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Time series analysis has emerged as one of the most important statistical discipline
and it has been applied in di�erent �elds over the years. Literature reviews show
that independent identical distributed Gaussian random variables is not suitable for
modelling extreme events. We evaluate the impact of dependence on the parameter
estimates of Autoregressive (AR) and Moving Average (MA) processes with Gumbel
distributed innovation. The performance of the parameter estimates of the Gumbel-
generalised Pareto distribution �tted to the autoregressive and moving average pro-
cesses and their respective cluster maxima is also assess.

The extension of time series to extreme value theory can be achieved by inducing
time dependence in the underlying state of an extreme value process. Extreme values
occur in clusters in the presence of dependence. Gumbel distribution, a member of
the family of the generalised extreme value distribution is the possible limit for the
entire range of tail behaviour between polynomial decrease and essentially a �nite
endpoint and it is known to �t well in many situations. It is important to make gen-
eral statements that characterises time series extreme models over a range of sample
sizes with varying degree of dependence. Such general characterisation for a given
model is useful for the extremal behaviour of physical processes.

To achieve our objectives, a stationary autoregressive and moving average models
with Gumbel distributed innovation is proposed and we characterise the short-term
dependence among maxima, arising from light-tailed Gumbel distribution over a range
of sample sizes with varying degrees of dependence. Dependence is induced through a
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linear �lter operation. The linear �lter operation takes a weighted sum of past innova-
tions. The estimate of the maximum likelihood of the parameters of the Gumbel au-
toregressive and Gumbel moving average processes and their respective residuals are
evaluated. Gumbel-AR(1) and Gumbel-MA(1) was �tted to the Gumbel-generalised
Pareto distribution and we evaluate the performance of the parameter estimates �tted
to the cluster maxima and the original series. Ignoring the e�ect of dependence leads
to overestimation of the location parameter of the Gumbel-AR(1) and Gumbel-MA(1)
processes respectively. The estimate of the location parameter of the autoregressive
process using the residuals gives a better estimate. The estimate of the scale param-
eter perform marginally better for the original series than the residual estimate. The
degree of clustering increases as dependence is enhance for both the AR and MA pro-
cesses. The Gumbel-AR(1) and Gumbel-MA(1) are �tted to the Gumbel-generalised
Pareto distribution show that the estimates of the scale and shape parameters �t-
ted to the cluster maxima perform better as sample size increases, however, ignoring
the e�ect of dependence leads to an underestimation of the parameter estimates of
the scale parameter. The shape parameter of the original series gives a superior es-
timate compare to the threshold excesses �tted to the Gumbel-generalised Pareto
distribution.
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Mei 2015

Pengerusi: Mohd Bakri Adam, Ph.D
Fakulti: Sains

Analisis siri masa telah muncul sebagai salah satu disiplin statistik yang paling pent-
ing dan ia telah digunakan didalam pelbagai bidang setelah sekian lama. Hasil
tinjauan daripada kajian-kajian yang lepas, ia menunjukkan bahawa pembolehubah
rawak Gaussian yang bertaburan bebas-sama adalah tidak sesuai untuk menghasilkan
model peristiwa ekstrim. Kami menilai kesan pergantungan terhadap anggaran pa-
rameter daripada proses Autoregresif (AR) dan Purata-Tergerak (MA) dengan inovasi
taburan Gumbel. Prestasi anggaran parameter daripada taburan Pareto Gumbel-
umum yang sepadan dengan proses autoregrasi dan purata-tergerak serta kelompok
maksima masing-masing juga dinilai.

Perlanjutan siri masa kepada teori nilai ekstrim boleh di capai dengan mendorong
pergantungan masa dalam keadaan mendasari proses nilai yang ekstrim. Nilai ek-
strem berlaku di dalam kelompok di mana pergantungan hadir. Taburan Gumbel,
merupakan salah satu daripada taburan nilai ekstrim umum adalah had sempadan
yang mungkin bagi keseluruhan rangkaian tingkah laku hujung ekor antara penurunan
polinomial dan asasnya adalah titik akhir yang terbatas dan ia dikenali sebagai pe-
madansuai yang baik dalam pelbagai situasi. Ia adalah penting untuk membuat keny-
ataan umum yang menyifatkan model ekrtrim siri masa lebih pelbagai saiz sampel
dengan pelbagai tahap kebergantungan. Pencirian umum untuk model yang diberikan
adalah berguna bagi ciri-ciri ekstrim dengan proses �zikal.

