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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 

the requirement for the Degree of Master of Science 

 

ABSOLUTE DEVIANCE METHOD FOR SYMMETRICAL UNIFORM 

DESIGNS 

 

By 

GRACE LAU CHUI TING 

October 2015 

Chair    : Anwar Fitrianto, PhD  

Faculty : Science 

Uniform design is a kind of space filling designs which is widely used in various field 

due to its great advantages. There are two types of uniform design; symmetrical and 

asymmetrical. Measure of uniformity and construction methods are essentials for 

construction of uniform designs. Uniform designs can be achieved by minimizing a 

discrepancy where the discrepancy is a measure of uniformity. From the various 

discrepancies that have been suggested, centered L2 discrepancy and mixture discrepancy 

are employed in our research. In this research, we focused on the type of symmetrical 

uniform designs,  s

nU n  which the factors have same number of levels and the number 

of experimental runs equal to the number of levels. There are numbers of construction 

methods of uniform designs or nearly uniform designs in the literature. A design with 

low discrepancy or a good approximation to uniform design is a nearly uniform design. 
The existing construction methods such as good lattice point method, optimization 

searching method and the cutting method exhibited their advantages. However, there are 

still having areas which need to improve. Moreover, there is no development of new 

construction methods in the recent years. Therefore, two of the existing construction 

methods of uniform design; the optimization method and the cutting method are analyzed 

and modified to a better approach in terms of computation time and uniformity.  

 

 

The optimization method is modified by proposing the absolute difference equivalence 

(ADE) approach which coordinate with ruin and recreate (R&R) approach in reducing 

the size of neighborhood and decreasing the computational load. Ultimately, the size of 
the neighborhood and the computational time are decreased and the global solution can 

be obtained. We have shown that ADE approach effectively reduce the size of 

neighborhood which is determined by the R&R approach.  

 

 

Furthermore, an optimization part is added to the cutting method to find an appropriate 

number for experimental runs of the initial design. Conclusively, suggestion tables are 

given on the number of experimental runs for initial design which results in uniform 
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designs with more stable uniformity. It shows that choosing the suggested number of 

experimental runs of initial design produces uniform designs with lower uniformity. 

 

 

Besides, we proposed a new method called absolute deviance method (ADM) for 

construction of symmetrical nearly uniform designs. The concept of ADM is from the 
idea of uniform design which uniformly scattered the points in the experimental domain. 

The uniformity of the uniform design can be achieved by setting specific pattern of the 

absolute differences between points. It shows that this new method is an efficient method 

in constructing symmetrical uniform designs with better uniformity. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk Ijazah Master Sains 

 

KAEDAH MUTLAK DEVIANS BAGI REKA BENTUK SERAGAM YANG 

SIMETRI 

Oleh 

GRACE LAU CHUI TING 

Oktober 2015 

Pengerusi: Anwar Fitrianto, PhD 

 

Fakulti: Sains 

Reka bentuk yang seragam adalah sejenis ruang isi reka bentuk yang digunakan secara 

meluas dalam pelbagai bidang kerana kelebihan yang menarik. Terdapat dua jenis reka 
bentuk seragam; simetri dan asimetri. Ukuran untuk keseragaman dan kaedah pembinaan 

adalah keperluan bagi pembinaan reka bentuk yang seragam. Reka bentuk yang seragam 

boleh dicapai dengan mengurangkan percanggahan di mana percanggahan itu adalah 

ukuran keseragaman. Daripada pelbagai percanggahan yang telah dicadangkan, 

percanggahan berpusat L2 dan percanggahan campuran digunakan dalam penyelidikan 

kami. Dalam kajian ini, kami memberi tumpuan kepada jenis reka bentuk seragam yang 

simetri,  s

nU n  di mana faktor-faktor mempunyai bilangan peringkat yang sama dan 

bilangan percubaan beroperasi sama dengan bilangan peringkat. Terdapat banyak kaedah 

pembinaan reka bentuk yang seragam atau reka bentuk yang hampir seragam dalam 

kajian literatur. Reka bentuk dengan percanggahan rendah atau penghampiran yang baik 

untuk mereka-bentuk seragam adalah reka bentuk yang hampir seragam. Kaedah 
pembinaan yang sedia ada seperti kaedah titik kekisi yang baik, kaedah pengoptimuman 

dan kaedah pemotongan mempamerkan kelebihan masing-masing. Walau bagaimanapun, 

masih ada bahagian-bahagian yang perlu ditingkatkan. Selain itu, tiada pembangunan 

kaedah pembinaan baru dalam beberapa tahun kebelakangan. Oleh yang demikian, dua 

kaedah pembinaan yang sedia ada untuk reka bentuk yang seragam; kaedah 

pengoptimuman dan kaedah pemotongan dianalisa dan diubahsuai kepada kaedah yang 

lebih baik dari segi pengiraan masa dan keseragaman. 

