UNIVERSITI PUTRA MALAYSIA

AUTOMATION SYSTEM FOR SINGLE PHOTON GENERATION AND DETECTION

CHAN KAR TIM

FS 2009 2
AUTOMATION SYSTEM FOR SINGLE PHOTON GENERATION AND DETECTION

CHAN KAR TIM

MASTER OF SCIENCE

UNIVERSITI PUTRA MALAYSIA

2009
AUTOMATION SYSTEM FOR SINGLE PHOTON GENERATION AND DETECTION

By

CHAN KAR TIM

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, In Fulfilment of the Requirements for the Degree of Master of Science

March 2009
TO ALL THE LOVED ONES IN MY LIFE.....
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science.

AUTOMATION SYSTEM FOR SINGLE PHOTON GENERATION AND DETECTION

By

CHAN KAR TIM

March 2009

Chairman: Ionel Valeriu Grozescu, PhD
Faculty: Science

Single photon source can be produced by using spontaneous parametric down conversion or quantum emitter such as ions, molecules, atoms, quantum dots and colour centres. Main objective of current research is to automate single photon generation module and detection module based on nitrogen vacancy colour centre in diamond into one system. In single photon generation, diamond sample is held at a holder mounted on a 3D piezo translation stage. Laser source with wavelength 527nm is focused using a standard microscope objective to a spot size at the nitrogen vacancy centre to produce fluorescence.

Since a single photon is generated by exciting an isolated nitrogen vacancy in a diamond crystal, it is critical that position of nitrogen vacancies in the crystal to be known. For this purpose, a scanning system was designed and constructed to determine the 3D position of nitrogen vacancy and identified their coordinates for
later use. The system consists of a high precision 3D piezo translation stage and was controlled by a scanning programme built using LabVIEW. This programme will map the location of the vacancies in an intensity graph where axis X and Y show the scanning position while the bright colour spots determine the position of the vacancies.

In single photon detection which is based on the Hanbury-Brown-Twiss setup, the fluorescence emitted from the nitrogen vacancy is split by a beamsplitter and directed to single photon detectors. A digital pulse is produced for each photocount detected. At the same time, output from the detectors is fed into a time to amplitude converter/single channel analyzer to produce coincidence counts. In order to read and record the number of photon counts and number of coincidences, a detection system was designed and built. This detection system interfaces a series of high performance single photon detectors to the same computer that controls the scanning system via a detection programme. Besides reading and recording data, the detection programme can also calculate the second order correlation function, $g^2(\tau)$ from a subVI written in LabVIEW 8.2.
PENGAUTOMASIAN SISTEM PENGHASILAN DAN PENGESANAN FOTON TUNGGAL

Oleh

CHAN KAR TIM

March 2009

Memandangkan foton tunggal terhasil apabila nitrogen-kekosongan dalam permata diujakan, adalah kritis kedudukan nitrogen-kekosongan diketahui. Bagi tujuan ini, satu sistem pengimbas telah direka dan dibina untuk menentukan kedudukan dan

Demi membaca dan merekod bilangan foton dan kebetulan, satu sistem pengesanan telah direka dan dibina. Sistem ini mengantaramukakan beberapa alat pengesan foton tunggal pada komputer yang mengawal sistem pengimbasan melalui program pengesanan. Selain membaca dan merekod data, program pengesanan ini juga boleh menghitung fungsi korelasi tertib kedua \(g^2(\tau)\) melalui satu subVI yang ditulis menggunakan perisian LabVIEW 8.2.
ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor, Associate Professor Dr. Ionel Valeriu Grozescu for giving me a chance to study and work with him. His encouragement, advice, guidance and technical support have not only making this research possible but also helping me to be a better person. I would also like to thank my co-supervisor, Associate Professor Dr. Hishamuddin Zainuddin for his valuable support and discussions during this period of study.

Thanks and appreciation is also extended to all my friends and colleagues especially Kuan Ya Chin, Suhaila and Kokula who have helped me in countless ways and made these years lots of fun. I would also like to thank Mr. Roslim and Mr. Zulambiar for their generosity in assisting and permitting me to use the Instrumentation Lab.

Last but not least, I wish to express my gratitude to my family especially my wife, Kun Mei Yee, for her support and understanding. Thank you very much.
I certify that an Examination Committee met on 3 March 2009 to conduct the final examination of Chan Kar Tim on his master thesis entitled “Automation System for Single Photon Generation and Detection” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the Master of Science.

