PREPARATION AND CHARACTERIZATION OF CORE-SHELL COPPER NANOPARTICLES STABILIZED BY KAPPA CARRAGENAN AND SODIUM ALGINATE

HAJAR KHANEHZAEI

FS 2015 11
PREPARATION AND CHARACTERIZATION OF CORE-SHELL COPPER NANOPARTICLES STABILIZED BY KAPPA CARRAGENAN AND SODIUM ALGINATE

By

HAJAR KHANEHZAEI

Thesis Submitted to the School of Graduate Studies Universiti Putra Malaysia, in Fulfillment of the Requirement for the degree of Master of Science

May 2015
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of University Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purpose from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of University Putra Malaysia.

Copyright© Universiti Putra Malaysia
DEDICATION

To God, who gave me life and strength

To my family
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

PREPARATION AND CHARACTERIZATION OF CORE-SHELL COPPER NANOPARTICLES STABILIZED BY KAPPA CARRAGENAN AND SODIUM ALGINATE

By

HAJAR KHANEHZAEI

May 2015

Chairman: Professor Mansor B. Ahmad, PhD
Faculty: Science

Among metal nanoparticles, copper nanoparticles (Cu-NPs) have recently attracted increased attention because of their low cost (in contrast to Au and Ag) and their usable properties. Rate of resistance of microorganisms to antibiotics is alarming. Pathogenic bacteria are becoming much resistant to antibiotics. Copper nanoparticles synthesis particularly in bio-based stabilizers can act as antimicrobial agents, which in turn could resist pathogenic microorganisms. In this work, synthesis and characterization of Cu-NPs and Cu@Cu$_2$O core shell nanoparticles (CSNPs) were carried out in the presence of two different marine polymers as stabilizers *Kappaphycus alvarezii* (*K. alvarezii*) and sodium alginate (SA) by two varied methods; chemical reduction and gamma irradiation. The aim of this research is to synthesize, characterize and test the antimicrobial activity of Cu and Cu$_2$O nanoparticles. The Cu@Cu$_2$O-CSNPs were synthesized by using chemical reduction method in *K. alvarezii* media. Also Cu-NPs and Cu@Cu$_2$O-CSNPs were prepared in sodium alginate by using same method. The synthesis carried out using aqueous medium in presence of hydrazinium hydroxide as reducing agent, CuSO$_4$.5H$_2$O as copper precursor and sodium hydroxide as pH moderator.

The effects of the concentration of *K. alvarezii* and sodium alginate as stabilizer were studied. Formation of nanoparticles was determined by UV–vis spectroscopy where surface plasmon absorption maxima can be observed at 390-600 nm from the UV–vis spectrum. The synthesized nanostructures were also characterized by X-ray diffraction (XRD). In addition; the morphology and structure of the nanoparticles were investigated by Transmission Electron Microscopy (TEM), emission scanning electron microscopy (FESEM) and Energy-dispersive X-ray spectroscopy (EDX). TEM results showed a gradual decrease of particle size from low concentration of *K. alvarezii* and sodium alginate to high concentration. The study clearly
showed that using various amounts of *K. alvarezii* and sodium alginate led to produce Cu@Cu$_2$O-CSNPs with different sizes and ratios of Cu:Cu$_2$O. For the *K. alvarezii/Cu@Cu$_2$O-CSNPs*, the Cu-NPs increased and the Cu$_2$O decreased with increasing the concentration of *K. alvarezii* until 0.2 wt.% in the Cu@Cu$_2$O-CSNPs. At the highest concentration of *K. alvarezii*, Cu decreased compare to Cu$_2$O. Moreover for the Cu@Cu$_2$O-CSNPs synthesized in sodium alginate with increasing the media concentration, the Cu increased and at the highest concentration of media (1.0 wt.%) only copper nanoparticles were produced. The size of the nanoparticles decreased as the amount of *K. alvarezii* and sodium alginate was increased.