 

 

Kaedah pengoptimuman diubahsuai dengan mencadangkan cara perbezaan mutlak 

kesetaraan (ADE) yang menyelaras dengan cara kehancuran dan mencipta semula (R&R) 
dalam mengurangkan saiz kawasan kejiranan dan mengurangkan beban pengiraan. 

Akhirnya, saiz kawasan kejiranan dan masa pengiraan akan berkurangan dan 

penyelesaian global boleh diperolehi. Kami telah menunjukkan bahawa cara ADE 

berkesan untuk mengurangkan saiz kejiranan yang ditentukan dengan cara R&R. 
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Selain itu, langkah pengoptimuman ditambah kepada kaedah pemotongan untuk mencari 

bilangan yang sesuai untuk percubaan beroperasi reka bentuk permulaan. Akhirnya, 

jadual cadangan bilangan percubaan beroperasi reka bentuk permulaan disediakan untuk 

mencapai reka bentuk seragam dengan keseragaman yang lebih stabil. Ia menunjukkan 

bahawa memilih bilangan percubaan beroperasi reka bentuk permulaan yang 

dicadangkan menghasilkan reka bentuk yang seragam dengan keseragaman yang lebih 
baik. 

 

 

Selain itu, kami mencadangkan satu kaedah baru yang dikenali sebagai kaedah mutlak 

devians (ADM) bagi pembinaan reka bentuk seragam yang simetri. Konsep ADM adalah 

dari idea reka bentuk seragam iaitu seragam bertaburan titik-titik di domain eksperimen. 

Keseragaman reka bentuk seragam dapat dicapai dengan menentukan perbezaan mutlak 

antara titik-titik. Ia menunjukkan bahawa kaedah baru ini adalah kaedah yang efisien 

bagi membina reka bentuk seragam yang simetri dengan keseragaman yang lebih baik. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1  Experimental Design 

 

 

 Statistical experimental design has proven track record in history and has been used as 

statistical tools in various fields. The experimental design was first employed in 

agriculture and technology. It has been developed rapidly in the past years and played 

an important role in development of sciences and high technology (Fang & Chan, 

2006). Furthermore, it is now widely applied in product and process design. Nowadays 

experiments are carried out almost everywhere to explore about a process or system. 

Hence, an experimental design is an efficient choice to obtain a reaction product or 

process with desirable characteristics.  

 

 

Responses and factors are the two important types of variables in experimental design. 

Normally, responses are the dependent variables and factors are the independent 

variables. A factor is a general type or category of treatments. It is sometimes called 

input variable or a controllable variable which can be quantitative or qualitative.  A 

quantitative factor is where each level is described by a numerical quality on an equal 

interval scale, for instance, temperature in degree, time in second, price in Ringgit 

Malaysia and weight in kilogram. Meanwhile, a qualitative factor is where the levels 

differ by some qualitative attribute, for example, hair color, gender and blood type. 

Additionally, treatment is a factor level or combination of factors levels that applied to 

an experimental unit where experimental unit is defined as a person, object or material 

that receives a treatment. The response of an experiment depends on the number of 

factors involved in the experiment.  

 

 

In general, responses will be denoted by letter y  and factors by the letter x : 

 

 

1 2( , ,..., )sy f x x x e   

 

 

where  f   is a function, s is the number of factors and e is the random error. Domain 

or region of an experiment is the set within which the factors could conceivably 

change. Let   denotes the domain of an experiment. Frequently, super rectangle 

1 1[ , ] ... [ , ]s sa b a b 
 
or a s-dimensional unit cube [0,1]s sC   is chosen as the 

experimental domain  . The values in [ , ]i ia b are representing the levels of the i
th

 

factor  (Liang et al., 2001). 

 

 

The goal of the experimental design is to primarily understand the effect of the factors 

and their interactions, and followed by modeling the relationship between the response 
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and the factors with a least number of experiments. A good experimental design should 

minimize the number of experimental runs to acquire as much information as possible.  