Members of the Examination Committee were as follows:

Zaidan Abdul Wahab, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Zainal Abidin Talib, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Zainal Abidin Sulaiman, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Dino Isa, PhD
Associate Professor
Faculty of Engineering
School of Electrical and Electronic Engineering
Nottingham University
Malaysia
(External Examiner)

HASANAH MOHD. GHAZALI, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Ionel Valeriu Grozescu, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Hishamuddin Zainuddin, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

HASANAH MOHD. GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 14 May 2009
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

CHAN KAR TIM

Date: 12 March 2009
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
</tr>
<tr>
<td>ABSTRACT</td>
</tr>
<tr>
<td>ABSTRAK</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
</tr>
<tr>
<td>APPROVAL</td>
</tr>
<tr>
<td>DECLARATION</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 A Brief History 1
1.2 What is Single Photon Source? 1
1.3 Application of Single Photon Source 2
1.4 Automation for Single Photon Generation and Detection System 4
1.5 Objectives 5
1.6 Outline of the Present Work 6

2 LITERATURE REVIEW

2.1 Single Quantum Emitter 8
 2.1.1 Atoms and Trapped Ions as Quantum Emitter 9
 2.1.2 Colour Centre as Quantum Emitter 11
 2.1.3 Molecules as Quantum Emitter 14
 2.1.4 Quantum Dots as Quantum Emitter 18
2.2 Hanbury Brown Twiss (HBT) Detection Technique 21
2.3 Confocal Scanning Technique 23
2.4 Application Based on LabVIEW Programming 24

3 THEORIES

3.1 Coherence Theory 26
3.2 Correlation Function 28
 3.2.1 First Order Correlation Function 28
 3.2.2 Second Order Correlation Function 30
 3.2.3 Different Flavours of Light 32
3.3 Theory of Photodetection 35
 3.3.1 Quantum Efficiency of a Detector 35
 3.3.2 Dark Noise 35
 3.3.3 Speed and Saturation 35
 3.3.4 Theory of Photoelectric Detectors 36
3.4 Theory of Timing and Coincidence Counting 38
3.5 Theory of Optical Components 40
 3.5.1 Resolving Power and Numerical Aperture 40
3.5.2 Depth of Focus 42
3.5.3 Aberrations 43
3.5.4 Lenses 44
3.6 Serial Communication 46

4 METHODOLOGY
4.1 Single Photon Generation System 51
4.1.1 Scanning System 53
4.1.2 Single Photon Detection System for Nitrogen Vacancy Mapping 55
4.1.3 Standard Microscope Objective 56
4.1.4 Piezo Controller 57
4.1.5 Single Photon Counting Module 58
4.2 Single Photon Detection System 59
4.2.1 Detection Measurement Setup 61
4.2.2 Time to Amplitude Converter/ Single Channel Analyzer 62
4.2.3 Time to Amplitude Converter/ Single Channel Analyzer Setting 63
4.2.4 Testing Operation of Time to Amplitude Converter/ Single Channel Analyzer 65
4.2.5 Setting Coincidence Window for Single Channel Analyzer 67
4.2.6 Testing Operation to Verify the Function of Detection Programme 69
4.3 Data Acquisition System 70
4.3.1 Data Acquisition for Scanning System 71
4.3.2 Data Acquisition for Detection System 72
4.3.3 Signal Connections 73
4.3.4 Data Acquisition Hardware and Driver 75

5 RESULT AND DISCUSSION
5.1 Algorithm for Positioning Programme 80
5.2 Positioning Programme 82
5.2.1 Piezo Controller Setting 83
5.2.2 Positioning Operation Block Diagram 84
5.2.3 Positioning Selection 88
5.2.4 User Interface for Positioning Programme 91
5.3 Algorithm for Scanning Programme 94
5.4 Scanning Programme 97
5.4.1 Raster Scan 98
5.4.2 Counter Setting 104
5.4.3 Data Saving for Scanning Programme 105
5.4.4 Mapping of Vacancies 106
5.4.5 User Interface for Scanning Programme 109
5.5 Algorithm for Detection Programme 113
5.6 Detection Programme 115
5.6.1 Counter Initialization 116
5.6.2 Counting and Data Acquisition Process 117
5.6.3 Timing Process 120
5.6.4 Second Order Correlation Function g^2 Calculation Process 120
5.6.5 Data Saving for Detection Programme 122
5.6.6 Number of Counts and Coincidences from Testing Operation 124
5.6.7 User Interface for Detection Programme 125

