REGIONAL CONTRAST ENHANCEMENT AND FOUR-DIRECTIONAL THRESHOLDING TECHNIQUES FOR PULMONARY NODULE EXTRACTION AND DISCRIMINATION

SALEHEH HEIDARI

FSKTM 2015 10
REGIONAL CONTRAST ENHANCEMENT AND FOUR-DIRECTIONAL THRESHOLDING TECHNIQUES FOR PULMONARY NODULE EXTRACTION AND DISCRIMINATION

By

SALEHEH HEIDARI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

July 2015
A special dedication to my loving family

Thank you for all your support along the way
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

REGIONAL CONTRAST ENHANCEMENT AND FOUR DIRECTIONAL THRESHOLDING TECHNIQUES FOR PULMONARY NODULE EXTRACTION AND DISCRIMINATION

By

SALEHEH HEIDARI

July 2015

Chair: Muhamad Taufik Abdullah, PhD
Faculty: Computer Science And Information Technology

Automated pulmonary nodules extraction and lung disease diagnosis by Computer Aided Diagnosis (CAD) systems is a challenging task. Generally, the CAD system utilizes the Computed-Tomography (CT) images to diagnose tumor and observe its condition during the treatment process. Due to extensive similarity between pulmonary vessels, bronchus and arteries in lung region and the low contrast of Computed-Tomography (CT) images the accuracy of lung tumor diagnosis is highly dependent on image’s contrast and the precision of segmentation. Contrast enhancement and image segmentation are the most prominent image preprocessing techniques that are utilized as a primary and essential steps of almost every pathological applications. Thus, a particular contrast enhancement and image thresholding techniques are required to enhance the contrast of lung CT image by refining their pixels’ intensity value and overcome the difficulties of precise segmentation as well as facilitating the accurate pulmonary nodule extraction.

Accordingly, in this research Regional Contrast Enhancement (RCE) and Four-Directional Thresholding (FDT) techniques are introduced followed by nodule extraction and their discrimination based on their respective size and circularity measurements.

Regional Contrast Enhancement (RCE) technique aims to improve the CT image’s visual quality by boosting the contrast of lung CT images and modifying the image histogram by implementing the proposed algorithm on every individual pixel based on their intensity value and their regional variations.

The proposed FDT technique also aims to augment the precision of lung CT image’s segmentation by implementing a specific thresholding approach from four different directions in which the determination of pixels’ value as being either on foreground or background is highly dependent on its adjacent pixel’s intensity value and the final decision is made based on all four directions’ thresholding results. Finally, pulmonary nodules are extracted from thresholded CT images by several morphological techniques and then extracted candidates are discriminated based on their eccentricity and corresponding size as benign and malignant nodules.
To demonstrate the superiority of proposed RCE technique the minimum Absolute Mean Brightness Error (AMBE), the highest Peak Signal to Noise Ratio and structural Similarity Measurement Index obtained by RCE technique are compared with the other advanced contrast enhancement by histogram equalization methods. The effectiveness and high exactitude of proposed FDT method also has been evaluated on different CT images by correlation and regional non-uniformity measurement criteria. Ultimately, the performance of nodule extraction and discrimination were evaluated and 93.33% of sensitivity, 93.90% of accuracy and 94.59% of specificity have been obtained.
Abstrak tesis yang dikesan kepada Senat Universiti Putra Malaysia Sebagai memenuhi keperluan untuk ijazah Master Sains

PENINGKATAN KONTRAS SEKAWASAN DAN TEKNIK-TEKNIK PENGAMBANGAN EMPAT-ARAH BAGI PENGEKSTRAKAN DAN DISKRIMINASI NODUL PULMONARI

Oleh

SALEHEH HEIDARI

Julai 2015

Pengerusi: Muhamad Taufik Abdullah, PhD
Fakulti: Sains Komputer dan Teknologi Maklumat

Pengekstrakan nodul Pulmonal automatik dan diagnosis penyakit paru-paru menggunakan Sistem Diagnosis Berbantukan Komputer (CAD) merupakan satu tugas yang mencabar. Secara umumnya, sistem CAD menggunakan imej-imej Tomografi-Berkomputer (CT) untuk mendidagnostic tumor dan memerhatikan keadaannya semasa proses rawatan. Oleh kerana persamaan yang banyak di antara pembuluh pulmonari, bronkus dan arteri di kawasan paru-paru dan kontras yang rendah pada imej-imej Tomografi-Berkomputer (CT), ketepatan diagnosis tumor paru-paru adalah sangat bergantung kepada kontras imej tersebut dan ketepatan segmentasinya. Peningkatan Kontras dan segmentasi imej adalah teknik pra pemprosesan imej paling menonjol yang digunakan sebagai langkah utama dan penting bagi hampir setiap aplikasi patologi. Oleh itu, teknik peningkatan kontras dan teknik pengambangan imej tertentu diperlukan untuk meningkatkan kontras imej CT paru-paru dengan memperhalusi nilai keamatan pikselnya dan mengatasi kesukaran mendapatkan segmentasi yang tepat serta memudahkan pengekstrakan nodul pulmonari yang jitu.

