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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
of the requirement for the degree of Master of Science

CLASSIFICATION OF SECOND ORDER PARTIAL DIFFERENTIAL EQUATION
USING MAPLE AND COMPARISON FOR THE SOLUTIONS

By

GHADEER OMAR S ALGABISHI

June 2015

Chair: Prof. Adem Kılıçman, PhD.
Faculty: Science

The study of partial differential equations plays a significant role in many fields in-
cluding mathematics, physics, and engineering. A partial differential equation (PDE)
relates the partial derivatives of a function of two or more independent variables
together. The general linear second order partial differential equation with constant
coefficient has the form

aZx x + bZx y + cZy y +dZx + eZy + f Z = g(x , y).

There are many methods of solving this type of PDE’s such as finite elements, finite
different and crank Nicolson depends on its classifications based on ∆= b2−4ac.
It is also well known that PDE is hyperbolic when ∆> 0, parabolic when ∆= 0 and
elliptic when ∆< 0.

In this research study, classification of the partial differential equation with con-
stant coefficient is achieved by using Maple program. The classifications of variable
coefficients of partial differential equations by Maple program are also given.

The PDE’s after the convolution has the form

AZx x +BZx y +C Zy y +DZx + EZy + F Z = G,

where A, B and C are coefficients of the PDE’s after the convolution. Further more
the classification PDE’s with convolution are addressed by using∆1= B2−4AC . Sim-
ilarities in the classification of PDE’s before and after convolution were found.
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The solution of some important problems such as the wave equation is highly need
of and occurs as one of three fundamental equations in mathematical physics that
occurs in many branches of physics, applied mathematics, and engineering. In this
research work, some problems of PDE’s with constant coefficient are solved by dou-
ble Laplace transforms method. The same problems of the PDE’s are modified by
some convolution function. The solutions of this new PDE’s are obtained by double
Laplace transform. Graphical comparisons indicated that the methods are the same.
In the same way, the PDE’s with variable coefficient are solved by double Laplace
transforms methods. Then the same problem of the PDE’s is modified by some con-
volution functions. The new PDE’s are solved after convolution. However, graphical
comparison made revealed that this two PDE’s before and after convolution are the
same.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Master Sains

KLASIFIKASI DAN PERUBAHAN LAPLACE BERGANDA DUA TERHADAP
PERSAMAAN PEMBEZAAN SEPARA PADA TERTIB KEDUA MENGGUNAKAN

MAPLE

Oleh

GHADEER OMAR S ALGABISHI

Jun 2015

Pengerusi: Prof. Adem Kılıçman, PhD.
Fakulti: Sains

Kajian terhadap persamaan pembezaan separa memainkan peranan penting dalam
bidang matematik, fizik dan kejuruteraan. Persamaan pembezaan separa (PPS) men-
gaitkan terbitan separa pada fungsi yang mempunyai dua pembolehubah yang bebas
atau lebih secara bersama. Persamaan pembezaan separa pada tertib kedua dengan
pekali tetap mempunyai persamaan umum seperti berikut

aZx x + bZx y + cZy y +dZx + eZy + f Z = g(x , y).

Banyak kaedah yang digunakan untuk menyelesaikan PPS seperti elemen tak ter-
hingga, pembezaan tak terhingga dan crank Nicolson bergantung pada klasifikasi
asas iaitu ∆= b2−4ac. Ianya hiperbolik apabila ∆> 0, parabolik apabila ∆= 0 dan
eliptik apabila ∆< 0.

Dalam penyelidikan ini, klasifikasi persamaan pembezaan separa yang mempunyai
pekali tetap dapat dicapai melalui penggunaan program Maple. Maple juga telah
menyediakan klasifikasi pekali pembolehubah pada persamaan pembezaan separa.