Moreover the *K. alvarezii/Cu@Cu$_2$O-CSNPs* and SA/Cu-NPs were synthesized by using gamma irradiation method. The synthesis was done through γ-irradiation reduction of copper ions. The suspension was irradiated under γ-irradiation source 60Co with doses of 5, 20, 40, 80, 100 and 120 kGy at room temperature. The effect of irradiation dosage was investigated. The UV-Vis spectroscopy results obtained for samples indicated that only the samples which were irradiated by 80, 100 and 120 kGy showed surface plasmon resonance (SPR) peaks in the range of 350-600 nm. It was due to the formation of *K. alvarezii/Cu@Cu$_2$O-CSNPs* and SA/Cu-NPs for these doses. TEM analysis indicated size and distribution of the nanoparticles varied in different doses of gamma irradiation. When the absorbed dose increased from 80 to 120 kGy the nanoparticle size decreased. Following synthesis of the nanoparticles, antibacterial analysis of the synthesized particles was investigated. Antimicrobial analysis conducted on the synthesized nanoparticles showed activity against all tested microorganisms.
PENYEDIAAN DAN PENCIRIAN NANOPARTIKEL KUPRUM TERAS CANGKERANG YANG DISTABILKAN OLEH KAPPA CARRAGENAN DAN NATRIUM ALGINAT

Oleh

HAJAR KHANEHZAEI

Mei 2015

Pengerusi: Profesor Mansor B. Ahmad, PhD
Fakulti: Sains

Antara nanopartikel logam, nanopartikel tembaga (Cu-NPs) baru-baru ini telah menarik banyak perhatian kerana kos yang rendah (berbanding Au dan Ag) dan sifat-sifat bermanfaat mereka. Kadar rintangan mikroorganisma terhadap antibiotik adalah membimbangkan. Bakteria patogenik menjadi lebih tahan terhadap antibiotik. Nanopartikel tembaga sintesis terutama dalam penstabil berasaskan bio boleh bertindak sebagai agen anti-mikrob, yang seterusnya dapat menahan mikroorganisma patogenik.

Dalam kerja ini, sintesis dan pencirian nanopartikel Cu dan nanopartikel teras petala (CSNPs) Cu@Cu₂O telah dijalankan dengan menggunakan dua polimer marin yang berbeza sebagai penstabil, Kappaphycus alvarezii (K. alvarezii) dan natrium alginat (SA) oleh dua kaedah iaitu penurunan kimia dan radiasi gamma. Tujuan kajian ini adalah untuk mensintesis, mencirikan nanopartikel Cu dan Cu₂O dan menguji aktiviti antimikrobia nanopartikel. CSNPs Cu@Cu₂O telah disintesis dengan menggunakan kaedah penurunan kimia dalam media K. alvarezii. Cu-NPs dan nanopartikel teras petala Cu@Cu₂O juga telah disediakan dalam natrium alginat dengan menggunakan kaedah yang sama. Sintesis dijalankan dalam medium akueus dengan menggunakan hidrazinium hidroksida sebagai agen penurunan, CuSO₄.5H₂O sebagai prekursor tembaga dan natrium hidroksida sebagai pengawal pH.

Kesan kepekatan K. alvarezii dan natrium alginate sebagai penstabil telah dikaji. Pembentukan nanopartikel telah ditentukan oleh spektroskopip UV-nampak di mana penyerapan plasmon permitukaa maksimum dapat dilihat pada 390-600 nm dari spektrum UV-nampak. Nanostruktur yang disintesis juga dicirikan dengan pembelauan sinar-X (XRD). Sebagai tambahan,
morfologi dan struktur nanopartikel telah disiasat dengan Mikroskopi transimisi electron (TEM), mikroskopi pengimbasan electron FESEM dan Tenaga-serakan sinar-x (EDX). Keputusan TEM menunjukkan saiz zarah berkurangan secara sedikit demi sedikit daripada kepekatan K. alvarezii dan natrium alginat rendah kepada kepekatan tinggi. Kajian ini jelas menunjukkan bahawa dengan memvariasikan jumlah K. alvarezii dan natrium alginat membawa kepada penghasilan CSNPs Cu@Cu$_2$O dengan saiz dan nisbah Cu:Cu$_2$O yang berbeza. Untuk CSNPs K. alvarezii/Cu@Cu$_2$O, Cu-NPs bertambah dan Cu$_2$O berkurang dengan peningkatan kepekatan kepekatan K. alvarezii sehingga berat 0.2% dalam nanopartikel Cu@Cu$_2$O. Pada kepekatan tertinggi K. alvarezii, Cu menurun berbanding Cu$_2$O. Tambahan pula nanopartikel Cu@Cu$_2$O yang disintesis dalam natrium alginat dengan peningkatan kepekatan media, Cu meningkat dan pada kepekatan tertinggi media (berat 1.0%) hanya nanopartikel tembaga dihasilkan. Saiz nanopartikel berkurang sebagaimana jumlah K. alvarezii dan natrium alginat meningkat.