Sehubungan itu, dalam kajian ini, Peningkatan Kontras Sekawasan (RCE) dan teknik Pengambangan Empat-arah (FDT) diperkenalkan dan diikuti dengan pengekstrakan dan diskriminasi nodul berdasarkan saiz dan ukuran bundaran masing-masing.

Teknik Peningkatan Kontras Sekawasan (RCE) bertujuan untuk meningkatkan kualiti visual imej CT dengan meningkatkan kontras imej CT paru-paru dan mengubah-suai histogram imej dengan melaksanakan algoritma yang dicadangkan pada setiap piksel individu berdasarkan nilai keamatan mereka dan variasi kawasannya.

Teknik FDT yang dicadangkan juga bertujuan untuk membantu dalam menyokong ketepatan segmentasi imej CT paru-paru dengan melaksanakan pendekatan pengambangan tertentu dari empat arah yang berbeza di mana penentuan nilai piksel sama ada berada di latar depan atau latar belakang adalah sangat bergantung kepada nilai keamatan piksel bersebelahan ini dan keputusan akhir adalah dibuat berdasarkan semua keputusan pengambangan empat arah tersebut. Akhir sekali, nodul pulmonari diekstrak dari imej CT yang telah diambangkan melalui beberapa teknik morfologi dan
kemudiannya imej-imej yang telah diekstrak itu didiskriminasikan berdasarkan keeksentrikan serta saiz padanannya sebagai nodul-nodul tidak merbahaya atau merbahaya.

Untuk menunjukkan keunggulan teknik RCE yang telah dicadangkan, Ralat Kecerahan purata Mutlak (AMBE) minimum, Isyarat Puncak tertinggi kepada Nisbah Bunyi dan Indeks Pengukuran Persamaan struktur yang diperolehi menerusi teknik RCE telah dibandingkan dengan peningkatan kontras termaju lain menerusi kaedah penyamaan histogram. Keberkesanan dan kejituan tinggi yang dipamerkan oleh kaedah FDT yang dicadangkan juga telah dinilai pada imej-imej CT berbeza melalui kaedah korelasi dan kriteria pengukuran bukan keseragaman serantau. Akhirnya, prestasi pengekstrakan dan diskriminasi nodul telah dinilai dan 93.33% sensitiviti, 93.90% kejituan dan 94.59% kespesifikan telah diperolehi.
ACKNOWLEDGEMENTS

First and foremost, Praise to and thank God, the Almighty, for blessings throughout my research work to complete successfully.

Assistance and guidance of several people have given me the opportunity to successfully complete my thesis. I owe my gratitude to all those people who have made this dissertation possible and because of them my graduate experience has been one that I will cherish forever.

My sincere gratitude to my supervisor Dr. Muhamad Taufik Abdullah who always motivated and challenged me to do my best in my research. His encouragement, support, invaluable advice and suggestions are greatly appreciated.

I express my warm thanks to Dr. Lili Nurliyana Abdullah my co-supervisor for her support and guidance. I would also like to thank the examination board members for review of this thesis and the faculty of computer science and information technology in UPM for the facilities provided throughout this research.

I would like to thank Dr. Majid Hajizadeh, Dr. Ali Hekmatnia, Dr. Azin Shayganfar and other radiologists, who participated in this study, for their cooperation and participation in surveys for this research and their fruitful suggestion.

Many friends have helped me to stay focused on my graduate study and overcome difficulties. I greatly value their warm friendship and deeply appreciate their support.

My special thanks to my sisters Somayeh and Sadaf for providing me unconditional love and care. My sisters have been my best friends all my life and I love them dearly and thank them for all their advice and support.