Bagi mencapai objektif-objektif kajian, model autoregresi pegun dan purata-tergerak
dengan taburan Gumbel inovasi dicadangkan dan kami mencirikan pergantungan
jangka pendek antara maksima yang terhasil daripada taburan Gumbel yang berekor
nipis yang lebih pelbagai saiz sampel dengan pelbagai tahap kebergantungan. Keber-
gantungan didorong melalui operasi penapis linear. Operasi penapis linear mengambil
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kira jumlah wajaran inovasi yang lalu. Anggaran kemungkinan parameter maksi-
mum bagi proses autoregresi Gumbel dan Gumbel purata-tergerak beserta residual
mereka masing-masing dinilai. Gumbel-AR(1) dan Gumbel-MA(1) dilengkapi dengan
taburan Pareto Gumbel-umum dan kami menilai prestasi anggaran parameter yang
sepadan dengan kelompok maksima dan siri-siri asal. Mengabaikan kesan pergan-
tungan boleh membawa kepada perlebihan anggaran daripada parameter lokasi dan
kekurangan anggaran daripada parameter skala daripada proses Gumbel-AR(1) dan
Gumbel-MA(1) masing-masing. Anggaran parameter lokasi daripada proses autore-
gresif menggunakan residual memberikan anggaran yang lebih baik. Anggaran pa-
rameter skala memberikan sedikit hasil yang lebih baik untuk siri-siri asal berbanding
anggaran residual. Tahap kelompokan meningkat apabila pergantungan meningkat
untuk kedua-dua proses AR dan MA. Gumbel-AR(1) dan Gumbel-MA(1) sepadan
pada taburan Pareto Gumbel-umum menunjukkan bahawa anggaran parameter skala
dan bentuk sepadan pada kelompok maksima memberi hasil yang lebih baik apabila
saiz sampel bertambah, bagaimanapun, mengabaikan kesan pergantungan membawa
kepada kekurangan terhadap anggaran parameter skala dan parameter bentuk tabu-
ran Pareto Gumbel-umum masing-masing.
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CHAPTER 1

INTRODUCTION

This chapter presents a general introduction to the theory of extreme values. Ba-
sic concept of time series, extreme value theory, and dependence in extreme value
distribution are highlighted. The objectives and motivation of the thesis, expected
outcome and organisation of the thesis are all discussed.

1.1 Background

Extreme Value Theory (EVT) is one of the most important statistical disciplines and
has been applied in various �elds, from �nance to hydrology to atmospheric chemistry
to environmental sciences to �nancial econometrics. An important feature of extreme
value analysis is the objective of assessing the extremal behaviour of random variables
and quantifying the stochastic behaviour of maxima or minima of independent and
identically distributed random variables. The distributional properties of extreme ob-
servations (maximum and minimum) and exceedances over high (or low) thresholds
are determined by the upper and lower tails of the underlying distribution. Extreme
value analysis necessitate the estimation of the probability of events that are more
extreme than any that have already been observed, Coles (2001). The theory under-
lying EVT methods arises from studying block maxima or threshold exceedances.

Let X 1; :::; Xn be a random samples from a given probability distribution, to under-
stand extreme behavior, one would intuitively inspect the value of the maximum of
the sample. If there are repeated samples ofn random variables, and we look at the
maxima of each of these samples, then one might begin to gain an understanding of
the behavior found in the tail of the distribution. The modelling of extreme value has
attracted tremendous interest in many di�erent �elds. Speci�cally, the Generalised
Pareto distribution is a very popular extreme value model, which can give a good
model for the upper tail providing reliable extrapolation for quantiles beyond a rea-
sonably high threshold. An important challenge in application of such extreme value
models is the threshold choice beyond which an observation can be considered as
extreme that is, the asymptotically justi�ed extreme value models will give su�cient
approximation to the tail of the distribution.

To analyse the statistical properties of maxima or minima, previous studies usu-
ally focus on independent and identically distributed random variables, Coles (2001).
However, due to temporal dependence, short-range dependence of extremes which
leads to cluster of observations usually arises in extreme value theory. The depen-
dence in extreme values leads to breakdown of the independence assumption in EVT
and an appropriate approach is thus needed to analyse and characterise the extremes
of dependent series.

The extension of time series to extreme values can be achieved by inducing time-
dependence in the underlying state of the extreme value process. One approach to

1
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capture dependence in EVT is to consider a time series process for the model param-
eters of the extreme value distribution using a state space representation, Huerta and
Sans�o (2007).

We study and characterise the impact of dependence on the parameter estimates of
stationary Gumbel autoregressive and Gumbel moving average processes of an ex-
treme value process with varying degree of dependence induce through the linear
�ltering of Gumbel distributed innovation or error term. The innovations of the time
series process basically make up the variability observed in part of the system when
it moves from one time period to another.

The Gumbel distribution is a member of the Generalised Extreme Value (GEV) dis-
tribution. The GEV distribution has three parameters: a location parameter,�; a
scale parameter,� ; and a shape parameters,� . Generalised extreme value distribu-
tion commonly use for the analysis of maxima of some large set of random variables
has cumulative distribution function given as

G(x) = exp

{
−
[
1 + �

(
x − �

�

)]−1
ξ

}
(1.1)

where � > 0, � ∈ R, � ∈ R and 1 + � ( x−�� ) > 0:
When � → 0 in Eq. (3.1) the GEV distribution lead to the Gumbel family of distri-
bution with light-tailed normalized maxima given as

G(x) = exp
{
−exp

[
−
(

x − �
�

)]}
;−∞ < x < ∞; (1.2)

Coles (2001).