Selepas PPS melalui proses perlingkaran, ia mempunyai bentuk persamaan

AZx x +BZx y +C Zy y +DZx + EZy + F Z = G,

dimana A, B dan C adalah pekali PPS selepas perlingkaran. Seterusnya, klasfikasi
PPS dengan perlingkaran diperkenalkan oleh∆1=B2−4AC . Persamaan dalam klasi-
fikasi PPS sebelum dan selepas perlingkaran telah ditemui.
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Penyelesaian untuk masalah-masalah penting seperti persamaan gelombang adalah
amat diperlukan dan terjadi sebagai salah satu daripada tiga persamaan asas dalam
fizik matematik dalam bidang fizik, matematik gunaan dan kejuruteraan. Dalam
kerja penyelidikan ini, beberapa permasalahan dalam PPS yang mengandungi pekali
tetap diselesaikan oleh kaedah perubahan Laplace berganda dua. Masalah PPS yang
sama diubah suai melalui penggunaan fungsi perlingkaran. Penyelesaian-penyelesaian
yang terhasil adalah dari kaedah perubahan Laplace berganda dua. Perbandin-
gan grafik menggambarkan kedua-dua kaedah ini adalah sama. Melalui cara yang
sama, PPS yang mempunyai pekali pembolehubah diselesaikan oleh kaedah peruba-
han Laplace berganda dua. Kemudian, permasalahan PPS yang sama diubahsuai
melalui beberapa funsi pelingkaran. PPS baru ini diselesaikan selepas pelingkaran.
Bagaimanapun, perbandingan grafik menunjukkan bawaha dua PPS sebelum dan
selepas pelingkaran ini adalah sama.
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CHAPTER 1

INTRODUCTION

1.1 Background

The study of partial differential equations plays a significant role in many fields in-
cluding mathematics, physics, and engineering. Partial differential equation (PDE) is
an equation that provides the relationship between the partial derivatives of a func-
tion of two or more independent variables together. The second order PDE in two
independent variables can be written in general form given by (Strauss, 2007) as

F(x , y, Z , Zx , Zy , Zx x , Zx y , Zy y) = 0. (1.1)

The form of linear second order PDE’s with constant or variable coefficients in gen-
eral is

aZx x + bZx y + cZy y +dZx + eZy + f Z = g(x , y). (1.2)

Many methods of solving this PDE’s such as finite elements, finite different and crank
Nicolson depends on its classifications base on ∆= b2−4ac. It is hyperbolic when
∆> 0, parabolic when ∆= 0, and elliptic when ∆< 0. (Kilicman and Eltayeb, 2008),
considered the PDE’s with constant coefficients of hyperbolic and elliptic; then by ap-
plying double convolutions, equations with polynomial coefficients are obtained and
then classified. It was found that classifications of hyperbolic and elliptic equations
with variable coefficients are similar to those of the original equations, see (Kilicman
and Eltayeb, 2009).

These new equations are then classified by applying the classification method for
the second order linear PDE’s. It was found that the classification of PDE’s having
the polynomial coefficients depends on the signs of the coefficients. In particular, by
applying continuously differential functions, some boundary value problems having
singularity can be solved because the convolution regularizes the singularity. In (Kil-
icman and Eltayeb, 2012) the authors extend further the classification of PDE’s by
applying the convolutions products. The solutions of some specified initial boundary
value problems are computed by Laplace transform for some problems of wave equa-
tion of one-dimensional with variable coefficients which in general has no solution.

1.1.1 Concepts of Partial Differential Equations

The general idea behind defining property of a PDE’s is that it has one more in-
dependent variable x , y, · · · and the dependent variable as the unknown function of
these variables, Z(x , y, · · ·). The derivatives are usually denoted by subscripts; thus
∂ Z
∂ x = Zx . PDE expresses independent variables x together with the dependent vari-
able Z , and or the partial derivatives of Z , see (Walter, 2007). It can be expressed
as

G(x , y, Z(x , y), Zx (x , y), Zy(x , y)) = G(x , y, Z , Zx Zy) = 0. (1.3)
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Eq. (1.3) above gives general form of first order PDE for two independent variables
x and y . It’s order can be identified from the highest derivative.

A function Z(x , y, · · ·) is a solution of partial differential equation that satisfies the
equation identically in some region of variables x , y, · · · . For the variable separable

ODE dZ
d x = Z3, the roles of the independent and the dependent variables one may be

reversed. However, the role of the dependent and independent variable is always
maintained. In the next we provide some examples of PDE’s which occur in physical
sciences:

transport equation: Zx +Zy = 0,

transport equation: Zx + yZy = 0,

shock wave equation: Zx +Z Zy = 0,

Laplace’s equation: Zx x +Zy y = 0,

dispersive wave equation: Zt +Z Zx +Zx x x = 0,

vibrating bar: Zt t +Zx x x x = 0.

All of the above PDE’s shown in the immediate examples above are also linear, ex-
cept the shock wave equation and dispersive wave equation, which are non linear.