Finally my heart-felt gratitude to my parents Safoura and Reza. Without their love, patience, encouragement and support I would not have made it this far. My parents deserve more thanks than I can possibly express. If there is any honor in this degree, it belongs to them.
I certify that a Thesis Examination Committee has met on 1 July 2015 to conduct the final examination of Saleheh Heidari on her thesis entitled “Regional Contrast Enhancement and Four Directional Thresholding Techniques For Pulmonary Nodule Extraction and Discrimination” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Shyamala a/p C. Doraisamy, PhD
Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Chairman)

Fatimah binti Khalid, PhD
Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Internal Examiner)

Siti Mariyam Hj Shamsuddin, PhD
Professor
Universiti Teknologi Malaysia
Malaysia
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 12 August 2015
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Muhammad Taufik Abdullah, PhD
Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Chairman)

Lili Nurliyana Abdullah, PhD
Associate Professor
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 28 September 2015
Declaration by graduate student

I hereby confirm that:

• This thesis is my original work;
• Quotations, illustrations and citations have been duly referenced;
• This thesis has not been submitted previously or concurrently for any other degree at any other institutions;
• Intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• Written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• There is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: __________________

Name and Matric No.: Saleheh Heidari (GS34670)
Declaration by Members of Supervisory Committee

This is to confirm that:

- The research conducted and the writing of this thesis was under our supervision;
- Supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:
Name of Chairman of Supervisory Committee:
Signature:
Name of Member of Supervisory Committee:
Signature:
Name of Member of Supervisory Committee:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION
1.1 Background 1
1.2 Problem Statement 2
1.3 Objectives of Research 4
1.4 Research Questions 4
1.5 Scope of Research 5
1.6 Contribution of Research 5
1.7 Thesis Organization 6

2 LITERATURE REVIEW
2.1 Introduction 7
2.2 Rudimentary Knowledge 7
 2.2.1 Lung Structure 7
 2.2.2 Lung Cancer 9
 2.2.3 Nodules 11
 2.2.4 Computed-Tomography Images 17
 2.2.5 DICOM images 19
2.3 Image Preprocessing Techniques 22
 2.3.1 Contrast Enhancement 22
 2.3.2 Segmentation (Thresholding) 27
2.4 Image Post-processing Techniques 30
 2.4.1 Inference and proffered technique 32
2.5 Summary 33

3 RESEARCH METHODOLOGY
3.1 Introduction 34
3.2 Research Methodology 35
3.3 Research Design 37
3.4 Data Collection 38
 3.4.1 Sampling 39
3.4.2 Instrumentation 41
3.5 The Framework of Proposed Approach 44
 3.5.1 Image quality enhancement 45
 3.5.2 Nodules extraction and discrimination 46
3.6 Performance Measurement 46
 3.6.1 Performance Evaluation of RCE Technique 47
 3.6.2 Performance Evaluation of FDT Technique 48
 3.6.3 Performance Evaluation of Malignant Nodule Detection 49
3.7 Summary 51

4 PROPOSED APPROACH 52
 4.1 Introduction 52
 4.2 Preprocessing Phase 53
 4.2.1 Regional Contrast Enhancement 53
 4.2.2 Four-Directional Thresholding 57
 4.3 Post Processing Phase 60
 4.3.1 Background Removal and Lung’s Lobes Extraction 60
 4.3.2 Lung Lobes’ Boundary Identification 63
 4.3.3 Candidate Extraction 65
 4.3.4 Candidate Labeling 65
 4.3.5 Nodules’ Features Analysis and Discrimination 66
 4.3.6 Malignant Nodule Extraction 67
 4.4 Summary 68

5 RESULT AND DISCUSSION 69
 5.1 Introduction 69
 5.2 Regional Contrast Enhancement (RCE) Technique 69
 5.3 Four-Directional Thresholding (FDT) Technique 78
 5.4 Lung Pulmonary Nodule Extraction and Discrimination 81
 5.5 Summary 82