1.1.1 Time Series Processes

A time series is a sequence of observations observed sequentially in time, Box et al.
(2008). The ordering is usually through time particularly in terms of some equally
spaced time intervals. The time interval could be every second, every minute, hourly,
daily, weekly, monthly, quarterly and annually. An important feature of a time se-
ries is that successive observations are usually dependent. The behaviour of this
dependence among successive observations is of practical importance. Indeed, it is
this dependent from one time period to another that is exploited in making reliable
forecast. It is imperative to distinguish between a time series process and a time
series realisation. The observed time series is an actual realisation of an underlying
time series process. By a realisation we mean a sequence of observed data points
and not just a single observation, while a time series process refers to the underlying
mechanism giving rise to an observed time series data.

Stationarity, autocorrelation and autocovariance are important concepts in the study

2
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of time series. The autocorrelation function (ACF) assess the level of dependence in
a time series process and is use to choose a model for the observations that reects
this dependence, Brockwell and Davis (2002). Let{Yt} be realised values of a sta-
tionary time series process, the estimate of the autocorrelation function will provide
an estimate of the ACF of{Yt} which may suggest which of the various stationary
time series model is suitable in explaining the dependence in the observations. For
any stationary process{Yt}, the mean,E{Yt} = �, and variance written as

var{Yt} = E{(Yt − �) 2}
= E{(yt − �)(y t − �)}

are constant for all t and the covariance, denoted by cov(yt; ys) are functions of only
the time di�erence |t − s|.

In order to make statistical inference about the structure of a stochastic process on
the basis of a �nite record of the process, an important assumption is that of sta-
tionarity. If the mean and variance of a time series process do not change with time
and if strictly periodic variations have been removed, then, the time series process
is said to be stationary and the process is assumed to be in statistical equilibrium,
Chat�eld (2003). Stationarity requirement may seem too restrictive, however, most
non-stationary time series process that are encountered in practice can be transformed
into a stationary time series using relatively simple operations, Pankratz (1983). If
a process is not stationary, we cannot get useful estimates of the parameters of the
process. Non-stationarity implies that the mean is di�erent each time period, and
the variance is also not constant through time. A model that violates the stationarity
restrictions will produce forecasts whose variance increases without limit, an undesir-
able result. An examination of times series plot for wandering behaviour could suggest
non-stationarity. Also, examining the sample autocorrelation function and observing
that the autocorrelations do not die out quickly could suggest non-stationarity. A
more formal test for testing stationarity is the Augmented Dickey Fuller test. It is
important to note that the non-stationary components such as trend could be of more
interest than the stationary residuals depending on the objective of a researcher. We
shall distinguish between two forms of stationarity namely, strictly stationary and
weakly stationary processes.

• Strictly stationary process

A time series process{Yt}; t = 0 ;±1; : : :, is said to be strictly stationary if it is
de�ned by the condition that (Y1; Y2; : : : ; Yn) and (Y1+k; Y2+k : : : ; Yn+k) have
the same joint distributions for all integersk and n > 0, Brockwell and Davis
(2002).

• Weakly stationary process

A times series process{Yt}; t = 0 ;±1; : : : ;±n is said to be weakly (or second-
order or covariance) stationary if the mean and variance are constant over time.
In other words, E (Yt) = � and E{(Yt − �) 2} = � 2 for all t and the autocovari-

3
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ance, cov(Yt; Yt+k), depend only on the distancek and not on the time period,
Box et al. (2008). If{Yt} is a strictly stationary time series andE (Y 2

t ) < ∞ for
all t, Brockwell and Davis (2002) state that{Yt} is also covariance stationary.
Since it is often relatively easier to check for the �rst two moments, we shall
work with weakly stationary time series in this thesis.

One important example of a stationary process is the so-called White Noise (WN)
process, which is de�ned as a sequence of independent identically distributed random
variable. This is often time called strict white noise and the phrase uncorrelated white
noise is used when successive values are merely uncorrelated, rather than indepen-
dent, Chat�eld (2003). The importance of a white noise process is derive not from
the fact that it is an interesting process itself but from the fact that many processes
can be constructed from the white noise process. A white noise process is distributed
with mean zero and �nite variance,� 2, Brockwell and Davis (2002).