<table>
<thead>
<tr>
<th>6</th>
<th>CONCLUSION AND SUGGESTIONS</th>
<th>127</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Automation of Piezo Controller via LabVIEW Programming</td>
<td>127</td>
</tr>
<tr>
<td>6.2</td>
<td>Automation of Scanning System</td>
<td>127</td>
</tr>
<tr>
<td>6.3</td>
<td>Automation of Detection System</td>
<td>128</td>
</tr>
<tr>
<td>6.4</td>
<td>Suggestion for Improvement and Future Works</td>
<td>129</td>
</tr>
</tbody>
</table>

REFERENCES 130
APPENDICES 134
BIODATA OF STUDENT 149
LIST OF PUBLICATIONS 150
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Setting of the front panel</td>
<td>66</td>
</tr>
<tr>
<td>4.2</td>
<td>Electrical connection for the counters and ground</td>
<td>75</td>
</tr>
<tr>
<td>5.1</td>
<td>Serial Communication Setting</td>
<td>80</td>
</tr>
<tr>
<td>5.2</td>
<td>Looping process in Frame 2 for scanning distance 20 µm and Nx (step) = 1µm</td>
<td>103</td>
</tr>
<tr>
<td>5.3</td>
<td>Conditional output from the logical programming</td>
<td>119</td>
</tr>
<tr>
<td>5.4</td>
<td>Number of counts from START (B), STOP (B’) and coincidences (BB’)</td>
<td>124</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>A pulsed classical source (top) and a pulsed single photon source (bottom)</td>
</tr>
<tr>
<td>2.1</td>
<td>Typical optical excitation scheme for a 3 level quantum emitter. (Lukishova et al., 2003)</td>
</tr>
<tr>
<td>2.2</td>
<td>Outline of the principal elements of the experiment. L represents convex lenses (Kimble et al., 1977).</td>
</tr>
<tr>
<td>2.3</td>
<td>Radio frequency trap.</td>
</tr>
<tr>
<td>2.4</td>
<td>Seven-level model of NV centre by Nizovtsev et al., 2003</td>
</tr>
<tr>
<td>2.5</td>
<td>Collision pulse mode locked laser exciting microcavity.</td>
</tr>
<tr>
<td>2.6</td>
<td>Schematic diagram of the optical setup used to excite single molecules and to collect their fluorescence (Brunel et al., 1999).</td>
</tr>
<tr>
<td>2.7</td>
<td>Growth of self-assembled quantum dots: a) A thin layer of InAs is grown on top of GaAs. After a critical thickness is reached, b) quantum dots form to relieve mechanical strain. c) The dots are then capped with GaAs.</td>
</tr>
<tr>
<td>2.8</td>
<td>Experimental setup using InAs quantum dot (Robert et al., 2001).</td>
</tr>
<tr>
<td>2.9</td>
<td>a) Radio interferometer while b) modified radio interferometer (Brown et al., 1956)</td>
</tr>
<tr>
<td>2.10</td>
<td>A Hanburry-Brown and Twiss interferometer, used to determine the degree of second order temporal coherence of a light source.</td>
</tr>
<tr>
<td>2.11</td>
<td>Confocal scanning technique</td>
</tr>
<tr>
<td>2.12</td>
<td>Block diagram of a typical automated system by R. N. Roy (2002)</td>
</tr>
<tr>
<td>3.1</td>
<td>Generalized light paths in an interference experiment</td>
</tr>
<tr>
<td>3.2</td>
<td>Plot of g^2 as a function of delay normalized to the coherence length τ/τ_c for $g^2(\tau) = 1$ (blue line) and $g^2(\tau) > 1$ (red and green line)</td>
</tr>
<tr>
<td>3.3</td>
<td>Plot of g^2 as a function of delay normalized to the coherence length τ/τ_c for $g^2(\tau) < 1$</td>
</tr>
<tr>
<td>3.4</td>
<td>Photon detection as a function of time for a) antibunched b) random c) bunched light</td>
</tr>
</tbody>
</table>
3.5 Functional diagram of a time to amplitude converter (Canberra, 2005).

3.6 Delay and pulse height measurement by the TAC/SCA

3.7 Numerical aperture of a standard microscope objective

3.8 Depth of focus of a lens

3.9 Formation of an image by a thin lens. The points marked F is equal to the focal length f.

3.10 Order of the binary code for an 8-bit data

3.11 A start bit (Space state) and a stop bit (Mark state)

3.12 RS232 serial waveform transmission

4.1 Single photon generation setup and detection

4.2 Transmission and reflection of the dichroic mirror (Edmund Optics, N47-268) used in the experimental setup (Edmund Optics, 2004, pp. 82)