Selain itu, K. alvarezii/Cu@Cu$_2$O-CSNPs dan SA/Cu-NPs telah disintesis dengan menggunakan kaedah radiasi gamma. Sintesis itu dilakukan melalui penurunan ion tembaga oleh sinar-γ. Koloid itu telah diradiasi di bawah sinar-γ bersumberkan 60Co dengan penyerapan dos daripada 5, 20, 40, 80, 100 dan 120 kGy pada suhu bilik. Keputusan spektroskopi UV-nampa diperolehi menunjukkan bahawa hanya sampel yang telah diradiasi sebanyak 80, 100 dan 120 kGy menunjukkan puncak plasmon permukaan resonans (SPR) dalam julat 350-600 nm. Ia adalah disebabkan oleh pembentukan K. alvarezii/Cu@Cu$_2$O-CSNPs dan SA/Cu-NPs bagi dos-dos tersebut. Analisis TEM menunjukkan saiz dan taburan nanopartikel berubah dalam dos radiasi gamma berbeza. Apabila dos yang diserap meningkat dari 80 kepada 120 kGy, saiz nanopartikel berkurangan.

Selepas mensintesis nanopartikel, analisis antibakteria zarah yang disintesis telah dikaji. Analisis antimikrobia dijalankan ke atas nanopartikel yang disintesis dan ianya menunjukkan aktiviti terhadap semua mikroorganisma yang diuji.
ACKNOWLEDGEMENTS

First of all, I will like to give praise to Almighty God for the wisdom and determination that he has bestowed upon me during this research project, and indeed, for keeping me healthy and safe throughout my life.

I would like to express my sincere gratitude to my supervisor, Prof. Dr. Mansor B. Ahmad for his guidance and support throughout this study, especially for his countless hours of reflecting, reading, encouraging, and most of all patience throughout the entire process. I would also like to thank my committee members: Prof. Mansor B. Ahmad and Dr Norhazlin Zainuddin and were more than generous with their expertise and precious time.

I would like to acknowledge my school division for allowing me to conduct my research and providing all the necessary assistance requested. Special thanks are also given to all the staffs of development and human resources department for their support. I would like to express my deepest gratitude to Dr Kamyar Shameli for sharing with me their knowledge and giving their precious time to help me achieve my aim.

Appreciation is also given to my good friends for their help encouragement which keep me going and wish them all the best in their life. Most of all, I would like to express my sweetest appreciation to my family for their affectionate support, patience and encouragement all time. Their prayers and good wishes always help me to be strong, especially in difficult times. I am very grateful and thankful to them.
I certify that a Thesis Examination Committee has met on 25 May 2015 to conduct the final examination of Hajar Khaneh Zaei on her thesis entitled "Preparation and Characterization of Core-Shell Copper Nanoparticles Stabilized by Kappa Carragenan and Sodium Alginate" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Mahiran binti Basri, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Mohamad Zaki bin Abd Rahman, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Internal Examiner)

Sugeng Triwahyono, PhD
Associate Professor
Universiti Teknologi Malaysia
Malaysia
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 17 June 2015
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfillment for the degree of Doctor of Philosophy.