A PDE is said to be homogeneous type if each term in the equation contains ei-
ther the dependent variable or one of its derivatives. That is the right hand side of
equation is zero. Otherwise, the equation is non-homogeneous

Solution of a PDE in some region R of the space of independent variables, is a func-
tion which satisfies all the derivatives that appear on the equation, and also satisfies
the equation everywhere in R.

In general there should be as many initial conditions or boundary as the highest
order of the corresponding partial derivative.

1.1.2 Initial and Boundary Conditions

Since PDE’s are known to posses many solutions, it is possible for the solution to
be single out via imposing auxiliary conditions which result in formulating a unique
solution. The particular conditions are important in physics appearing in one and or
two varieties; initial and boundary conditions. The case of initial condition specifies
the physical state at a particular time t0. In the diffusion equation for instance

Z(x , t0) = ζ(x), (1.4)

where ζ(x) = ζ(x , y,z), usually function given and ζ(x) represents initial concen-
tration. In the case of heat flow problems, ζ(x) signifies initial temperature. In
Schrödinger equation, too, Eq.(1.4) is the usual initial condition. In wave equation

2
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there is a pair of initial conditions

Z(x , t0) = ζ(x) and
∂ Z
∂ t
(x , t0) =ψ(x), (1.5)

where ζ(x) describes initial position and ψ(x) initial velocity. On physical grounds
all must be specified in order to determine the position z(x , t) at later times.

From physical problem, valid domain D should exist for the PDE’s. The D is the
interval 0< x <ρ, are usually for the vibrating string problems, as such boundary of
D has only of the two points x = 0 and x =ρ. The case of drumhead model has plane
region domain and closed curve as its boundary. Model of diffusing chemical sub-
stance has D as the container holding the liquid and its boundary as surface S = D.
The hydrogen atom model has domain as all of space as such it has no boundary.

One-dimensional problems with D an interval 0 < x < ρ has boundary at the two
endpoints only and where these boundary conditions are of simple form

(D) Z(0, t) = g(t) and Z(ρ, t) = h(t)

(N)
∂ Z
∂ x
(0, t) = g(t) and

∂ Z
∂ x
(ρ, t) = h(t).

1.1.3 Basics of Laplace Transform (LT)

This section discusses some concepts of single and double LT that are useful in fur-
ther discussion. According to (Schiff, 1999) and (Kilicman, 2006). For real or com-
plex valued functions g of variable t such that t > 0 and s being real or complex
parameter, then the LT is defined as

G(s) =L [g(t)] =
∫ ∞

0
e−st g(t)d t = lim

τ→∞

∫ τ

0
e−st g(t)d t, (1.6)

provided that the limit exists, the integral of equation Eq.(1.6) converges. Other-
wise, the integral Eq.(1.6) diverges and else no LT defined for g. In (Lopez, 2001)
it is mentioned that the LT of a product is not product of the transform, since, for
example,

L [t] =
1
s2 but L [t2] =

2
s3 6=

�

1
s2

�2
.

Therefore, the product of two LT does not invert back to the product of the inverses
of factor. So in general,

L−1[G(s)H(s)] 6= g(t)h(t).

Like wise, the inverse of a product of two LT is not the product of the inverse. Instead,
it is the convolution product, that is

L [G(s)H(s)] = g(t)∗h(t).

3
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Theorem 1.1.1 (Jefrey, 2002) Linearity of LT. Let the functions g1(t), g2(t), ..., gn(t)
have LT, and let c1,c2, ...cn be any set of arbitrary constants then

L [c1g1(t)+ c2g2(t)+ ...+ cngn(t)] = c1L [g1(t)]+ c2L [g2(t)]+ ...+ cnL [gn(t)].

This theorem has many applications and it uses is essential when working with LT.

Theorem 1.1.2 (Jefrey, 2002) Transform of derivative. Let g(t) be continuous on
0≤ t <∞, and let g′(t), g′′(t), ..., gn−1(t) be piecewise continuous on every finite
interval contained in t ≥ 0. Then if L [g(t)] = G(s),

L [gn(t)] = snG(s)− sn−1g(0)− sn−2g′(0)− ...− sgn−2(0)− gn−1(0).

The detail of proving can be obtained in (Jefrey, 2002).

Definition 1.1.1 (Mei, 1997; James, 2012) A function g(t) is said to be of exponen-
tial order as t→∞ if there exist real number σ and positive constant m and T such
that |g(t)|<meσt for all t > T .