This requires an orderly and efficient mapping of the experimental domain or space. 

Reduction cost is achieved when the experimental design is well adopted (Liang et al., 

2001). 

  

 

There are important notes need to be taken into account when implementing the 

experimental design. First, choosing suitable factors is one of the crucial steps in each 

experiment. It is always recommended that the number of factors should be minimized. 

However, it is uneasy task to decide which variable is more significant than the others. 

Hence, the appropriateness of the factors can be determined by multiple statistic 

models. Besides, experiments may be carried out at different combinations of different 

levels of the factors, in order to identify the important factors and how they contribute 

to the response. Second, the experiment with larger domain should be considered first 

if possible. The reason is some unexpected results may appear in this way. If the 

experiment is carried out in a product process, it is advised not to choose a domain that 

is unsuitably large. Third, the gap between two successive levels of a quantitative 

factor should be comparatively large with the random errors. For instance, according to 

a normal distribution 2(0, )N  , the random error of measurement of pH is distributed 

with 0.20 . Then, the gap of pH 0.5  can be considered, for example by taking 

pH 5.0,  5.5 and 6.0  as different levels for an experiment. The gap of two pH levels 

is relatively large compared to the random error (Fang & Lin, 2003; Liang et al., 2001). 

 

 

Randomness, balance, orthogonality, efficiency, and robustness under a specific 

statistical model are the issues that most of the experimental design methods concerned 

with (Fang, 2002b). Nevertheless, most of the experiments especially in high 

technology development have the complexities such as multi- factors, large 

experimental domain, complicated non-linear model, unknown underlying model and 

no analytic formula of the response surface (Fang & Lin, 2008; Fang, 2002b).  

 

 

Due to the reason of these complexities, some new experimental designs are required. 

The space filling design is a good possible choice when the underlying model is 

unknown where the relationship between the response and the potential contributing 

factors is not fully known (Fang, 2002b). Space filling designs are valuable for 

modeling systems that are deterministic or near deterministic. There is bias although 

there is no variance in experiments on deterministic systems. Bias is the dissimilarity 

between the approximation model and the true mathematical function. The intention of 

space filling designs is to resolve the bias. There are two techniques on how to resolve 

the bias. One approach is to spread the design points out at a consistent distance from 

each other in the experimental boundaries. The alternative approach is to scatter the 

points evenly over the experimental region (SAS Institution Inc., 2014). This leads to 

the terminology “Uniform Design (UD)” which will introduced briefly in next 
subchapter. 
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1.2  Uniform Design 

 

 

Uniform design (UD) is a kind of space-filling design which applied in industrial 

experiments, reliability testing and computer experiments. It is symbolized by 

scattering uniformly of design points in the experimental domain, and hence it is 

particularly suitable for an experiment with an unknown underlying model and the 

entire experimental domain has to be fairly explored. Moreover, it is able to explore the 

relationships between the response and the factors with a reasonable number of 

experimental runs.  

 

 

The development of UD was initially motivated by a need in systems engineering and 

in the other hand to fulfill the needs in computer and industry experiments. Identify 

between the effects that are caused by particular factors or build an empirical model 

between the input (factor) variables and the output (response) variables are the 

problems that continually faced by the engineers (Fang & Lin, 2003). In 1978, three big 

projects in system engineering raised some problems. In one of those projects, the 

number of factors was six or more and in order to obtain the output of the system, they 

had to solve a system differential equation. Unfortunately, each run required a day of 

calculation from an input to the corresponding output. Therefore, they needed to find a 

way of experiment so that as much information as possible could be found using 

relatively few experimental runs. The relationship between the input and output has no 

analytic formula and is very complicated. The true model is expressed as 

 

 

1 2( , ,..., ) ( ),   sy f x x x f x x    

 

 

where function  f   is known and has no analytic expression. Then, the engineers 

wanted to find a simple and approximate model or known as a metamodel with the 

following expression 

 

 

1 2( , ,..., ) ( )sy g x x x g x   

 

such that the difference of ( ) ( )f x g x
 
is small over the experimental domain  . 

The metamodel should be much simpler than the true one where it is easier to compute 

(Fang & Lin, 2008).  