6 CONCLUSION 83
 6.1 Conclusion of Research 83
 6.2 Future Work 85

BIBLIOGRAPHY 86
APPENDICES 95
BIODATA OF STUDENT 100
LIST OF PUBLICATIONS 101
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Lung pulmonary nodule’s characteristics</td>
</tr>
<tr>
<td>2.2</td>
<td>Pulmonary nodule’s size</td>
</tr>
<tr>
<td>2.3</td>
<td>DICOM files characteristics</td>
</tr>
<tr>
<td>3.1</td>
<td>Sampling procedures utilized for this study</td>
</tr>
<tr>
<td>3.2</td>
<td>List of participants</td>
</tr>
<tr>
<td>3.3</td>
<td>Confusion matrix</td>
</tr>
<tr>
<td>5.1</td>
<td>Evaluation result using Absolute Mean Brightness Error (AMBE)</td>
</tr>
<tr>
<td>5.2</td>
<td>Evaluation result using Peak Signal to Noise Ratio (PSNR)</td>
</tr>
<tr>
<td>5.3</td>
<td>Evaluation result using Structural Similarity Index Measurement (SSIM)</td>
</tr>
<tr>
<td>5.4</td>
<td>Evaluation result using Region Non-Uniformity</td>
</tr>
<tr>
<td>5.5</td>
<td>Evaluation result using Correlation</td>
</tr>
<tr>
<td>5.6</td>
<td>Evaluation result Results of nodule extraction and discrimination</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>2.1</td>
<td>The inhalation and exhalation by human respiratory organs (Noah Lechtzin, 2014)</td>
</tr>
<tr>
<td>2.2</td>
<td>The lung structure (Alicia M Prater, 2008)</td>
</tr>
<tr>
<td>2.3</td>
<td>Types of lung cancers and their classification</td>
</tr>
<tr>
<td>2.4</td>
<td>Patterns of calcification for benign nodules (Ann L. et al.)</td>
</tr>
<tr>
<td>2.5</td>
<td>Edge/Marginal characteristics of nodules (William E. Brant, C. A., 2012)</td>
</tr>
<tr>
<td>2.6</td>
<td>Nodules edge analysis (William E. Brant, C. A., 2012)</td>
</tr>
<tr>
<td>2.7</td>
<td>The mechanism of modern CT machine (National Cancer Institute, 2013)</td>
</tr>
<tr>
<td>2.8</td>
<td>Lung CT image (Single DICOM file)</td>
</tr>
<tr>
<td>2.9</td>
<td>Histogram Equalization (HE) technique</td>
</tr>
<tr>
<td>2.10</td>
<td>Contrast Limited Adaptive Histogram Equalization (CLAHE) Technique</td>
</tr>
<tr>
<td>2.11</td>
<td>Brightness Bi-Histogram Equalization (BBHE) Technique</td>
</tr>
<tr>
<td>2.12</td>
<td>Dualistic Sub-Image Histogram Equalization (DSIHE) Technique</td>
</tr>
<tr>
<td>2.13</td>
<td>Recursive Mean Separate Histogram Equalization (RMSHE) technique</td>
</tr>
<tr>
<td>3.1</td>
<td>Research process flow</td>
</tr>
<tr>
<td>3.2</td>
<td>Research framework for proposed approach</td>
</tr>
<tr>
<td>4.1</td>
<td>Proposed framework</td>
</tr>
<tr>
<td>4.2</td>
<td>Segregation of lung CT image’s histogram</td>
</tr>
<tr>
<td>4.3</td>
<td>Regional Contrast Enhancement visual abstract</td>
</tr>
<tr>
<td>4.4</td>
<td>Regional Contrast Enhancement (RCE) process diagram</td>
</tr>
<tr>
<td>4.5</td>
<td>Four-Directional Thresholding (FDT) process diagram</td>
</tr>
<tr>
<td>4.6</td>
<td>Basic image structure</td>
</tr>
<tr>
<td>4.7</td>
<td>Nodule extraction and discrimination</td>
</tr>
<tr>
<td>4.8</td>
<td>Holes filling by morphological reconstruction technique</td>
</tr>
<tr>
<td>4.9</td>
<td>CT image’s background removal, lobe extraction and boundary identification</td>
</tr>
<tr>
<td>4.10</td>
<td>Morphological disk-like structuring element (parameter=4)</td>
</tr>
<tr>
<td>4.11</td>
<td>Morphological disk-like structuring element (parameter=20)</td>
</tr>
<tr>
<td>4.12</td>
<td>Nodules candidate extraction</td>
</tr>
<tr>
<td>4.13</td>
<td>Nodules candidate labeling and nodule discrimination</td>
</tr>
<tr>
<td>4.14</td>
<td>Visual representation of eccentricity measurement parameter</td>
</tr>
<tr>
<td>4.15</td>
<td>Nodules with high likelihood of malignancy</td>
</tr>
<tr>
<td>5.1</td>
<td>Experimental result of various HE techniques on CT Slice 1</td>
</tr>