Time series models have di�erent forms and represent varying stochastic processes.
There are three broad classes of practical importance in modelling variations in the
level of a process and they are the Autoregressive (AR) models, the Integrated (I)
models, and the Moving Average (MA) models. These three models are each lin-
early dependent on past observations. A combination of these models gives rise to
di�erent models. There are also other types of non-linear time series models, such as
Autoregressive Conditional Heteroskedasticity (ARCH) that represent uctuations of
variance over time (heteroskedasticity). According to Brockwell and Davis (2002),
autoregressive moving average models give a basic structure for studying stationary
processes, in this thesis, we therefore study autoregressive process and moving average
process of order one respectively.

Autoregressive Process

An autoregressive model of orderp is obtain by regressing the seriesYt on its lagged
valuesYt−1; Yt−2; : : : ; Yt−p. It can be represented by equation of the form

Yt = � 1Yt−1 + � 2Yt−2 + � 3Yt−3 + : : : + � pYt−p + " t (1.3)

and can be written in a more compact form as�(B )Yt = " t whereB is the back-shift
operator, " t denotes white noise (random shock) and

�(B ) = 1 − � 1B − � 2B 2 − : : :− � pB p:

The positive integer p is the order of the model and is determined from the data
using a plot of the autocorrelation and partial autocorrelation functions respectively.
The sequence� 1; � 2; : : : may be �nite or in�nite. If this sequence is �nite or in�nite
but absolutely summable in the sense that

∑∞
j=0 |� j | < ∞, a linear �lter generated

time series is said to be stable. The condition
∑∞
j=0 |� j | < ∞ implies

∑∞
j=0 � 2j < ∞

and therefore ensure the series converges in mean square, Brockwell and Davis (2002).
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A time series{Yt} is said to be governed by a �rst-order AR process if the current
value of the seriesYt can be expressed as a linear function of the previous values of
the series plus the random shock" t. The AR(1) process can be written as

Yt = � 1Yt−1 + " t (1.4)

and this can be rewritten as�(B )Yt = " t where �(B ) = (1 − � 1B ): For the AR(1)
to be stationary, the root of (1− � 1B ) = 0 must be greater than 1 in absolute
value, Pankratz (1983).The AR(1) process is sometime called the Markov process
because the value ofYt is completely determined by the knowledge ofYt−1. The
autocovariance ofYt at lag k denoted by k, is a covariance betweenYt and Yt−k and
therefore de�ned as

 k = cov(Yt; Yt−k):

The ACF of AR(1) decays exponentially while the Partial Autocorrelation Function
(PACF) cuts o� after lag one. For stationarity assumption to hold for AR(1) process,
we must have that |� 1| < 1. Since |� 1| < 1, the autocorrelation function is an
exponentially decreasing curve as the lagk increases. It follows therefore that if
0 < � 1 < 1, autocorrelation function decays exponentially to zero, and if−1 < � 1 < 0
the autocorrelation function also decays exponentially to zero but oscillates in sign,
Box et al. (2008) .

Moving Average Process

The moving average process expresses the current value of{Yt} as a linear function of
the current and previous errors," t and " t−j ; j = 1 ; 2; : : : ; q:A moving average process
of order q, MA(q), is of the form

Yt = " t − � 1" t−1 − � 2" t−2 − : : :− � q" t−q (1.5)
Yt = � (B )" t:

As with an autoregressive process, the random shocks in a moving average process are
assumed to be normally and independently distributed with mean zero and constant
variance � 2

" : Also, q is a positive integer indicating the order of the model and the
order can be determined by plotting the autocorrelation and partial autocorrelation
functions respectively. As with the AR process, we shall limit the scope of this study
to a �rst order moving average process, MA(1).

The �rst order moving average, MA(1), process is of the form

yt = " t − �" t−1 (1.6)
= (1 − �B )" t

where " t is a zero-mean white noise process with constant variance� 2
" : Contrary to

the behaviour of the autocorrelation and partial autocorrelation functions plots of the
AR(1), the ACF of MA(1) cuts o� after lag one while the PACF tails o� exponentially
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in one of two forms depending on the signs of�:

It is important to note that while an AR process is require to satisfy the stationarity
conditions, a MA process is require to satisfy the invertibility condition, Pankratz
(1983). For the MA process to be invertible,� must lie in the range|� | < 1. However,
the process is ofcourse stationary for all values of� . A non-invertible MA model
implies that the weights placed on past realisations of the time series do not decline
as we move backward into past observations; but rational thinking suggest that larger
weights should be attached to more recent observations than to past observations,
Brockwell and Davis (2002). Invertibility condition ensures that larger weights are
placed on recent observations than past observations. Invertibility also ensures a
unique association between processes and theoretical autocorrelation functions.

1.1.2 Extreme Value Theory

The objective of extreme value theory is to formulate probabilistic results that allows
characterisation in the tail behaviour of any probability distribution without requir-
ing knowledge of the form of the underlying probability distribution because, the
cumulative distribution function of extremes of any distribution approaches a known
distribution asymptotically as the sample size increases, Makkonen (2008). Modelling
observed data extremes and making generalisation about the probable recurrence of
these events is the objective of an extreme value analysis.