The members of the Supervisory committee were as follows:

Mansor B. Ahmad, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Norhazlin Zainuddin, PhD
Senior Lecturer
Faculty of Science
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

• This thesis is my original work;
• Quotations, illustrations and citations have been duly referenced;
• This thesis has not been submitted previously or concurrently for any other degree at any other institutions;
• Intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• Written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• There is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: Date: ____________

Name and Matric No: Hajar Khanehzaei (GS35367)
Declaration by Members of Supervisory Committee

This is to confirm that:
• The research conducted and the writing of this thesis was under our Supervision;
• Supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:
Name of Chairman of Supervisory Committee:

Signature:
Name of Member of Supervisory Committee:
TABLE OF CONTENTS

ABSTRACT i
ABSTRAKT iii
ACKNOWLEDGEMENTS v
APPROVAL vi
DECLARATION viii
LIST OF FIGURES xiii
LIST OF TABLES xvi
LIST OF ABBREVIATIONS xvii

CHAPTER
1 INTRODUCTION
1.1 Background 1
1.2 Problem Statement 2
1.3 Objectives 2

2 LITERATURE REVIEW 4
2.1 Nanomaterials 4
2.2 Nanoparticle synthesis 5
 2.2.1 Physical methods 5
 2.2.2 Chemical methods 6
 2.2.3 Unstabilized chemical synthesis of metal nanoparticles 7
 2.2.4 Stabilized chemical synthesis of metal nanoparticles 7
 2.2.5 Green synthesis 9
2.3 Seaweeds 11
2.4 Stabilizers 13
2.5 Antibacterial activity of nanoparticles 14
 2.5.1 Gram positive bacteria 15
 2.5.2 Gram negative bacteria 15

3 MATERIALS AND METHODS 17
3.1 Materials 17
3.2 Methods 17
 3.2.1 Preparation aqueous medium of K. alvarezi 17
 3.2.2 Preparation of Cu@Cu2O core shell nanoparticles by chemical reduction method in K. alvarezi 17
 3.2.3 Preparation of Cu@Cu2O-CSNPs and Cu- 18
NPs by chemical reduction method in sodium alginate
3.2.4 Preparation of Cu@Cu$_2$O-CSNPs by gamma irradiation method in K. alvarezii
3.2.5 Preparation of Cu-NPs by gamma irradiation method in Sodium alginate

3.3 Characterization
3.3.1 Ultra Violet-Visible Spectroscopy
3.3.2 X-ray Diffraction
3.3.3 Field Emission Scanning Electron Microscopy
3.3.4 Transmission Electron Microscopy
3.3.5 Energy-Dispersive X-ray spectroscopy
3.3.6 Fourier Transformed-Infrared Spectroscopy

3.4 Antibacterial test

4 RESULTS AND DISCUSSION
4.1 Preparation of Cu@Cu$_2$O core shell nanoparticles by chemical reduction method in K. alvarezii
4.2 Characterization of K. alvarezii /Cu@Cu$_2$O-CSNPs
4.2.1 UV-visible spectroscopy
4.2.2 X-ray diffraction
4.2.3 Transmission electron microscopy
4.2.4 Scanning electron microscopy
4.2.5 Energy dispersive X-ray spectroscopy
4.2.6 Fourier Transformed-Infrared Spectroscopy
4.3 Antibacterial activity of synthesized K. alvarezii/Cu@Cu$_2$O-CSNPs by chemical reduction
4.4 Preparation of Cu and Cu@Cu$_2$O core shell nanoparticles by chemical reduction method in sodium alginate
4.5 Characterization of SA /Cu@Cu$_2$O-CSNPs
4.5.1 UV-visible spectroscopy
4.5.2 X-ray diffraction
4.5.3 Transmission electron microscopy
4.5.4 Scanning electron microscopy
4.5.5 Energy-dispersive X-ray spectroscopy
4.5.6 Fourier Transformed-Infrared Spectroscopy
4.6 Antibacterial activity of Cu@Cu$_2$O-CSNPs and Cu-NPs synthesis by chemical reduction method in SA
4.7 Preparation of Cu@Cu$_2$O-CSNPs by gamma irradiation method in K. alvarezii
4.8 Characterization of *K. alvarezii* /Cu@Cu2O-CSNPs prepared by gamma irradiation
4.8.1 UV-visible spectroscopy
4.8.2 X-ray diffraction
4.8.3 Transmission electron microscopy
4.8.4 Scanning electron microscopy
4.8.5 Energy-dispersive X-ray spectroscopy
4.8.6 Fourier Transformed-Infrared Spectroscopy