<tr>
<td>5.2</td>
<td>Histogram of CT Slice 1 after HE techniques performance</td>
</tr>
<tr>
<td>5.3</td>
<td>Experimental results of various HE techniques on CT Slice 2</td>
</tr>
<tr>
<td>5.4</td>
<td>Experimental results of various HE techniques on CT Slice 3</td>
</tr>
<tr>
<td>5.5</td>
<td>Comparison of Absolute Mean Brightness Error (AMBE) in various HE techniques and RCE</td>
</tr>
<tr>
<td>5.6</td>
<td>Comparison of Peak Signal to Noise Ratio (PSNR) in various HE techniques and RCE</td>
</tr>
<tr>
<td>5.7</td>
<td>Comparison of Structural Similarity Index Measurement (SSIM) in various HE techniques and RCE</td>
</tr>
</tbody>
</table>
5.8 Comparison of AMBE and PSNR on 8 experimented images (A) CT Slice-1, (B) CT Slice-2, (C) CT Slice-3, (D) CT Slice-4, (E) CT Slice-5, (F) CT Slice-6, (G) CT Slice-7, (H) CT Slice-8
5.9 Results of evaluation by SSIM on 8 experimented images (A) CT Slice-1, (B) CT Slice-2, (C) CT Slice-3, (D) CT Slice-4, (E)
5.10 Original CT slice and its cropped portion
5.11 Results of FDT, (A) First direction from left to right, (B) second direction from right to left, (C) third direction from top to bottom, (D) forth Direction from bottom to top. (E) Final result (matching step)
5.12 Comparison of proposed FDT with OTSU and PSO
5.13 Receiver Operating Characteristic curve
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACO</td>
<td>Ant Colony Optimization</td>
</tr>
<tr>
<td>AMBE</td>
<td>Absolute Mean Brightness Error</td>
</tr>
<tr>
<td>BBHE</td>
<td>Brightness Bi-Histogram Equalization</td>
</tr>
<tr>
<td>BW</td>
<td>Black and White image, binary image</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer Aided Diagnosis</td>
</tr>
<tr>
<td>CAT</td>
<td>Computerized Axial Tomography</td>
</tr>
<tr>
<td>CDF</td>
<td>Cumulative Density Function</td>
</tr>
<tr>
<td>CLAHE</td>
<td>Contrast Limited Adaptive Histogram Equalization</td>
</tr>
<tr>
<td>CT</td>
<td>Computed Tomography</td>
</tr>
<tr>
<td>DBS</td>
<td>Discontinuity-Based Segmentation</td>
</tr>
<tr>
<td>DICOM</td>
<td>Digital Imaging and Communication in Medicine</td>
</tr>
<tr>
<td>DSIHE</td>
<td>Dualistic Sub-Image Histogram Equalization</td>
</tr>
<tr>
<td>FDT</td>
<td>Four-Directional Thresholding</td>
</tr>
<tr>
<td>FN</td>
<td>False Negative</td>
</tr>
<tr>
<td>FP</td>
<td>False Positive</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphic User Interface</td>
</tr>
<tr>
<td>HE</td>
<td>Histogram Equalization</td>
</tr>
<tr>
<td>LCE</td>
<td>Linear Contrast Enhancement</td>
</tr>
<tr>
<td>LHE</td>
<td>Local Histogram Equalization</td>
</tr>
<tr>
<td>NSCLC</td>
<td>Non-Small Cell Lung Cancer</td>
</tr>
<tr>
<td>PDF</td>
<td>Probability Distribution Function</td>
</tr>
<tr>
<td>PIV</td>
<td>Pixel’s Intensity Value</td>
</tr>
<tr>
<td>PNE</td>
<td>Pulmonary Nodule Extraction</td>
</tr>
<tr>
<td>PSNR</td>
<td>Peak Signal to Noise Ratio</td>
</tr>
<tr>
<td>PSO</td>
<td>Particle Swarm Optimization</td>
</tr>
<tr>
<td>RCE</td>
<td>Regional Contrast Enhancement</td>
</tr>
<tr>
<td>RMSHE</td>
<td>Recursive Mean Separate Histogram Equalization</td>
</tr>
<tr>
<td>RNU</td>
<td>Region Non-Uniformity</td>
</tr>
<tr>
<td>ROC</td>
<td>Receiver Operating Characteristic</td>
</tr>
<tr>
<td>ROI</td>
<td>Region Of Interest</td>
</tr>
<tr>
<td>SBS</td>
<td>Similarity-Based Segmentation</td>
</tr>
<tr>
<td>SCLC</td>
<td>Small Cell Lung Cancer</td>
</tr>
<tr>
<td>SPN</td>
<td>Solitary Pulmonary Nodule</td>
</tr>
<tr>
<td>SSIM</td>
<td>Structural Similarity Index Measurement</td>
</tr>
<tr>
<td>T</td>
<td>Thresholding Value</td>
</tr>
<tr>
<td>TN</td>
<td>True Negative</td>
</tr>
<tr>
<td>TP</td>
<td>True Positive</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