Theorem 1.1.3 (Kreyszig, 1999) The First transform of shifting property: IfL [g(t)]=
G(s) where s> k,L [eat g(t)]=G(s−a), where s−a> k. In order to apply LT to PDEs,
it is necessary to invoke the inverse transform. If L [g(t)] = G(s), then inverse LT is
denoted by L−1[G(s)] = g(t), t > 0.

Theorem 1.1.4 (Mei, 1997) If the LT of g(t) and h(t) are G(s) and H(s), respectively,
then the inverse transform of G(s)H(s) is the convolution integral. That is

L−1[G(s)H(s)] =

∫ ∞

0
g(t−τ)h(τ)dτ= g ∗h.

Theorem 1.1.5 (Dyke, 2000) If Laplace transform of G(t) exists, that is the G(t) is
of exponential order and

g(s) =

∫ ∞

0
e−st G(t)d t,

then

G(t) = lim
k→∞

�

1
2πi

∫ σ+ik

σ−ik
g(s)e−st ds

�

, t > 0.

The detail of proving can be obtained in (Dyke, 2000).

Theorem 1.1.6 (Inverse LT of function with poles). Let G(s) be analytic in the s-
plane except a finite number of poles that lie to the left of some vertical line Res= a.
Suppose there exist positive constants,m, R0, and k such that for all s lying in the
half plane Res≤ a, and satisfying |s|> R0, we have |G(s)| ≤ m

|s|k . Then for t > 0,

L−1[G(s)] =
∑

Res[G(s)est],

at all poles of G(s). For more detail see (Wunsch, 2005).

4
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Example 1.1.1 (Wunsch, 2005) Find inverse Laplace Transform for the function

L−1
s

�

1
(s+1)2(s−2)

�

.

Solution:

The function has poles at s= 2 and s=−1. Thus

f (t) = Re

�

est

(s−1)(s+2)2
,2

�

+Re

�

est

(s−1)(s+2)2
,−1

�

.

The first residue given by

lim
s→2

est

(s+1)2
=

1
9

e2t ,

while the second residue which involves a pole of second order, is

lim
s→−1

d
ds

1
(s−1)

=
1
3

te−t −
1
9

e−t ,

then

f (t) =
1
9

e2t −
1
3

te−t −
1
9

e−t .

The definition of LT of the Heaviside unit function (Iyengar, 2004; Graf, 2004)

H(t−a) =
§

1, t ≥ a,
0, t < a, (1.7)

is given by

L [H(t−a)] =
1
s

e−as.

In particular,

L [H(t)] =
1
s

.

Similarly, LT of unit Impulse function (or Dirac delta function)

δ(t−a) =
§

∞, t = a,
0, t 6= a, (1.8)

is given by
L [δ(t−a)] = e−as.

In particular, (Estrada and Fulling, 2002).

L [δ(t)] = 1

5
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two dimensional LT used by (Hillion, 1997)

G(p,q) =L [g(x , y)] =

∫ ∞

0

∫ ∞

0
g(x , y)e−px−q y d xd y, (1.9)

with x > 0, y > 0 and also see (Sneddon, 1972a; Moorthy, 2009) are defined DLT by

LxLt[g(x , t)] = G(p,s) =

∫ ∞

0
e−px

∫ ∞

0
e−st g(x , t)d td x ,

where x , t>0 and p,s are complex and DLT is defined for first order partial derivative
as

LxLt

�

∂ g(x , t)
∂ x

�

= pG(p,s)−G(0,s) (1.10)

for second partial derivative with respect to x , DLT is given by

LxLt

�

∂ 2g(x , t)
∂ x2

�

= p2G(p,s)− pG(0,s)−
∂ G(0,s)
∂ x

(1.11)

and for second partial derivative with respect to t DLT is similarly given as above by

LxLt

�

∂ 2g(x , t)
∂ t2

�

= p2G(p,s)− sG(p,0)−
∂ G(p,0)
∂ t

. (1.12)

More so, DLT of a mixed partial derivative can be deduced from SLT as

LxLt

�

∂ 2g(x , t)
∂ t∂ x

�

= psG(p,s)− pG(p,0)− sG(0,s)−G(0,0). (1.13)

Theorem 1.1.7 (Convolution theorem (Schiff, 1999; Zayed, 1996)) If f and g
are piecewise continues on [0,1) and of exponential order α then

L [(g ∗h)(t)] =L (g)L (h), (Re(s)>α).