 

 

At the same time, Liang et al. (2001) mentioned that a problem of experimental designs 

was proposed by a Chinese industrial agency. The experimental design had six factors 

each having at least 12 levels should be considered. However, the costly experiments 

restricted the experiment to be run not more than 50. It was impossible for the 

traditional experiment designs such as fractional factorial design to have such an 

achievable design. Despite that, a satisfactory result was achieved when UD was 
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applied to the problem; only 31 experimental runs with each factor having 31 levels 

were arranged.  

 

 

As stated in Li et al. (2004), they pointed out some advantages of UD over traditional 

designs such as factorial design and orthogonal design. One of the advantages is the 

UD can still be carried out in a relatively small number of experimental runs even when 

the number of factors or the number of levels of the factors is large. Besides, a 

significant amount of information can be obtained within a small number of 

experimental runs. The interesting part is, it is robust to the underlying model 

assumption, which indicates that although the form of regression model is unknown, 

UD still performs well. 

 

 

In addition, Liang et al. (2001) also revealed several advantages of UD based on their 

experience. First of all, samples with high representativeness in the studied 

experimental domain are able to be produced by UD. Moreover, UD is robust against 

changes of model and it does not enforce a strong assumption on the model. Then, the 

greatest possible number of levels for each factor can be also accommodated by UD 

among all experimental designs. 

 

 

Based on the authors‟ description on the UD as above, it can be said that UD acts as an 
efficient design which can be utilized as a fractional factorial design, a design of 

computer experiments, a robust design or a design with mixtures. 

 

 

1.2.1  Uniformity and Discrepancy 

 

 

Uniformity of space filling acts as an important part and is an essential feature of UD. 

The concept of UD is based on quasi-Monte Carlo method (QMCM) which seeks sets 

of points that are uniformly scattered in the experimental domain. Various 

discrepancies in QMCM have been used as measures of uniformity in the literature, 

such as the star-discrepancy, the star L2-discrepancy, the centered L2-discrepancy (CD), 

wrap-around L2-discrepancy (WD) and mixture discrepancy (MD). The UD can be 

achieved by minimizing a discrepancy. There is more than one definition of 

discrepancy, and different discrepancies may produce different UDs (Fang & Chan, 

2006). The lower the discrepancy, the better uniformity the set of the points has (Fang 

et al., 2005). For instance, if all of the points were clustered at one corner of the sphere, 

the uniformity would be violated and the sample mean would represent the population 

mean rather poorly, the discrepancy would be very large. Hence in order to construct 

UDs, we should find a design with lowest discrepancy with n  experimental runs and 

s  input variables or factors. The aim of the UD is to select a set of n points 
sP C

with lowest discrepancy value,  D P . Apart from that, nearly UD is another definition 

given by Ma & Fang (2004) where a nearly UD is a design with low discrepancy value. 

For simplicity, UD or nearly UD will be known as UD in this research. 
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The discrepancies have played an important role in QMCM. The QMCM have been 

widely used in multivariate numerical integration, numerical simulation, experimental 

design, optimization, geometric probability, survey sampling and statistical inference. 

The treatment for most of these statistical problems in the fields mentioned above 

require low-discrepancy sequences or sets over the specific experimental domain which 

can be partially overcome by implementing QCMC (Fang, 2002a).  

 

 

According to Zhou et al. (2013), QMCM were inspired by multidimensional numerical 

integration. The prior aim of the UD is to obtain the best estimator of the overall mean 

of I, 

 

 

   
sC

I g g x dx   

 

 

 that can be approximated by using the sample mean,  

 

 

     
1

1 n

i

i

I P y P g x
n 

    

 

 

where  1,..., nP x x is a set of n experimental points on sC and  g   is a known 

function (Li et al., 2004; Fang, 2002a). 

 

 

In 1981, Hua & Wang mentioned about the Koksma-Hlawka (K-H) inequality and 

given that the error bound of the approximation as 

 

 

     I I P V g D P   

 

 

where  D P is the discrepancy of P not depending on g and V(g) is a measure of the 

variation of g. The definition for a function of bounded variation, V(g) was given by 

Hardy and Krause (Niederreiter, 1992, p.19; Hua & Wang, 1981, p.99) , which is 

independent of the design points. The K-H inequality indicates that, the more uniform a 

set of points, P distributes over the 
sC , the more accurate  I P  is an estimate of I . 