Lung is the most vital and complex bilateral organ in human body. It is enclosed by musculoskeletal chest wall and carries out the task of intrathoracic air-exchange by expanding and contracting up to 20 times per minute (Apar K. et al., 2013). Lung is divided into lobes and provides capillaries by supplying oxygen to be diffused to tissue and oxygenate blood all over the body. The healthiness of this respiratory organ is vitally important for human life. Thus it should be retained from any respiratory disorders (American Thoracic Society, 2014).

Recently, many industrialized countries suffer from air pollution that can be the common cause of respiratory diseases such as Acute bronchitic, Lung cancer, Pneumonia, Asthma and Tuberculosis (G. Krucik, 2013). Among all types of lung diseases, Interstitial Lung Diseases (ILD) and Diffuse Parenchymal Lung Disease (DPLD) are generally recognized as the most common and prevalent lung disorders (Guo J. et al., 2002; Helen et al., 2011).

Generally, lung cancer is a type of pulmonary disease that occurs when the anomalous cells grow and proliferated in lung lobes uncontrollably. The nominated abnormal cells usually are divided rapidly and forming the lung pulmonary tumors which diminish the lung’s ability to oxygenate the vessels (Peter C., 2009).

Regarding the lung cancer related mortality; National Cancer Institute revealed that there were 226160 new lung cancers diagnosed and 160340 related death by the end of 2012. Accordingly, World Health Organization (WHO) broadcast that the 7.6 million deaths are caused by cancer and by far the lung cancer with 1,370,000 deaths per year is the worst cancer killer worldwide (Peter C., 2009). Studies done in United State manifest that the lifetime risk of invasive lung cancer for women is approximately about 5.5 percent and 5.9 percent for men. It is argued that approximately about 80 percent of lung cancer could be treated if it is diagnosed in incipient phase of disease (Peter J. et al., 2013). Therefore, due to the importance of early disease-diagnosis, the identification of pathological feature and types of pulmonary tumors in lung cancer could impact on accurate prognosis (Russell C. et al., 2008; Rina D. et al., 2013).

Tumors’ location variation and their characteristics may differ in specific period of time. Based upon these characteristics and the tumors’ traits they are classified into two different types, which determine whether they are cancerous or non-cancerous. The tumors that have not been propagated in specific time and their characteristics remain
identical are known as benign tumors (non-cancerous). Otherwise, they are categorized as malignant tumors as they behave like cancerous nodules that spread to other parts of body through lymphatic system (Peter C., 2009; Robert M. et al., 2014).

It is noticeable that the treatment of lung malignant nodules is much harder and in some case it is impossible. Thus, recognizing pulmonary nodules in early phase of disease has significant impacts on all stages of treatment process (Chaudhary, 2012). Inspection of lung pulmonary disease and identification of tumors’ type could be done by scrutinizing Computed-Tomography (CT) images and morphological analysis of extracted nodules.

Lung Computed Tomography (CT) image is a standard instrument, which is utilized for lung disease diagnosis. But due to the specific gray-level distribution among CT images, they have a very low contrast. Although overwhelming minor lung diseases could be observable in CT images, the paucity of information that they provide is often insufficient to identify the type of nodules and hampers the task of pulmonary nodule extraction in Computer Aided Diagnosis (CAD) systems (Guo J. 2002). Lung nodules extraction and malignant tumor detection through Lung CT images investigation by CAD systems has always been a challenging task which is associated with some difficulties. Tackling with these difficulties would not be possible without using image-processing techniques.

1.2 Problem Statement

Although body possess natural defenses to protect lung from any germs and large particles such as dust and pollen, air pollutants usually harm the lung tissues directly and undermine those important defenses. Thus, due to the complexity and substantial functioning of lung, the healthiness of this respiratory organ is vitally important for human life and helps the human body to work properly.

Retention of lung from any aforementioned factors is often inevitable. But restraining the development of lung disease like pulmonary malignant and benign nodules and repelling their progression could always prevent lung disease mortality. Consequently, lung Computed-Tomography (CT) image is used to observe lung pulmonary nodules’ abnormality (William E. Brant, 2012). Pulmonary nodules are usually emerged as the primary sign of lung cancer, which could be observable in CT images. CT image is the most fundamental tool used in Computer Aided Diagnosis (CAD) system to evaluate the various types of lung lesion (Li Y. et al., 2011). But usually due to narrow dynamic range (poor quality) of CT images, inspection of lung disease and examination of nodules’ types become awkward (Guodong Z. et al., 2008; Agarwal, T.K. et al., 2014).

