the experimental QKD setup. Simulation 
study is the de facto evaluation approach in all fields of science. Especially, 
computer network research highly dependable on simulation study for analysis the 
performance of protocols. Further, simulation study can act as a bridge between 
theoretical and practical quantum research. Therefore, a framework for the 
experimental QKD setup simulation is developed in our research to facilitate the 
study on photonic components and eavesdropper techniques.  
 
1.2 Motivations 

Quantum Cryptography has evolved into a mature field during recent years. 
However, the applicability of QC is still limited. On the other hand, digital 
cryptography plays a central role in everyday life. This is due to the trustable, 
complex and sophisticated architecture. Further, digital cryptography craves 
simplicity, suitability, maintainability and robustness. Digital cryptography is the 
most predominant applicable in digital transaction and internet transaction.  
 

There are various features in the digital cryptography; one of them is supporting of 
protocol layering. In concern with the computer networking, protocols are 
classified according to layer. The predominant open system interconnection (OSI) 
layer contains of seven layers and each layer performs specific functions 
(Wikipedia, 2014e). This layering concept encapsulates from top to bottom 
structures. In other words, the protocol layering concept offers a total support from 
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hardware equipment’s to the software application. Each layer is acting as a hub 
between upper layer and lower layer. Digital cryptography protocols are usually at 
the top layer called application layer. The conversion of information into digital is 
done in physical layer or lowest layer. Other layer supports each other with a 
specific role.  
 

The main motivation of this thesis is to construct quantum cryptography protocols 
as layering protocols. Since, the quantum cryptography protocols are in its early 
development stage, designing a simple and effective layering system would be the 
first step towards the big goal. This layering concept not only to combines the QC 
protocols, but it also provides a systematic flow of information.  
 

The principal concern of this research is to combine quantum authentication 
scheme and multi-party quantum key distribution protocols. Hence, in every set of 
transaction, quantum user authentication can be achieved. 
 

QC protocols achieved more success in a two-party system rather in a multi-party 
system, especially in the domain of quantum key distribution (QKD) protocols. 
Basically, to achieve QKD in a multi-party system applies the quantum 
entanglement concept. However, entanglement based QKD protocols suffers low 
practical realization. The available QKD products are variations of fainted laser or 
near single photon model. Further, quantum shared secret key (QSSK) or joint-
venture key in the digital cryptography’s jargon system is achieved by 
entanglement property. To devise an efficient protocol based on a shared secret 
key by QKD protocols to achieve a higher key rate multiparty QKD (MQKD) and 
QSSK without entanglement, using one-way public communication and resilient 
to sophisticated attacks are the propelling factors in this research. The main 
objective of this thesis is to propose a systematic framework to achieve user 
authenticated MQKD and QSSK by a single photon concept over a noiseless 
channel. 
 

QKD is a combination of hardware (i.e. photonic and optical telecom components) 
and software (protocols & post quantum methods) to accomplish the unconditional 
security for secret key distribution. The intrinsic property of QKD is the detection 
of eavesdropping makes it a distinguished application in compare with digital 
cryptography applications. 
 
Most research on QKD are analytically oriented and rests are experimental. Due to 
the cost factor, the experimental type researches are not equivalent to analytical 
counterparts. On the other hand, an analytical or mathematical research has 
numerous limitations, which affect the efficiency of the performance analysis. 
Further, it usually ignores the importance of accurate hardware losses. 
Additionally, for the fresh researchers to understand, the QKD operation makes 



© C
OPYRIG

HT U
PM

22 
 

difficult. In contrast, understanding the digital cryptography or digital network 
protocols is simple due to the availability of simulation option. These researches 
have been efficient in analytical or experimental researches, but also they have 
effective simulation programs. In particular, discrete event simulation of the 
network protocol is de-facto standard for evaluating the performance metrics. 
 

 Generally, the study and evaluation of the quantum computers and its algorithms' 
various methods are available. The options range from new functional 
programming language, a library of high-level language, online services, 
framework, interactive simulation, GUI oriented - circuit oriented simulators, 
emulators and visualization. On the other hand, the study of the QKD operations 
are very few and inefficient. There is a lack in the efficient simulation study tool 
for QKD protocols. Another motivational behind this research is the need to 
develop an effective GUI based discrete event simulation (DES) to simulate the 
experimental QKD setup.  
 