Hence, the K-H inequality suggests of choosing a set of points which have the lowest 

discrepancy among all possible designs for a given number of experimental runs and 

factors. Since V(g) does not depend on the set P, a UD is robust against changes of the 

function g provided that V(g) remains unchanged (Li et al., 2004; Liang et al., 2001; 

Fang, et al., 2000a). Therefore, the key idea of QMCM is to generate s set of n points, 

denoted by P, on the unit cube 
sC for given n and s such that  D P is minimized. 
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1.2.2  Construction Methods of Uniform Design 

 

  

The UD can be constructed by minimizing a discrepancy over the design space. There 

are two types of UD, namely symmetrical and asymmetrical. A symmetrical UD is a 

design whose factors have same number of levels, while in asymmetrical UD; more 

levels are allocated for important factors and less levels for less important factors (Fang 

et al., 2005). 

 

 

There are numbers of construction method of UDs have been proposed. Good lattice 

point (GLP) method, extending orthogonal design method, Latin square method, 

optimization searching method and cutting method are the construction methods for 

symmetrical UDs, while combinatorial method, pseudo-level technique and collapsing 

method are the construction methods for asymmetrical UDs. The key steps for the 

construction of UDs are first to define a suitable measure of uniformity. Then, reduce 

the computation complexity of searching UDs and apply any construction methods as 

stated above to generate UD (Fang & Lin, 2003). 

 

 

1.2.3  Performing Experiments with Uniform Design 

 

 

Each UD table has a notation ( )s

nU q where U stands for UD, n  for the number of 

experimental runs, s for the number of factors and q for the number of levels. If the 

quantitative models cannot build merely based on theoretical consideration or past 

experience, then performing industrial experiments enable the experimenters to get the 

required data that is used to set up the quantitative models. The obtained models help in 

quantifying the process, verifying a theory or optimizing the process (Fang & Chan, 

2006). 

 

  

The following steps are necessary to be taken as a procedure for performing industrial 

experiments with a UD. First, make sure that the goal is clear by identifying the 

objective of the experiment and the process response to study. Second, choose factors 

with suitable number of levels for each factor and determine the appropriate 

experimental domain. Subsequently, decide the number of experimental runs and 

choose a suitable UD table that accommodates the number of factors, levels and 

experimental runs. Next, arrange the number of levels for each factor according to the 

chosen UD table. Then, come to the modeling steps which need to find an appropriate 

model to fit the data such as regression analysis. Finally, discover the information from 

the built model and find the „best‟ combination of the factors‟ values that achieved the 
objective function. It is necessary to make conclusions from the model established in 

the modeling part in order to fulfill the objective that is specified earlier. If possible, 

perform further experiments by adding runs to the experiment to verify the results 

obtained (Fang & Chan, 2006; Fang & Lin, 2003). 
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1.3  Problem Statement 

 

 

There are many construction methods of UD in literature.  Hence, we are interested to 

study and improve the existing construction methods of UDs. In optimization method, 

choice of neighborhood and replacement rule are two important criteria. Ruin and 

recreate (R&R) approach is one of the choices of neighborhood (Fang et al., 2000b). 

The R&R approach is not preferable by many authors as it provides a larger size of 

neighborhood compared to other choice of neighborhood. Large neighborhood requires 

longer time to complete the optimization process as large neighborhood increases the 

computational load. However, the possibility to include the global solution is higher in 

larger neighborhood. Therefore, a solution is needed to improve the R&R approach in 

case the R&R approach is determined to be the choice of neighborhood. 

 

 

Besides, the cutting method which was proposed by Ma & Fang (2004) is one of the 

construction methods of UDs. The cutting method requires an initial design with p 

experimental runs, which p or 1p   is a prime number and p is greater than n. The 

interesting question is, “Which p as the number of experimental runs for initial design 

gives the lowest discrepancy?”. Thus, we are trying to find out the uncertainty by 
carrying out this study. 

 

 

In addition, the cutting method was the latest existing methods of constructing UDs 

proposed by Ma & Fang, (2004). Some modification were made on the existing 

construction methods; for instance, Talke & Borkowski (2012) proposed two 

approaches (generator equivalence and projection) for GLP method to reduce the 

computational cost. Meanwhile, Jiang & Ai (2014) modified the threshold accepting 

(TA) algorithm to search UDs without replications. Although modifications were made 

on the existing construction methods, there is no new method developed in the recent 

years. 

 

 

1.4 Objectives of Study 

 

 

The objectives of the study are i) to reduce the size of neighborhood that is determined 

by the R&R approach while maintaining the global solution in the neighborhood, ii) to 

find an appropriate number of experimental runs for the initial design of the cutting 

method and iii) to provide an efficient method in constructing symmetrical UD with 

better uniformity. 