Let Y1; Y2; : : : ; Yn be a sequence of independent identically distributed random vari-
ables with distribution function F . The theory of classical extreme value is concern
with the behaviour of Mn = max{Y1; Y2; : : : ; Yn}: As n → ∞; the characteristics of
Mn is of particular importance. Let

Pr{M n ≤ z} = Pr {Y1 ≤ z; Y2 ≤ z; :::; Yn ≤ z}

=
n∏
j=1

Pr{Yj ≤ z}

= {P (Yj ≤ z)}n

= {F (z)}n;

for all values ofn. In practice, the distribution function of F is unknown, Makkonen
(2008). One approach use in determiningF is by employing standard statistical
techniques to the observed data and this lead to an estimate for the distribution of
Mn. This approach could however give rise to small discrepancies in the estimate of
F , which could give rise to large variations forF n. Alternatively, extreme data could
be use in estimating an approximate families of models for the distribution function
F n. However,Mn has a degenerate limiting distribution because it converges with
probability 1 to the upper endpoint of F , Coles (2001). The implication of this is
that as n →∞, to consider the behaviour ofF n would not be enough. This challenge
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is avoided by considering a linear renormalisation ofMn:

M ∗n =
Mn − bn

an
;

where{an > 0} and {bn} are sequences of constants. Choosing{an > 0} and {bn}
appropriately stabilise both the location and scale parameters ofM ∗n as n increases
and this avoid the di�culties that arise with Mn. Therefore, with appropriate choices
of {an > 0} and {bn}, we seek limit distributions for M ∗n rather than Mn. The
proposition below by Embrechts et al. (1997) gives the continuity conditions onF
which ensures that the limit of Pr(Mn ≤ un) as n → ∞ for the independent and
identically distributed random variable exist for appropriate constantsun = an + bn

Proposition 1.1 :
For given � ∈ [0;∞] and a sequence (un) of real numbers the following are equivalent

nF (Un) → �;

P (M n ≤ un) → e−�

where F = 1−F is the tail of the distribution function F and it guarantee the existence
of a limit distribution for a heavy-tailed case.

Embrechts et al. (1997) also state that a better understanding of the order of mag-
nitude of maxima is given by weak convergence results for centered and normalised
maxima. The extremal types theorem give the entire range of the possible limit dis-
tributions for Mn and an aspect of this result were proved by Fisher and Tippett
(1928). The extremal types theorem by Coles (2001) state:

Theorem 1.1 :(Extremal Types Theorem)
If there exist sequences of constants {an > 0} and {bn} such that

Pr
{

Mn − bn
an

≤ z
}
→ G(z) as n →∞; (1.7)

where G is a non-degenerate distribution function, then G belongs to one of the fol-
lowing families:

G(z) = exp
{
−exp

[
−
(

z− �
�

)]}
;−∞ < z < ∞ (1.8)

G(z) =

 0; z ≤ �;

exp
[
−
(
z−�
�

)−�]
; z > � ; (1.9)

G(z) =

 exp
{
−
[
−
(
z−�
�

)�]}
; z < �;

0; z ≥ �;
(1.10)

for parameters � > 0, b and, in the case of families of Eq. (1.8) and Eq. (1.9), � > 0.
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The extremal types theorem in other words states that, if{an} and {bn} are suitable
sequences that stabiliseMn, then M ∗n converge in distribution to one of the three
families of distribution stated in Eq. (1.7), Eq. (1.8) and Eq. (1.9) respectively. This
three distributions are known as theGumbel, Frechet andWeibull families respectively
and collectively they are termed theextreme value distributions. Each of the three
families has a location parameter;�, and a scale parameter;� , respectively while the
Frechet and Weibull families have an additional shape parameter;� . One remarkable
feature of this result is that the Gumbel, Frechet and Weibull families of extreme value
distributions are the only possible limits for the distributions ofM ∗n, irrespective of
the distribution F of the population therefore providing an extreme value counterpart
of the central limit theorem.

Generalized Extreme Value Distribution

The Generalised Extreme Value (GEV) distribution is use traditionally for the anal-
ysis of extreme values, Huerta and Sans�o (2007). Theorem (1.1) give rise to three
types of limits distribution with distinct forms of tail behaviour for the distribution
function F of X i. The upper end-point,z+, of the Weibull distribution is �nite, while
the upper end-point,z+, for both Frechet and Gumbel distributions are in�nite. It
is important to note that the density of G(z) decays exponentially for the Gumbel
distribution but polynomially for the Frechet distribution corresponding to di�erent
rate of decay behaviour in the tail ofF . Hence in practice, this correspond to dif-
ferent representation of extreme behaviour. Since Gumbel distribution �ts well in
many practical situations, Kotz and Nadarajah (2000) and Cordeiro et al. (2012),
this thesis therefore focus on Gumbel family of the GEV distribution. According to
Coles (2001), the uncertainty involve in choosing which of the three families is most
suitable for a particular data can be avoided by a reformulation of Theorem (1.1) to
a modi�ed form