4.9 Antibacterial activity of synthesized *K. alvarezii* /Cu@Cu2O-CSNPs by gamma irradiation

4.10 Preparation of Cu-NPs by gamma irradiation method in sodium alginate

4.11 Characterization of SA/Cu-NPs prepared by gamma Irradiation
4.11.1 UV-Visible Spectroscopy
4.11.2 X-ray diffraction
4.11.3 Transmission electron microscopy
4.11.4 Scanning electron microscopy
4.11.5 Energy-dispersive X-ray spectroscopy
4.11.6 Fourier Transformed-Infrared Spectroscopy

4.12 Antibacterial activity of synthesized SA/Cu-NPs by gamma Irradiation

5 CONCLUSIONS AND RECOMMENDATION
5.1 Conclusions
5.2 Recommendation for future research

REFERENCES

BIODATA OF STUDENT

LIST OF PUBLICATIONS
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.</td>
<td>Chemical structure of kappa carrageenan(Urano and Ina, 2007)</td>
<td>12</td>
</tr>
<tr>
<td>2.3.</td>
<td>Chemical structure of sodium alginate) (Kashima and Imai, (2012)</td>
<td>13</td>
</tr>
<tr>
<td>4.1.</td>
<td>Schematic illustration of the synthesized Cu@Cu2O-CSNPs in K. alvarezii by chemical reduction method</td>
<td>22</td>
</tr>
<tr>
<td>4.2.</td>
<td>Photograph of prepared K. alvarezii/Cu@Cu2O-NPs at different Concentration of medium, respectively [0.05, 0.1, 0.2, 0.5 and 1.0(a-e) wt.%].</td>
<td>23</td>
</tr>
<tr>
<td>4.3</td>
<td>UV-vis absorption of K. alvarezii (a) and K. alvarezii/Cu@Cu2ONPs at different concentration of medium, respectively [0.05(b), 0.1(c), 0.2(d), 0.5(e) and 1.0(f) wt.%].</td>
<td>24</td>
</tr>
<tr>
<td>4.4.</td>
<td>XRD diffractogram of K. alvarezii (a) and K. alvarezii/Cu@Cu2O-NPs at different concentration of medium, respectively [0.05(b), 0.1(c), 0.2(d), 0.5(e) and 1.0 (f) wt%].</td>
<td>25</td>
</tr>
<tr>
<td>4.5.</td>
<td>Transmission electron micrographs and particle size distribution of K. alvarezii/Cu@Cu2O-NPs at different concentration of K. alvarezii medium, 0.05, 0.1, 0.2 and 1.0 wt % (a-d), respectively</td>
<td>27</td>
</tr>
<tr>
<td>4.6.</td>
<td>TEM image of multi-single particles Cu@Cu2O core shell at 0.2 wt.% of K. alvarezii medium</td>
<td>28</td>
</tr>
<tr>
<td>4.7.</td>
<td>Field emission scanning electron micrographs of K. alvarezii/Cu@Cu2O- NPs at different Concentration of K. alvarezii medium, respectively [0.05, 0.1, 0.2 and 1.0 wt.% (a-d)].</td>
<td>29</td>
</tr>
<tr>
<td>4.8.</td>
<td>Energy-dispersive X-ray spectroscopy of K. alvarezii/Cu@Cu2O-NPs at different concentration of K. alvarezii medium respectively [0.05, 0.1, 0.2 and 1.0 wt.% (a-d)].</td>
<td>30</td>
</tr>
<tr>
<td>4.9.</td>
<td>Fourier transformed infrared spectra for K. alvarezii and K. alvarezii/Cu@Cu2O-NPs at different concentration of K. alvarezii medium, respectively [0.05, 0.2 and 1.0 wt. % (b-d)]</td>
<td>31</td>
</tr>
<tr>
<td>4.10.</td>
<td>Images of Cu@Cu2O-CSNPs in K. alvarezii media in (a) Methicillin Resistant Staphylococcus aureus (MRSA) (b) Staphylococcus aureus (S276) (c) Pseudomonas aeruginosa (15442) (d) Escherichia coli (E266) [S (k.alvarezii) S1, S2, S3, S4 and S4 (0.05, 0.1, 0.2, 0.5 and 1.0 wt.%</td>
<td>33</td>
</tr>
<tr>
<td>4.11.</td>
<td>Schematic illustration of the synthesized Cu@Cu2O-CSNPs in SA by chemical reduction method.</td>
<td>35</td>
</tr>
<tr>
<td>4.12.</td>
<td>Photograph of prepared SA (a), Cu@Cu2O-CSNPs (b-e), and Cu-NPs (f), at different percentage of SA medium,</td>
<td>36</td>
</tr>
</tbody>
</table>
4.13. UV-vis absorption of SA (a) SA/Cu@Cu2O-NPs (b-e) and SA/Cu-NPs (f), at different percentage of SA medium, respectively [0.05, 0.1, 0.2, 0.5 and 1.0 wt.%].