 Figure 1.7 represents the typical multi-party QKD environment setup. Both public 
channel and private channel (quantum channel) are available. Public channel is in 
a star topology while quantum channel is a full mesh topology.  

 
Figure 1.7 Multiparty QKD System with Eve Presence 

 

Channel calculations for Figure 1.7. 

N = Total Number of Users  
CQ= Total Number of quantum channel  
CP= Total Number of Public Channel  
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CQ= N (N-1)/2 [Triangular number formula]  
Let say, 
N = 5;  
then CQ= 10  
CP= 5 [All users are connected to Internet Cloud] 

 

 
1.3 Problem Statements 

The application of secure key transmission through QKD in the real world 
scenario is limited. The practicable QKD system provides unconditional security 
towards two-party system over a shorter distance with a lower key rate. Further, 
due to the imperfect devices, noises in the channel and losses during the 
transmission have reduced the efficiency. Moreover, there is a lack of efficient 
QKD mechanism for multi-party environment and robust against attacks. 
Generally, secret key distribution in the multiparty environment is mostly based 
on quantum entanglement. Entanglement based full QC research is only applicable 
in theoretical setting. However recent improvements in the hardware, 
entanglement based applications is possible in near future (Aktas, Fedrici, 
Labonté, & Tanzilli, 2014; G. Gao, 2014).  
 

Authentication is prior task for any secure communication. Recently, quantum 
identity verification research has got much attention (Goorden, Horstmann, Mosk, 
Škorić, & Pinkse, 2013; T. H. Lin & Hwang, 2014; Tan & Jiang, 2014; Waseda, 
2013). This is due recent hack activities and hardware attacks on QKD 
experiments. Further, user authentication is a topmost process in the multiparty 
environment. However, the entanglement based solution for both user and 
message authentication has an implementation problem with current technology. 
Further, there is a deficiency of efficient quantum user authentication scheme to 
resist insider and outsider attacks, less complex key derivation cycle, reduced 
usage of photons and feasible with current technology.  
 

The secret key rate of practical QKD in the quantum network is mainly affected 
by detection rate and distillation rate. Basically, QKD established secret key 
between parties with a lower secret key rate and wastage of heavy photons during 
quantum transmission and error correction. Furthermore, quantum based secret 
key management protocols, i.e. conference key and joint-venture key protocols 
cause higher wastage of photons due to collective noise and security attacks, lower 
secret key rate, security compromise due to dishonest member and Eve and less 
reusable of secret key. Quantum secret sharing based on error correction codes has 
advantages over key rate. However, no authentication mechanism during the 
quantum transmission will leads to Denial of Service and Trojan horse attacks.  
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Basically, designing the QKD experiments is expensive due to involvement of 
sensitive photonics component. Currently, most of QKD’s experiment components 
are imperfect which includes lack of single photon LASER source, birefringent 
and dispersion oriented fibers channels and lossy free space optics and inefficient 
photodetectors. Typically, QKD security analysis assumes devices are perfect 
which results in a huge difference in practical and theoretical setup outputs. 
Simulation study is the de facto standard for the performance evaluation for 
various sciences. There is a lack of effective simulation study on quantum 
experiment setups in order to study the performances prior to implementation. An 
effective simulation tool can reduce the cost and time for the development of the 
QKD experiments. 
 

The composability of quantum cryptographic protocols is an active research area 
in order to build a complete crypto system using quantum mechanics. The 
quantum composability cryptography includes combination authentication, secret 
key distribution, and bit commitment protocols in a protocol suit. However, there 
is a lack of study in development of composable quantum cryptography schemes 
which is feasible with current technology (Müller-Quade & Renner, 2009).  
 

In this thesis, a quantum user authentication is based on challenge-response 
scheme over noiseless quantum channel and secret key management protocols are 
based on modified ECC and linear independent matrix in order to achieve the non-
linear key derivation and resist towards security attacks. Further, a quantum 
cryptography protocol layer for an authenticated higher key rate multiparty secrete 
key management protocols, i.e., conference key and joint-venture key over 
noiseless quantum channel is proposed.. However, both protocols required shared 
secret key between parties using standard QKD protocol. Further, the practical 
feasibility of the authenticated multiparty QKD is studied through photonic 
simulation software called OptiSystem™. 
 