Thus, the low quality of lung CT images is one of the most important obstacles in pulmonary nodule investigation thorough CT images. The poor quality provided by CT image is due to the dynamic range of gray level, the distribution of gray pixels and
their frequency of occurrence throughout the image. This characteristic always causes the lack of contrast in CT image and leads the image to provide paucity of information that makes the nodule examination and their interpretation tedious and difficult.

Additionally, low contrast of lung CT images usually leads to omission of pulmonary nodule recognition by human radiologist. Beside the fact that low contrast of lung CT image make the lung disease diagnosis abstruse for human, it also leads to a high False-Negative (FN) rate for small nodules detection through CAD system (Dolejši, 2007). Observation of pulmonary nodules' abnormalities in CAD system by using lung low contrast CT images is often unfathomable and it will also affect all further processing and analysis. Thus, a contrast enhancement technique is indispensible preprocessing technique to tackle with the lack of contrast in lung CT images.

Extensive similarity between pulmonary vessels, bronchus and arteries in lung region is another factor, which affects pulmonary nodule extraction in CAD system. In spite of the nominated factors, location diversity of lung pulmonary nodules also makes their investigation a difficult task. Therefore, precise image segmentation could be exploited as another preprocessing technique to cope with difficulties involved in pulmonary nodule detection. Although, Image segmentation technique could simply help to extract pulmonary nodule candidates, yet it is a challenging task (Hui Cui, et al., 2013).

Many researchers merely attempted to develop manifold image contrast enhancement and segmentation techniques for general kind of images. Even though these techniques yield adequate results on general images, their performance on lung CT images yields insufficient results. Unexpected results obtained by advanced techniques are due to lung CT images specific characteristics. Thus, in order to cope with lung CT image characteristics a particular image preprocessing is required to tackle with CT images characteristic as well as facilitating and boosting the accuracy of pulmonary nodule extraction.

At last, it is noticeable that the implementation of image processing techniques on lung CT images produces many tumor-like candidates, which could be enumerated as a tumor. So a specific rule is required to identify the type of tumor. In this case, the morphological characteristics of the tumor should be investigated. The features and the traits of the candidates should be analyzed in order to remove the isolate pixels (noise) and eliminate the small candidates that are not identified as a malignant tumor. Therefore, nodules’ discrimination and malignant tumor identification is highly challenging.

Ultimately, all aforementioned obstacles that pulmonary nodule detection encounters throughout its performance could simply be summarized as below:

- Dynamic range of gray level, the distribution of gray pixels and their frequency of occurrence throughout the Lung CT images that yield insufficient contrast in CT image (Agarwal, T.K. et al., 2014) and cause
to provide paucity of information that makes the nodule examination and their interpretation difficult.
• Location diversity of lung pulmonary nodules.
• Extensive similarity between pulmonary nodules, vessels, bronchus and arteries in lung region (Hui Cui, et al., 2013).
• Deficiency and unavailability of particular image preprocessing techniques for lung CT images.

1.3 Objectives of Research

As discussed earlier, exactitude and high precision of pulmonary nodule extraction is dependent on several factors. This research is conducted to overcome with these factors by obtaining specific aims as follow:

• To enhance the contrast of lung CT image by proposing a particular image contrast enhancement technique.
• To propose a precise image segmentation (Thresholding) technique to facilitate the pulmonary nodules’ candidates extraction.
• To improve the detection of pulmonary nodules without being affected by their location diversity
• To discriminate the extracted candidates as malignant or benign based on their size and eccentricity

1.4 Research Questions

Having an organized mind has always been useful to construct the research substratum comprehensibly that leads the research into a well-projected path. Thus, in order to conduct the research in a well reasoned and coherent way several questions have been designed based on the aforementioned research problems and objectives. The questions are as below:

• Which image processing techniques can be utilized to optimize the lung CT image contrast?
• Which image thresholding technique could be exploited to enhance the precision of lung CT image segmentation?
• How could juxtapleural nodules be extracted as well as parenchymal nodules?
• What type of morphological analysis could sufficiently discriminate the benign and malignant nodules?
1.5 Scope of Research

The scope of this study is to extract and discriminate lung pulmonary nodules solely by image processing technique. The cardinal image processing techniques used in this research are simply divided into image preprocessing such as contrast enhancement and image segmentation and the post processing techniques to extract the nodule candidate and isolate them based on their size and eccentricity as malignant or benign nodules. The instrument used in this research is the original lung Computed-Tomography (CT) image known as lung DICOM files.