4.14. XRD diffractogram of SA (a) Cu@Cu2O-CSNPs (b-e) and Cu-NPs (f), at different percentage of SA medium, respectively [0.05, 0.1, 0.2, 0.5 and 1.0 wt.%].

4.15. Transmission electron micrographs and particle size distribution of Cu@Cu2O-CSNPs (a-c) and Cu-NPs (d) at different percentage of SA medium, respectively [0.05, 0.1, 0.2 and 1.0 wt.%].

4.16. TEM image for core shell structure of SA/Cu@Cu2O at 0.2 wt.% of sodium alginate.

4.17. Field emission scanning electron micrographs of Cu@Cu2O-CSNPs (a-c) and Cu-NPs (d) at different percentage of SA medium, respectively [0.05, 0.1, 0.2 and 1.0 wt.%].

4.18. Energy-dispersive X-ray spectroscopy of Cu@Cu2O-CSNPs (a-c) and Cu-NPs (d) at different percentage of SA medium [0.05, 0.1, 0.2 and 1.0 wt.%], respectively.

4.19. Fourier transformed infrared spectra for SA (a), Cu@Cu2O-CSNPs (b,c) and Cu-NPs (d) at different percentage of SA medium [0.05, 0.2 and 1.0 wt.%], respectively.

4.20. Images of Cu@Cu2O–CSNPs in sodium alginate media in (a) Methicillin Resistant Staphylococcus aureus (MRSA) (b) Staphylococcus aureus (S276) (c) Pseudomonas aeruginosa (15442) (d) Escherichia coli (E266) [SA(sodium alginate) SA1, SA2, SA3, SA4 and SA5 (0.05, 0.1, 0.2, 0.5 and 1.0 wt %).]

4.21. Photograph of prepared K. alvarezii/Cu@Cu2O-CSNPs by different doses of gamma radiation, respectively [80,100 and 120 kGy].

4.22. UV-vis absorption of K. alvarezii/Cu@Cu2O-CSNPs at different doses of gamma radiation, respectively [5(a), 40(b), 80(c), 100 (d) and 120(e) kGy].

4.23. XRD diffractogram of K. alvarezii (a) and K. alvarezii/Cu@Cu2O-CSNPs at different doses of gamma radiation, respectively [80, 100 and 120 kGy (b-d)].

4.24. Transmission electron micrographs and particle size distribution of K. alvarezii/Cu@Cu2O-CSNPs at different doses of gamma radiation 80, 00 and 120 kGy (a-c), respectively.

4.25. TEM image of core shell structure of K. alvarezii/Cu@Cu2O at 100 kGy of gamma radiation.

4.26. Field emission scanning electron micrographs of Cu@Cu2O-CSNPs (a-c) at different doses of gamma radiation, respectively [80, 90 and 120 kGy].