1.4 Research Objectives 

 To propose an efficient quantum user authentication scheme over 
noiseless channel based on pre-shared secret key between the parties, 
pre-calculated quantum bit error rate (QBER) verification and modified 
digital challenge-response scheme. The efficiency is measured in terms 
of reduction of photon wastage and resistance towards security attacks. 

 
 To develop higher key rate MQKD and QSSK protocols based on 

modified KDF and pre-shared secret key. Here on, the proposed QSSK 
protocol is called as public shared secret quantum key (PSSQK). Since 
private shared secret keys among the parties are converted into a shared 
secret key. The higher key rate is measured in terms of conversion of 
shared secret key among parties with few losses. 
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 To design a simulation framework based on OptiSystem™ which is a 
commercial simulation tool to design and simulate the polarized based 
discrete variable experimental QKD setups and design then multiparty 
QKD environment.  

 
 To propose a quantum protocol stack or composable quantum protocol 

layer which describes the systematic flow of operation for all proposed 
protocols, viz. Authentication, MQKD, PSSQK and standard QKD. The 
efficiency of this stack is a detailed description of actions and mitigation 
process in the real-world scenario. 

 

1.5 Research Scope 

This section lists the assumptions have made for the research. Moreover, the 
detailed assumptions are presented in each chapter.  
 

• All users are established short-shared secret key (private key) between 
them using standard QKD mechanism. Therefore, total number of keys = 
N(N-1)/2.  

• Classical channel is authenticated and Eve can only listen to the message. 
• Eve has full control over quantum channel, i.e. she is not bound by any 

computational limit. 
• Prerequisite of noiseless quantum channel: In fact, this assumption makes 

the proposed scheme into a weaker position in the achievement of 
practical feasibility. But relying on the current research developments in 
the field of QKD hardware is promising.  

• Prerequisite of single photon and ideal detector: Again, this assumption 
makes the proposed authentication scheme into impracticable. 
Nonetheless, if the value of noise and losses caused by the channel and 
the detector are pre-determined, then proposed scheme can be optimized.  

 

Both proposed secret key management schemes can be considered as a hybrid of 
quantum and digital cryptography. Hereon, hybrid cryptography denotes the 
combination of quantum and digital cryptography. Actually, except the secret key 
establishment process which is done by QKD process, all other processes involved 
in secret key management have no relationship with quantum mechanics. Further, 
data distribution between the users is done using only public channel. The 
underlying techniques of proposed schemes are based on KDF and matrix 
manipulation operations. 
 

The proposed quantum user authentication scheme is also under the hybrid 
cryptography. The fundamental function is based on digital challenge-response 
scheme. Both quantum and public channels are required. The proposed schemes 
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for both secret key management and user authentication have utilized polarized 
based discrete variable (DV) QKD operation, especially BB84 setting quantum 
communication. Therefore, standard BB84 security proofs are only required.  
 The proposed simulation models are developed under the basis of BB84 
experimental setup. However, only source and channel models are similar to the 
experimental settings while the detector is considered as ideal. All the components 
applied in the simulation models are intrinsic component of the simulation itself. 
Therefore, inbuilt parameter settings are the most vital for various types of 
simulations. However, some of the results are anti-correlated with experimental 
setups due to unavailable of components in the simulator. The proposed 
simulations are based on polarized based discrete variable QKD. 
 
Figure 1.8 depicts the areas are covered in the thesis in order to achieve the goal of 
authenticated quantum cryptography protocol layer for secret key management.  

 
Figure 1.8 Coverage of Research Topics in Thesis 

 
 
1.6 Thesis Organization 

Chapter 2 focuses on literature review, which includes related research work and 
other developments in the field of QKD and an overview of research methodology 
is presented in chapter 3.  
 

Chapter 4 illustrates the building blocks of proposed quantum user authentication 
protocols with the discussion of performance evaluation.  
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Chapter 5 presents the mechanism and performance evaluation of the proposed 
secure key management protocols i.e., the MQKD and PSSQK and the proposed 
QKD simulation architecture and respective QKD protocols based on 
OptiSystem™ is presented in Chapter 6.  
 
Finally, Chapter 7 concludes with the merits and limitation of this research and a 
brief summary of future enhancements.  
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