4.3 Part of scanning system and delivery system

4.4 Differential micrometer drive

4.5 Schematic diagram of single photon detection system for nitrogen vacancy mapping

4.6 Standard microscope objective

4.7 Piezo controller MDT693A

4.8 Single photon counting module

4.9 Schematic diagram of single photon detection system

4.10 50/50 Beam splitter

4.11 Detection measurement setup

4.12 Time to amplitude converter / single channel analyzer

4.13 Internal control of TAC/SCA. Marked jumper plugs can be used to change the polarity of the input/ output terminals.

4.14 Typical setup for testing the operation of the TAC
4.15 TAC verification output
4.16 Upper and lower limit for TAC output
4.17 Minimum and maximum value of the voltage window
4.18 SCA output based on the voltage window
4.19 Testing setup to verify the function of detection programme
4.20 Data acquisition system for scanning
4.21 Data acquisition for detection setup
4.22 Signal connections for a) scanning system and b) detection system
4.23 Connector block and shielded cable
4.24 Counter / timer Data Acquisition Card
4.25 Simple event counting
4.26 Gated-event counting
5.1 Algorithm for positioning
5.2 Overall block diagram for positioning programme
5.3 a) sub VI for serial port setting b) Block diagram for piezo controller setting
5.4 a) Micron to voltage subVI b) Micron to voltage block diagram
5.5 a) Positioning subVI b) Block diagram for positioning subVI
5.6 Number to fractional string function
5.7 Concatenate string function
5.8 Frac/exp string to number function
5.9 a) voltage to micron subVI b) voltage to micron block diagram
5.10 Block diagram for three axes or single axis function selector
5.11 Sequential programming for three axes
5.12 Case structure used for selection of different axis in single axis selector
5.13	User interface for piezo controller setting	92
5.14	LabVIEW positioning operation front panel	93
5.15	Single axis folder showing the knob control	93
5.16	Algorithm for two dimension scanning	95
5.17	Algorithm for line scanning	96
5.18	Overall block diagram for the scanning programme	97
5.19	Division of the scanning area	98
5.20	Set scan subVI block diagram and the connection terminal	99
5.21	Initialize array function	100
5.22	Connection of two dimension array to a shift register	101
5.23	Scanning sequence from Frame 0 to 3	102
5.24	Replace array subset	104
5.25	Block diagram of counter used in scanning programme	105
5.26	Data saving for scanning programme	106
5.27	Simulated data displayed in an intensity graph for pane Z=1. Circed areas are spots with high counts.	107
5.28	Simulated data displayed in an intensity graph for pane Z=2. Circed areas are spots with high counts.	107
5.29	Three dimensions graph plotted using ORIGIN software to determine the bright spot for plane Z=1.	108
5.30	Three dimensions graph plotted using ORIGIN software to determine the bright spot for plane Z=2.	109
5.31	Front panel for counter setting	110
5.32	Front panel for scan setting	111
5.33	Front panel for scanning programme in the graph folder	111
5.34	Front panel for displaying collected data	112
5.35	Algorithm for detection process	114
5.36	Algorithm for reading counters and calculating second order correlation function procedure	115
5.37	Overall block diagram of the detection programme	116
5.38	Polymorphic VI selector from Create task function	117
5.39	Read task and its polymorphic VI selector	118
5.40	Logical programming to create a conditional output	119
5.41	a) Connection of the elapsed time function b) Elapsed time function	120
5.42	Connection of data to the G2 CALC subVI	121
5.43	g²(τ) calculation subVI	122
5.44	Data saving for detection programme	123
5.45	Front panel of detection programme for setting	125
5.46	Front panel for data display	126
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>APD</td>
<td>Avalanche photodiode</td>
</tr>
<tr>
<td>ASCII</td>
<td>American standard for information interchange</td>
</tr>
<tr>
<td>DAQ</td>
<td>Data acquisition system</td>
</tr>
<tr>
<td>HBT</td>
<td>Hanbury Brown Twiss</td>
</tr>
<tr>
<td>LabVIEW</td>
<td>Laboratory Virtual Instrument Engineering Workbench</td>
</tr>
<tr>
<td>LSB</td>
<td>Least significant bit</td>
</tr>
<tr>
<td>MSB</td>
<td>Most significant bit</td>
</tr>
<tr>
<td>NA</td>
<td>Numerical aperture</td>
</tr>
<tr>
<td>NI-VISA</td>
<td>National Instrument- Virtual Instrument Software Architecture</td>
</tr>
<tr>
<td>NV</td>
<td>Nitrogen vacancy</td>
</tr>
<tr>
<td>PFI</td>
<td>Programmable function interface</td>
</tr>
<tr>
<td>PZT</td>
<td>Piezo translation</td>
</tr>
<tr>
<td>QKD</td>
<td>Quantum key distribution</td>
</tr>
<tr>
<td>QD</td>
<td>Quantum dot</td>
</tr>
<tr>
<td>SCA</td>
<td>Single channel analyzer</td>
</tr>
<tr>
<td>SPCM</td>
<td>Single photon counting module</td>
</tr>
<tr>
<td>TAC</td>
<td>Time to amplitude converter</td>
</tr>
<tr>
<td>TTL</td>
<td>Transistor-transistor logic</td>
</tr>
<tr>
<td>VI</td>
<td>Virtual instrument</td>
</tr>
</tbody>
</table>

LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n(\tau)$</td>
<td>Number of events</td>
</tr>
<tr>
<td>$P(t, t+\tau)$</td>
<td>Joint photoelectric detection probability density</td>
</tr>
<tr>
<td>τ</td>
<td>Time difference or delay</td>
</tr>
<tr>
<td>E</td>
<td>Radiation field</td>
</tr>
<tr>
<td>I</td>
<td>Irradiance</td>
</tr>
<tr>
<td>$g^{(1)}$</td>
<td>First order correlation function</td>
</tr>
<tr>
<td>$g^{(2)}$</td>
<td>Second order correlation function</td>
</tr>
<tr>
<td>N_B</td>
<td>Number of detections at counter B</td>
</tr>
<tr>
<td>N_B'</td>
<td>Number of detections at counter B’</td>
</tr>
<tr>
<td>$N_{BB'}$</td>
<td>Number of coincidence</td>
</tr>
<tr>
<td>P_{act}</td>
<td>Photons actual count rate</td>
</tr>
<tr>
<td>X</td>
<td>Input value in distance (µm) form</td>
</tr>
<tr>
<td>Y</td>
<td>Input value in distance (µm) form</td>
</tr>
<tr>
<td>V_X</td>
<td>Input value in voltage form for X</td>
</tr>
<tr>
<td>V_Y</td>
<td>Input value in voltage form for Y</td>
</tr>
<tr>
<td>N_X</td>
<td>Step input for axis X (in µm)</td>
</tr>
<tr>
<td>N_Y</td>
<td>Resolution for axis Y (in µm)</td>
</tr>
<tr>
<td>S_X</td>
<td>Total number of scanning points along X axis</td>
</tr>
<tr>
<td>S_Y</td>
<td>Total number of scanning points along Y axis</td>
</tr>
<tr>
<td>D_X</td>
<td>Step input for axis X (in v)</td>
</tr>
<tr>
<td>D_Y</td>
<td>Step input for axis Y (in v)</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

1.1 A Brief History

In 1905, Albert Einstein published the theory of photoelectric effect which gave the idea of photons to describe light as composed of discrete quanta rather than continuous waves. This theory plays an important role in the photoelectric detection of light and its experimental application has led to a clearly point of view of the statistical properties of light (Bachor et al., 2004, pp. 1-2). The understanding of the interaction between light and matter following from these developments formed the basis of quantum optics.

After the introduction of the correlation experiment in 1956 and also the forming of quantum formulation of optical coherence by R. J. Glauber, quantum optics started to flourish. Many experiments based on entangled photon pairs and quantum emitter such as using trap ions, quantum dots, molecules and colour centre have been studied intensively to realize their potential as a single photon source.

1.2 What is Single Photon Source?

A single photon source is a source that can emit one photon at a time. In general, each photon emitted has antibunching characteristic. This characteristic is a quantum state of light where the photon statistics deviate strongly from the classical
distribution. For example, if one photon was send to a beam splitter and photon counting detectors were placed at the transmitted and reflected beams position, no coincidence will be observed. From the principle of quantum mechanics, the wavefunction of the photon has to collapse onto either one of the two detectors. The probability of obtaining two or more photons at the same time is negligible. Figure 1.1 shows the difference between a triggered classical photon stream and the triggered single photon stream (ideal). An ideal single photon source emits one and only one photon in each pulse as shown in Figure 1.1.

Figure 1.1: A pulsed classical source (top) and a pulsed single photon source (bottom)

1.3 Applications of Single Photon Source

Quantum cryptography more precisely as Quantum Key Distribution (QKD) is one of the first major application proposed for single photon source (M. Oxborrow et al., 2005). In this application, a sender (Alice) sends information to the receiver (Bob) through a channel. Each bit of their information is coded on a single quantum state or qubit. If a third party, a potential eavesdropper (Eve) tries to eavesdrop on the transmission, Eve will alter some of the states of these photons. Quantum mechanics