4.27. Energy-dispersive X-ray spectroscopy of K.
alvarezi/Cu@Cu2O-NPs at different doses of gamma radiation, respectively [80, 100 and 120 (a-c)]

4.28. Fourier transformed infrared spectra K. alvarezi/Cu@Cu2O-CSNPs (b-d) at different doses of gamma radiation, respectively [5, 80 and 120 kGy]

4.29. Images of K. alvarezi/Cu@Cu2O-CSNPs in (a) Methicillin Resistant Staphylococcus aureus (MRSA) (b) Staphylococcus aureus (S276) (c) Pseudomonas aeruginosa (15442) (d) Escherichia coli (E266) [1 (K. alvarezi) 2, 3,4,5 (5,80, 100 and 120 kGy)]

4.30. Schematic illustration of the synthesized Cu-NPs in SA by gamma radiation

4.31. Photograph of prepared SA/Cu-NPs by different doses of gamma radiation, respectively [80,100 and 120 kGy]

4.32. UV-vis absorption of Cu-NPs at different doses of gamma radiation, respectively [5(a), 40(b),80(c), 100(d) and 120(e) kGy]

4.33. XRD diffractogram of sodium alginate (a) Cu-NPs at different doses of gamma radiation, respectively [80, 100 and 120 kGy (b-d)]

4.34. Transmission electron micrographs and particle size distribution of Cu-NPs at different doses of gamma radiation 80, 100 and 120 kGy (a-c), respectively

4.35. Field emission scanning electron micrographs of Cu-NPs (a-c) at different doses of gamma radiation, respectively [80, 90 and 120 kGy]

4.36. Energy-dispersive X-ray spectroscopy of Cu-NPs at different doses of gamma radiation, respectively [80, 100 and 120 (a-c)]

4.37. Fourier transformed infrared spectra SA (a) and Cu-NPs (b-d) at different doses of gamma radiation, respectively [5, 80 and 120 kGy]

4.38. Images Cu-NPs in (a) Methicillin Resistant Staphylococcus aureus (MRSA) (b) Staphylococcus aureus (S276) (c) Pseudomonas aeruginosa (15442) (d) Escherichia coli (E266) [1 (SA) 2, 3,4,5 (5,80, 100 and 120 kGy)]
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1. Antibacterial activities of K. alvarezii /Cu@Cu$_2$O-CSNPs against different bacteria</td>
<td>34</td>
</tr>
<tr>
<td>4.2. Antibacterial activities of SA /Cu@Cu$_2$O-CSNPs against different bacteria</td>
<td>46</td>
</tr>
<tr>
<td>4.3. Antibacterial activities of synthesized K. alvarezii /Cu@Cu$_2$O-CSNPs by gamma radiation against different bacteria</td>
<td>57</td>
</tr>
<tr>
<td>4.4. Antibacterial activities of synthesized SA /Cu by gamma radiation against different Bacteria</td>
<td>67</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSNPs</td>
<td>Core shell nanoparticles</td>
</tr>
<tr>
<td>K. alvarezii</td>
<td>Kappaphycus alvarezii</td>
</tr>
<tr>
<td>SA</td>
<td>Sodium alginate</td>
</tr>
<tr>
<td>NPs</td>
<td>Nanoparticles</td>
</tr>
<tr>
<td>SPR</td>
<td>Surface Plasmon Resonance</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray Diffraction</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission Electron Microscopy</td>
</tr>
<tr>
<td>FESEM</td>
<td>Field Emission Scanning Electron Microscopy</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>EDX</td>
<td>Energy Dispersive X-ray</td>
</tr>
<tr>
<td>FT-IR</td>
<td>Fourier Transfer Infrared Spectroscopy</td>
</tr>
<tr>
<td>DIZ</td>
<td>Diameters of inhibition zone</td>
</tr>
<tr>
<td>MRSA</td>
<td>Methicillin Resistant Staphylococcus aureus</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

Nanotechnology is one area which offers insight into materials at a nano levels. Nanotechnology deals with technology at atomic, molecular as well as macromolecular level which is in nano-scale. It also gives the basic knowledge of nanoparticles and their effect in association with their application and size (Roco, 2001). Nanoparticle sizes are specifically on interest in nanotechnology studies, as the sizes affect most of their special properties. The special properties of nanoparticles have varying results in various nanotechnology applications. There are different nanoparticle types for different applications such as metallic, non-metallic, carbon nano tubes as well as oxide nanoparticles (Yun et al., 2008). Metallic nanoparticles have special properties which are because of a combination of big proportion of high energy surface atoms as compared with bulk solid as well as to the nanometer scale mean free path of electrons in any metal (\(\sim 10^{-100}\) nm for most metals at room temperature). These are useful in different applications including catalysis, optoelectronics, magnetic, biology as well as micro-electronics (Lijie Zhang and Webster, 2009).