 

 

1.5  Limitation of the Study 

 

 

Matlab software is chosen as our research tools that assist us in computing the measure 

of uniformity and constructing the uniform design. For the optimization method which 

will be discussed in Chapter 3, our findings are limited to n which is less or equal to 9. 

It is because in R&R approach, we need to obtain all possible permutations of 
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 1,2,...n to be the sets of points that will be considered in reconstruction of the design. 

Unfortunately, Matlab software fails to give the permutations of  1,2,...n where n is 

greater or equal to 10 due to the problem of out of memory.  

 

 

There is also limitation for the absolute deviance method (ADM) which proposed in 

Chapter 5. Our findings are limited to n which is less or equal to 14 as the file 

„npermutek‟ in Matlab which we applied has its limitation. The „npermutek‟ file is 
applied to obtain the permutation n of k with repetition where k is the desired number 

to be chosen from n. According to the Step 2 in ADM algorithm, Algorithm 5.1 and 

Algorithm 5.2, on two factors UDs for both odd and even experimental runs, we need 

to choose 
1

2

n 
elements (for odd number experimental runs) and 

2

2

n 
 elements (for 

even number experimental runs) from  2,3,..., 2n , respectively as the elements of 

absolute differences. Hence, when 15n  , we need to select 7 elements from

 2,3,...,13 . The „npermutek‟ file in the Matlab software fails to compute for selecting 

7 elements from 2,3,...,13 with the problem of out of memory. Then, for n which is 

greater than 15, the Matlab software also fails to compute with the reason of maximum 

variable size allowed by the program is exceeded. 

 

 

1.6  Summary 

 

 

Since UD was brought out in 1980, many mathematicians and statisticians made their 

effort in studying and developing UD. For over thirty years, there are consistently 

reports in China to show that UD has been widely used and it has been successfully 

applied in various fields such as agriculture, industry especially in chemistry and 

chemical engineering, petroleum engineering, quality engineering and system 

engineering, natural sciences and also on improving technologies of textile industry, 

pharmaceuticals, fermentation industry and others. It can be seen that UD has been 

gradually popularized in China and presently has become one of the major 

experimental designs in China. Despite that, its application in industries worldwide still 

has to be promoted. The applications of UD showed that the UD is indeed a very 

promising and powerful experimental design method.  

 

 

1.7 An Overview of the thesis 

 

 

Literatures will be reviewed on the UD, measure of uniformity and some applications 

of UD in Chapter 2. 

 

  

Optimization method is one of the construction methods of UD which is discussed in 

Chapter 3. Two important criteria in optimization method such as neighborhood and 

replacement rule are explained in details. In this research, R&R approach is chosen as 

the definition of neighborhood. In order to reduce the size of neighborhood that is 
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obtained by the R&R approach, absolute difference equivalence (ADE) approach is 

proposed. ADE approach is developed which aims to coordinate with the R&R 

approach. The modified R&R approach is considering ADE approach in R&R 

algorithm. After that, an optimization process called global absolute difference 

equivalence search (GADES) is introduced which implemented modified R&R 

approach as its neighborhood and a replacement rule that is defined earlier. Then, the 

performance of the GADES is studied by comparing the UDs formed from the 

optimization algorithm which employed R&R approach (later we name it as ORR) with 

GADES algorithm in terms of uniformity, size of neighborhood, number of iteration 

and total computational time. 

 

 

In Chapter 4, another existing construction method called cutting method is presented. 

Details of the cutting method in UD which include the GLP method with a power 

generator and the cutting method are discussed with numerical examples provided. 

Then, the cutting method is modified by searching a suitable p for initial design for the 

desired UD. After that, the performance of the modified cutting method is compared 

with the original cutting method. 

 

 

In Chapter 5, a new construction method of UD, ADM is proposed. At first, the ADM 

method is concentrating on two factors UDs. There are two situations with regard to n 

that needed to be considered, which are when n is an odd or even number. Hence, the 

algorithms for odd and even experimental runs are different. Then, the ADM to 

construct UDs with higher dimensions which is greater than two is proposed as well. 

The algorithms are implemented in the numerical examples discussed. Finally, the 

performance of ADM is compared with the existing method, such as GLP method, 

optimization method, cutting method and the modified cutting method that is proposed 

in Chapter 4.  
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