Theorem 1.2 :(Modified Extremal Types Theorem)
If there exist sequences of constants {an > 0} and {bn} such that

Pr
{

Mn − bn
an

≤ z
}
→ G(z) as n →∞; (1.11)

for a non-degenerate distribution function G, then G is a member of the GEV family

G(z) = exp

{
−
[
1 + �

(
z− �

�

)]−1
ξ

}
(1.12)

defined on {z : 1 + �(z−�)
� > 0}, where −∞ < � < ∞, � > 0 and −∞ < � < ∞:

The subset of Eq. (1.12) with� = 0, which is interpreted as the limit of G(z) as
� → 0, is known as the Gumbel distribution with normalized maxima from GEV
with light-tailed given as in Eq. (1.8).
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The Frechet and Weibull families of extreme value correspond to the case� > 0 and
� < 0 respectively. Assuming Eq. (1.11), then

Pr
{

Mn − bn
an

≤ z
}
≈ G(z)

for large n. Similarly,

Pr{M n ≤ z} ≈ G
{

(z − bn)
an

}
= G∗(z);

whereG∗ is also a member of the Generalised Extreme Value family, hence resolving
the challenge that the normalising constants{an > 0} and bn will be unknown in
practice, Coles (2001).

1.1.3 Threshold Exceedance and the Generalised Pareto Distribution

The Generalised Pareto Distribution (GPD) is a dual parameter family of distribu-
tion use in modelling exceedances over a given threshold,u. The GPD has scale
parameter; � and shape parameter;� . Maximum Likelihood Estimates (MLE) of the
parameters are asymptotically normal and asymptotically e�cient in many cases and
are therefore preferred in the estimation of both� and � , Grimshaw (1993). We pro-
ceed by stating the generalised Pareto distribution and show how generalised extreme
value distribution and Gumbel distribution are related to the GPD and the Gumbel
distributed GPD (GPD gumbel) respectively. We derive the MLE forGPDgumbel in
Section (3.2.3). Coles (2001) give the main result of GPD as follows:
Let X 1; X 2; · · · ; Xn be a sequence of independent and identically distributed random
variables with common distribution function, F , and let Mn = max{X 1; · · · ; Xn} so
that

Pr{Mn} ≈ G(z)

where

G(z) = exp

{
−
[
1 + �

(
z− �

�

)]−1
ξ

}
for some�, � > 0 and � . Then, for any reasonable large thresholdu, the distribution
function of (X − u), conditional on X > u, is approximately

H (y) = 1 −
(

1 +
�y
~�

)−1
ξ

(1.13)

de�ned on {y : y > 0} and (1 + �y
�̃ ) > 0, where ~� = � + � (u − �).

For the Gumbel distributed generalised Pareto distribution, GPDgumbel; we take the
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limit of Eq. (1.13) as � → 0; leading to

H (y) = 1 − exp(−y=~� ); y > 0 (1.14)

which correspond to the exponential distribution with parameter 1=~�:

The family of distribution de�ned by Eq. (1.13) is the generalised Pareto family of
distributions while Eq. (1.14) is the Gumbel-distributed generalised Pareto distribu-
tion. Since Gumbel distribution is a member of the family of the GEV distribution, to
show the transformation from Gumbel distribution to the GPD, we commence with
the the GEV. Lets denote an arbitrary term in the sequenceX 1; X 2; · · · ; Xn by X .
Coles (2001) describe the behaviour of extreme events as

Pr{X > u + z|X > u} =
Pr(X > u + z; X > u)

Pr(X > u)

=
Pr(X > u + z)

Pr(X > u)

=
1− F (u + z)

1− F (u)
(1.15)

but we know that

Pr{M n} = F n(X ) ≈ G(z)

= exp

{
−
[
1 + �

(
X − �

�

)]−1
ξ

}
;

with parameters �, � and �: Therefore,

n logF (X ) ≈ −
[
1 + �

(
X − �

�

)]−1
ξ

: (1.16)

For reasonable large values of X, a Taylor series expansion implies that

logF (X ) ≈ −{1− F (X )}

and substituting into Eq. (1.16) gives

n(−{1− F (u)}) ≈ −
[
1 + �

(
u− �

�

)]−1
ξ

1− F (u) ≈ 1
n

[
1 + �

(
u− �

�

)]−1
ξ

(1.17)
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for reasonable largeu: Also, for z > 0;

1− F (u + z) ≈ 1
n

[
1 + �

(
u + z− �

�

)]−1
ξ

(1.18)

substituting Eq. (1.17) and Eq. (1.18) into Eq. (1.15) then gives

Pr{X > u + z|X > u} =
1− F (u + z)

1− F (u)

≈
1
n

[
1 + �

(
u+z−�

�

)]−1
ξ

1
n

[
1 + �

(
u−�
�

)]−1
ξ

=

1 + �
(
u−�
�

)
+ � z�

1 + �
(
u−�
�

)
−

1
ξ

=

1 + �
(
u−�
�

)
1 + �

(
u−�
�

) +
� z�

1 + �
(
u−�
�

)
−

1
ξ

=
[
1 +

�z
� + � (u − �)

]−1
ξ

=
[
1 +

�z
~�

]−1
ξ

hence, the GPDgumbel as � → 0 is,

H (y) = 1 − exp(−y=~� ); y > 0

where ~� = � + � (u − �) and z as use here is the excess above a given threshold.