The results obtained in image contrast enhancement is compare with six advanced technique such as HE, CLAHE, DSIEHE, BBHE, LHE and RMSHE. The performance of image segmentation (Thresholding) technique also has been compared with OTSU and PSO, which are the well-known image segmentation techniques. Furthermore, the performance of pulmonary nodule classification is evaluated by specific criteria to measure it sensitivity and accuracy.

1.6 Contribution of Research

The accuracy of lung nodule extraction and their classification is extremely dependent on the quality of CT images. As stated previously, the quality of lung CT is inappropriate for further analysis. Thus a meticulous image preprocessing is required to simplify the nodule extraction task and enhance it exactitude. Therefore, the major contributions of this research is to propose a method to enhance the contrast of CT images as well as propounding precise image segmentation and nodule extraction.

In this research a Regional Contrast Enhancement (RCE) technique is proposed to boost up the quality and contrast of lung CT images and refine their pixels’ intensity value for further analysis. The RCE technique also redistributes the gray pixels and equalized the gray-level’s interval to regenerate image histogram. The RCE algorithm is mainly work based on pixels’ regional variation throughout the image.

Another contribution of this research is the proposed Four-Directional Thresholding (FDT) techniques in which the neighbor pixels play significant role in determination of every individual pixel’s intensity value. Ultimately, nodules will be extract after implementation of those two proposed techniques by performing various morphological techniques. Then extracted nodule will be investigated and discriminated into benign and malignant nodules.
1.7 Thesis Organization

This chapter provides the introduction to the research discussed in this study. The current chapter basically explicates preliminary information about lung nodule extraction. It also provides related problem that had been the main focus of this study that encouraged researching the solitary pulmonary nodule extraction and their classification. This chapter also clarifies research objectives, questions, contribution and the scopes.

Chapter 2 profoundly expounds rudimentary knowledge about lung structure and lung cancer. The chapter also describes nodules and their characteristics. The features of benign and malignant nodule are also elucidated in Chapter 2 as well as their similarities and differences. Computed tomography and DICOM images are also presented.

Following the rudimental information of lung structure and nodules characteristics the prior studies and their achievements are looked over in Chapter 2. These studies are fundamentally construed into two distinct sections as preprocessing and post processing. In which each section thoroughly reviewed pertinent literatures.

Chapter 3 utterly explicates the methodology utilized to conduct this study. It clearly expounds the process followed in this research as well as exploited methodology. The research design, data collection, sampling and instrumentation are simply described. And the designed framework and performance measurements approaches are thoroughly presented.

The proposed approaches to conduct this research are profoundly delineated in Chapter 4. The proposed algorithms for image preprocessing and post processing are discussed in detail and their info-graphic are provided.

Chapter 5 discusses the experimental results of every single proposed algorithm respectively. It clearly elucidated the performance of proposed techniques and evaluates their result based on specific evaluation metrics given in Chapter 4 and the discussed the achievements.

Ultimately the study is concluded in Chapter 6 and the future work is conferred. It clearly draws conclusion of research and describes the possible future works that could be accomplish to enhance this study.
BIBLIOGRAPHY

Ann Leung and Robin Smithuis, Solitary pulmonary nodule: benign versus malignant, Department of Radiology, Stanford University Medical Center, Stanford, California and the Department of Radiology, Rijnland Hospital, Leiderdorp, the Netherlands, Retrieved 17 August 2013 from http://www.radiologyassistant.nl/en/p460f9fed50637/solitary-pulmonary-nodule-benign-versus-malignant.html

Mohsen Keshani, Zohreh Azimifar, Farshad Tajeripour, Reza Boostani, Lung nodule segmentation and recognition using SVM classifier and active contour modeling: A complete intelligent system, Computers in Biology and Medicine, Volume 43, Issue 4, 1 May 2013, Pages 287-300, ISSN 0010-4825

Qingzhu Wang, Wenwei Kang, Chunming Wu, Bin Wang, Computer-aided detection of lung nodules by SVM based on 3D matrix patterns, Clinical Imaging,

Shengdong Nie; Lihong Li; Yuanjun Wang; Chaofan He; Feng Ji; Jianmei Liang, "A segmentation method for sub-solid pulmonary nodules based on fuzzy c-means clustering,"Biomedical Engineering and Informatics (BMEI), 2012 5th International Conference on, vol., no., pp.169, 172, 16-18 Oct. 2012. doi: 10.1109/BMEI.2012.06513127