Theorem 1.1.8 If, the integrals

G1(p,q) =

∫ ∞

0

∫ ∞

0
e−px−q y g1(x , y)d xd y,

bounded and convergent, and

G2(p,q) =

∫ ∞

0

∫ ∞

0
e−px−q y g2(x , y)d xd y,

absolutely converges, then

G(p,q) = G1(p,q)G2(p,q)

6
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gives LT of function

g(x , y) =

∫ x

0

∫ y

0
g1(x−ζ, y−η)g2(ζ,η)dζdη

and

G(p,q) =

∫ ∞

0

∫ ∞

0
e−px−q y g(x , y)d xd y,

becomes bounded and convergent at the point (p,q). The detail of proving can be
obtained in (Hillion, 1997), from this Theorem and DLT of partial derivatives very
useful results for solving non constant coefficients linear second order PDE’s can be
obtained later we give more details. In the next we gives table of double Laplace
transform (it is very important in this thesis) as follow.

f (x , y) F(p,q)
sin(x+ y) p+q

(p2+1)(q2+1)

cos(x+ y) pq−1
(p2+1)(q2+1)

ex+y 1
(p−1)(q−1)

xn ym n!m!
(pn+1)(qm+1)

f (x , y)∗∗g(x , y) F(p,q)G(p,q)
δ(x−a)δ(y− b) e−pa−qb

∂
∂ xδ(x−a) ∂∂ yδ(y− b) pqe−pa−qb

δ(x1−a1)δ(x2−a2) . . .δ(xn−an) e−p1a1−p2a2...−pnan

f (x , y)∗∗(g(x , y)∗∗h(x , y)) F(p,q)G(p,q)H(p,q)

f (x , y)∗∗∂ u(x ,y)
∂ x F(p,q)[pU(p,q) . . .U(0,q)]

f (x , y)∗∗∂
2u(x ,y)
∂ 2 x F(p,q)

�

p2U(p,q) . . . pU(0,q) . . . ∂ U(0,q)
∂ x

�

f (x , y)∗∗∂
2uf (x ,y)
∂ x∂ y F(p,q)(pqU(p,q) . . . pU(p,0) . . .qU(0,q)

. . .U(0,0)

f (x , y)∗∗∂ u(x ,y)
∂ y F(p,q)[qU(p,q) . . .U(p,0)]

f (x , y)∗∗∂
2u(x ,y)
∂ 2 y F(p,q)

�

q2U(p,q) . . .qU(0,q) . . . ∂ U(0,p)
∂ y

�

f (x , y)∗∗(g(x , y)∗∗h(x , y)) F(p,q)G(p,q)H(p,q)

Table 1.1: Table of double Laplace transforms

1.2 Aims and Objectives

1. To obtain classification of PDE’s with constant coefficients before and after
convolutions

2. To obtain classification of PDE’s with variable coefficients before and after con-
volutions and their comparison

7
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3. To obtain solution of PDE’s with constant coefficients by double Laplace trans-
forms before and after convolution and their comparison

4. To obtain solution of PDE’s with variable coefficients by double Laplace trans-
forms before and after convolution and their comparison

1.3 Scope of the Study

The research work is limited to

• studying parabolic, hyperbolic and elliptic types of partial differential equa-
tions for their classifications both before and after the convolution.

• using the simple polynomial functions as our convolution functions.

• using maple program for classification of PDEs with constants and variable
coefficients.

• applying double Laplace transforms to obtain the solution of PDE’s both before
and after the convolution.

• using Maple programme to achieve the immediate above solutions.

1.4 Organisation of the thesis

The organization of thesis is as follows:

In chapter 1 under introduction of the thesis, we present background, aims and
objectives and the scope of the study.

Chapter 2 under the literature review discusses on classification of PDEs. Linear
second order PDEs, Laplace transforms, inverse Laplace transforms, some proper-
ties of Laplace transforms, double Laplace transforms, inverse of double Laplace
transform, properties of DLT, type of integral transform and convolution.

We present in Chapter 3, methodology and results. Under which we discussed the
classification of PDEs with convolution, the maple program of classification PDE’s
for linear PDEs, comparison between constant coefficient PDE’s before and after the
convolution, comparison between coefficient PDEs before and after the convolution
and summary.

Chapter 4 under linear second order PDEs with double Laplace transform, we give
the methods of double convolution, results and discussion and summary.

Chapter 5 presents summary, conclusion and recommendations.

8
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