The derivation of the GPDgumbel from the Gumbel family of distribution makes the
dependence of the Gumbel distributed generalised Pareto distribution parameters on
the threshold, u, obvious. The parameters of the GPDgumbel of threshold excesses
are determined by those of the corresponding Gumbel distribution and in particular,
the shape parameter of the GPDgumbel is equal to that of the associated Gumbel
distribution.

1.1.4 Dependence in Extreme Value Distribution

So far, we have focused on independent identically distributed random variables to
consider the statistical properties of their maxima. However, in dependent sequence,
extremal events in practice often occur in clusters, Markovich (2014). The basic
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assumption governing an extreme value analysis is that the sequence of random vari-
ables are independent and identically distributed and the maxima of the samples
converge in distribution to a random variable which have a non-degenerate extreme
value distribution G, Coles (2001). These basic assumptions are not met in time series
data because time series data are usually dependent. As a result of temporal depen-
dence, short-range dependence of extremes leading to cluster of observations usually
arises in extreme value theory and this leads to the breakdown of the independence
assumption, Chavez-Demoulin and Davison (2012). In order to analyse the extreme
of stationary series, the dependence in the series must be consider, Eastoe and Tawn
(2012).

Dependence takes many di�erent forms in stationary series and it is not unusual to
assume a condition that limits the extent of long range dependence at an extreme
levels. This will ensure that for a stationary time seriesX 1; X 2; : : : ; Xn, two events
X i > u and X j > u are approximately independent, provided the threshold,u, is
su�ciently large and time points i and j are reasonable far apart, Coles (2001). Many
stationary time series processes satisfy this property. Thus, one can focus on the e�ect
of short-range dependence by eliminating long-range dependence at extreme levels.
For a stationary time series model, exceedances often times occur in clusters. Instead
of trying to develop methods which will specify the joint probability distribution of
exceedances, the data are more often declustered, Ferro and Segers (2003) and Ledford
and Tawn (2003). The declustering schemes involve setting a threshold such that the
resulting sequence of exceedances contains approximately independent observations.

Extremal Index

An important parameter in dependent series that measures the degree of clustering
of extreme values is the extremal index, Reiss and Thomas (2007). Extremal index
make it possible to characterises changes in the sequences of an extremal distribution
as a result of serial dependence, Embrechts et al. (1997). For dependent random
variables, Proposition (1.1) is violated because it require observations to be indepen-
dent identically distributed, and therefore, the distribution of the maximaMn is not
determined by F alone, but rather from the complete distribution of the dependent
series. A comparative approximate relationship can be derived as

P (M n ≤ z) ≈ F n�(z) ≥ F n(z)

for large n, where� ∈ [0;1] is called theextremal index. Recall that for an independent
case the following holds

nF (Un) → �; 0 < � < ∞

if and only if
P (M ∗n ≤ Un) → e−� :

A formal de�nition of extremal index is given by Embrechts et al. (1997) as:
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Definition 1.1 :(Extremal Index)
Let (Yj);−∞ < j < ∞; be a strictly stationary sequence and � ∈ (0; 1) a non-negative
number. Assume that for every � > 0 there exists a sequence (un) such that

lim
n→0

nF (un) = � (1.19)

and
lim
n→∞

Pr(M n ≤ un) = e−�� : (1.20)

Then � is called the extremal index of the sequence (Yj).

Unless the extremal index,� , is equal to one, the limit distributions for stationary and
independent sequences are not the same. Provided� > 0 exist, then, for any sequence
of real numbers� ∈ 0;∞, and un, the relations in the extremal index de�nition and
Pr(M ∗

n ≤ un) → e−� are equivalent. Thus from the above de�nition, the relationship
between the distribution of maximum and the exceedances probability is

Pr(M n ≤ un) ≈ e−��

≈ e−�nF (un)

=
(

e−F (un)
)n�

≈
(
1− F (un)

)n�
= F n�(un); (1.21)

when un is large, thenF (un) ≈ 0: If we ignore the extremal index,� , in the data,
we risk underestimating the quantile ofF , Chavez-Demoulin and Davison (2012).
Independent identically distributed variables has extremal index� = 1, since Yj here
are independent. The case� = 0 entails that sample maxima of a dependent process
are of smaller order than sample maxima of the independent sequnce, see Beirlant
et al. (2006) for a detail proof of extremal index.