At present, among metallic nanoparticles, synthesis of copper (both oxide and metallic) nanoparticles has gained the attention of scholars because of their usable properties and inexpensiveness.

Copper being one of the inexpensive materials, has gained the attention of researchers via its nanoparticle synthesis due to the similarity in terms of properties with silver and gold, which are expensive (Chattopadhyay and Patel, 2012). Copper is in fact regarded as an alternative for gold, silver as well as platinum in the areas of thermal conducting as well as micro-electronics. Also it has been reported in studies of antimicrobial susceptibility studies, that copper nanoparticles were shown to have increased antibacterial activity than its counterparts in silver (Valodkar et al., 2012). This aids copper nanoparticles synthesis one major area of research in nanotechnology. Copper nanoparticles synthesis of various compositions with preferred sizes as well as shapes is crucial for exploring their applications in the field of nanotechnology (Wen et al., 2011). Areas such as catalysis (Hoover et al., 2006), micro-electronics and sensors (Yun et al., 2008) greatly depend on the size and shapes of nanoparticles.
1.2 Problem statement

In the current environmental pollution being a challenging situation, using environment friendly materials is adamant in research work. Natural sources are being used to get biopolymers which are bio-degradable. They are non-toxic, easily available and also renewable which make them environmentally-friendly. Rate of resistance of microorganisms to antibiotics is surprising. Pathogenic bacteria are becoming much resistant to antibiotics, which are produced on a continuous basis for combating microorganism. At present, antibiotics are resisted by every single pathogenic organism, which makes the fight much challenging (Rafi et al., 2010).

Nanotechnology is a crucial area for research in future with immense potential in terms of nano-medicine. Nanoparticles and their properties such as antimicrobial and smaller size make them able for application in various areas such as medicine and biology. They show an extensive range of properties such as biological properties which varies from their bulk materials. As such synthesis of copper nanoparticles varies from their bulk materials. As such, copper nanoparticles synthesis particularly in bio-based stabilizers can act as antimicrobial agents, which in turn could resist pathogenic microorganisms. For synthesis of copper nanoparticles the stabilization of nanoparticles is one of the major problems to applications and the production of copper nanoparticles is much more challenging than noble metals because copper nanoparticles are totally sensitive to aqueous solutions, and air is stable at these conditions. To avoid oxidation of copper nanoparticles during synthesis an inert environment, such as argon or nitrogen is used.

Stabilization of nanoparticles is difficult due to the high surface area to volume ratio and surface energy of nanoparticles. To obtain copper nanoparticles with high stability, Surfactants and polymers widely used as stabilizers. Many of these commonly used stabilization agents, such as Polyethylene glycol (PEG) and poly vinyl pyrrolidone (PVP) are organic chemicals which are probably toxic.

1.3 Objectives

Synthesis of copper (both oxide and metallic) nanoparticles is beneficial because of its applicability in various industries. Its similarity in terms of properties with noble and expensive metals such as platinum, silver and gold makes it a good alternative to these metals, mainly because of the ready availability as well as its inexpensive nature. Even though there are different Cu and Cu@Cu$_2$O nanoparticles synthesis approach, this study intends to explore the synthesis and characterization of Cu and Cu@Cu$_2$O core shell nanoparticles in the sodium alginate and Kappaphycus alvarezi (K. alvarezi) as
stabilizer via using two varying physical (γ-irradiation) as well as chemical approaches.

The specific objectives are:

1. To prepared *(K. alvaræzii)* and sodium alginate stabilized Cu-NPs and Cu@Cu₂O-CSNPs by chemical reduction and γ-irradiation methods.
2. To characterize Cu-NPs and Cu@Cu₂O-CSNPs using some of the different spectroscopy techniques.
3. To evaluate the antibacterial capability of the produced nanoparticles.
REFERENCES

Urano, T., Ina, S. (2007). Powdery mixture of a calcium hydroxide optionally containing magnesium hydroxide with one a carrageenan having a six-membered-ring galactose skeleton and bonded in equatorial conformation to a sulfate group and a hydroxyl group and being kneaded together with water at time of use: Google Patents.