Modelling Extremes in Stationary Processes

There are two popular approach use in statistical modeling of extremes. The Block
Maxima and the Peaks over Threshold methods. The block maxima method entail
observing the maximum values of a series over a number of blocks. The observed block
maxima are modelled using an extreme value distribution with distribution function
given in Eq. (1.12). The use of the extreme value distributions is motivated by the fact
that they are the only limit of linearly normalised maxima and they are max-stable,
Rootz�en and Tajvidi (2006). Max-stability implies that a change in the size of the
block only leads to corresponding change in both the location and scale parameters
respectively in the distribution. However, according to Coles (2001), modelling only
block maxima is an imprudent way of modelling extreme values provided other ob-
servations on extremes are available. Therefore, if a complete time series is available,
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avoiding the procedure of blocking will lead to better use of the data. Typically, the
identi�cation of independent clusters and the declustering scheme used has a signi�-
cant e�ect on the parameter estimates of cluster characteristics when inference is to
be made for clusters of extreme in a time series process, Ferro and Segers (2003).

The POT approach uses all observed values which are greater than a chosen threshold.
These extreme observations are then assumed to be from the GPD given in Eq. (1.13).
Rootz�en and Tajvidi (2006) state that the choice of the generalised Pareto distribution
in modeling threshold exceedances is motivated by the following:

• The asymptotic threshold (as the threshold approaches the endpoint of the
distribution) of the distribution of a scale normalised exceedances approaches
a generalised Pareto distribution if and only if the block maxima distribution
converges to an extreme value distribution.

• The generalised Pareto distribution is the only distribution for which the con-
ditional distribution of exceedances is a scale transformation of the original
distribution.

Rootz�en and Tajvidi (2006) state that the peak over threshold method often times
give better estimation precision than the block maxima approach since it uses more
of the data.

1.2 Motivation of the Study

The motivation for this study arises from an empirical observation that dependent
sequence of observations from �nance, environmental sciences, hydrology, etc. occur
in cluster in the presence of an extremal event. Speci�cally, it has been identi�ed
in recent years that independent identical distributed Gaussian random variables is
not suitable for modelling extreme returns of stocks observed during �nancial crisis,
Robert (2008). However, many real life applications of extreme values provide one
with dependent and stationary data rather than the conventional independent iden-
tically distributed data use in analysing extreme values. Therefore, it is important to
study and understand the behaviour of the parameter estimates of the extreme value
process under the stationarity assumption of the observed sequence in the presence
of di�erent level of weak dependence. The need to make general statements that
characterise dependence in extreme value analysis over a range of sample sizes with
varying degree of dependence motivates this study. Such general characterisation is
useful in understanding the underlying mechanism giving rise to an extreme event in
physical processes.

1.3 Objectives of the Thesis

We propose stationary Gumbel-AR(1) and Gumbel-MA(1) models and generate sam-
ple sizes with varying degrees of dependence. The objective of the thesis therefore
are to:
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1. Evaluate the impact of dependence on the parameter estimates of Gumbel-
AR(1) and Gumbel-MA(1) models.

2. Evaluate the impact of dependence on the degree of clustering of the Gumbel-
AR(1) and Gumbel-MA(1) models .

3. Fit Gumbel-AR(1) and Gumbel-MA(1) models to GPDgumbel and then evaluate
the performance of the parameter estimates �tted to the threshold exceedances
and the original series.

1.4 Expected Outcome

The general expectation of this thesis is to evaluate the performance of the parameter
estimates of an autoregressive and moving average processes with Gumbel distributed
innovation arising from a linear �lter operation for di�erent sample sizes with varying
degrees of dependence. We �t the threshold exceedances of the AR and MA processes
to GPDgumbel and to the declustered series and then assess the performance of the
parameter estimates of the Gumbel generalised Pareto distribution. Results obtain
will give a general characterisation of extreme values parameter estimates of AR
and MA processes with Gumbel distributed innovation. The parameter estimates of
Gumbel distributed generalised Pareto distribution �tted to threshold exceedances
before and after declustering the AR and MA processes for the di�erent sample sizes
over a varying degree of dependence will also be evaluated.

1.5 Organisation of the Thesis

This thesis is divided into �ve chapters. Chapter 1 give the theoretical background by
discussing the basic concept of time series, extreme value theory and dependence in
extreme value distributions. Chapter 2 reviews relevant literatures on dependence in
extreme value distributions. Chapter 3 presents simulation study, results and discus-
sion of the AR(1) model with extreme value innovations. In Chapter 4, we presents
the simulation study, results and discussion for the MA(1) model with extreme value
innovations. In Chapter 5, we presents the general summary of results, conclusion
and recommendations for future research.
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