MOLEULAR AND BIOCHEMICAL CHARACTERIZATION OF PHOSPHATE-SOLUBILIZING PSEUDOMONAS SP. ISOLATED FROM OIL PALM SOIL

MOLOUD KOOSHAN

FP 2015 13
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
To my lovely parents for their consistent love, help and support throughout all levels of my life and education,

To my beloved husband, Reza, who encourage me always, thank you Reza for your love, wisdom, and support, and last but not least, to my brothers, Mostafa and Morteza for their lovely support
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

MOLECULAR AND BIOCHEMICAL CHARACTERIZATION OF PHOSPHATE-SOLUBILIZING *PSEUDOMONAS SP.* ISOLATED FROM OIL PALM SOIL

By

MOLOUD KOOSHAN

June 2015

Chairman: Associate Professor Halimi Mohd Saud, PhD
Faculty: Agriculture

Phosphorous (P) is one of the most essential macronutrients required for plant growth and development. The objectives of the present study were to select *Pseudomonas* from soils of oil palm capable of solubilizing phosphate under tropical environment by various biochemical and genotypical method have been used. The study carried out to determine the population distribution of phosphate solubilizing *Pseudomonas* in oil palm soil by Standard Plate Count. The results showed that the distribution of phosphate solubilizing bacteria and phosphate solubilizing *Pseudomonas* population in UPM were higher than the rest. Twenty five isolates were able to grow and form clearing zone in NBRIP (National Botanical Research Institute’s Phosphate) medium, PVK (Pikovskayas) and other different carbon and nitrogen sources. The best isolates were 43Dengkil, 9Dengkil, 10Dengkil and 15Dengkil which solubilized phosphate on NBRIP better than other isolates. Meanwhile, the best isolate on PVK was 15Dengkil. The result of culturing the isolates in NBRIP indicated that among all carbon sources glucose was the best carbon sources for phosphate solubilization and KNO$_3$ was less effective compared to (NH$_4$)NO$_3$ when it was used as a source of nitrogen. All the isolates were acid producers and among them, 633UPM and 144UPM, after 5 days of culture, 555UPM and 23Dengkil after 8 days of culture respectively, showed the lowest pH. The effective phosphate solubilizer isolates after 5 days were 48Semenyih and 45Dengkil, 5Semenyih, and after 8 days were 45Dengkil, 5Semenyih, followed by 48Semenyih respectively. Initial confirmation of their genus level identity as *Pseudomonas* was arrived by amplification of 16S rDNA sequence. The result of a BLAST search of 16S rDNA sequences of *Pseudomonas* compared with the available 16S rDNA sequences in the GenBnak database indicated that all of the *Pseudomonas* isolates belonged to gamma proteobacteria subdivision. Isolates 59Semenyih, 62Dengkil, 555UPM, 43Dengkil, 69Semenyih and 103Semenyih had more than 80% similarity to *Pseudomonas* species. The diversity among isolates was determined by REP-PCR (Repetitive Extragenitic Palindromic Elements). Based on REP-PCR pattern isolates were classified into seven groups (A, B, C, D, E, F, and G). The cluster showed that in group A, isolates 9Dengkil, 10Dengkil, 15Dengkil, 23Dengkil and 45Dengkil were totally similar to each other. Cluster B included 43Dengkil, 62Dengkil isolates. Clusters C and D included isolates 103UPM and 59Semenyih respectively. Four isolates fell into cluster E and these isolates were totally similar to each other. Cluster F
contained isolates 144UPM and 625UPM. Cluster G consisted of 4 isolates and also cluster H included 5 isolates. Also, this study concluded that the cluster analysis of *Pseudomonas* based on REP-PCR identified clusters A, B, C, D, E and F approximately with genetic distance=0.34. The results presented here clearly establish that REP sequences (elements) are present in genome of phosphate solubilizing *Pseudomonas* isolated from oil palm soils.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains.

PENGELASAN MOLEKUL DAN BIOKIMIA FOSFAT TERMELARUT PSEUDOMONAS SP. DIASINGKAN DARIPADA TANAH KELAPA SAWIT

Oleh

MOLOUD KOOSHAN

Jun 2015

Pengerusi: Associate Professor Halimi Mohd Saud, PhD
Fakulti: Pertanian

iii
F mengandungi pencilan 144UPM dan 625UPM. Kluster G terdiri daripada empat pencilan dan juga kelompok H terbentuk oleh lima pencilan. Selain itu, kajian ini membuat kesimpulan bahawa analisis kelompok Pseudomonas berdasarkan REP -PCR mengenalpasti kelompok A, B, C, D, E dan F yang mempunyai jarak genetik $F = 0.34$. Keputusan yang dibentangkan di sini jelas membuktikan bahawa jujukan REP (elemen) hadir dalam genom Pseudomonas pelarut fosfat yang diasingkan dari tanah kelapa sawit.
ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest endless thanks to God for granting me the capability to complete this research successfully.

I would like to express my sincere gratitude to my supervisor Associate Professor Dr. Halimi Mohd Saud for his generous help, patience, individual advice, the trust, the insightful discussion and constant support throughout the completion of the thesis.

I am also indebted and very grateful to my supervisory committee member, Assoc. Prof. Madya Dr. Radziah Othman for her valuable advise and extended long-term support during the preparation and completion of this thesis. I am greatly thankful to Assoc. Prof. Dr. Maheran Abdul Aziz and Prof. Datin Dr. Siti Nor Akmar Abdullah for their kind support, cooperation and permission to work in their laboratory.

It is pleasure to thank all my lab mate and friends, for providing a friendly atmosphere and making my life enjoyable in the laboratory. I wish to thank Mr. Mahmoud Danaee, Mr. Saeid Kadkhodaei and Mr. Reza Shabani for their great assistance, suggestion, and knowledgeable comments and the data analysis of my thesis.

Finally, I will forever be thankful to my beloved parents, my lovely husband Reza and my brothers for their endless love, prayers, patience, understanding, spiritual and grateful support in all aspects of my life. Last but certainly no least, I owe my deepest gratitude to those who are not mentioned here for their support in the completion of my research.
I certify that an Examination Committee has met on 22nd June 2015 to conduct the final examination of Moloud Kooshan on her thesis entitled “Molecular and Biochemical Characterization of Phosphate-Solubilizing \textit{Pseudomonas Sp}. Isolated from Oil Palm Soils” in accordance with Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science

Members of the Thesis Examination Committee were as follows:

\textbf{NORTAH OMAR, PhD}
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Halimi Mohd Saud, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Radziah Othman, PhD
Associate Professor
Faculty of Science
Universiti Putra Malaysia
(Committee Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ___________________________ Date: ______________

Name and Matric No: __
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

 Signature: ____________________________
Name of Chairman of Supervisory Committee: ____________________________

 Signature: ____________________________
Name of Member of Supervisory Committee: ____________________________
<table>
<thead>
<tr>
<th>CHAPTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 INTRODUCTION</td>
</tr>
<tr>
<td>2 LITERATURE REVIEW</td>
</tr>
<tr>
<td>3 SCREENING OF POTENTIAL PHOSPHATE SOLUBILIZING PSEUDOMONADAS IN OIL PALM SOILS</td>
</tr>
</tbody>
</table>
LIST OF TABLE

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Analysis of soil samples from rhizosphere of three different oil palm plantations.</td>
<td>27</td>
</tr>
<tr>
<td>3.2</td>
<td>The overall mean comparison between PVK and NBRIP.</td>
<td>29</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>The diameter of clearing zone of 25 PSB isolates on NBRIP (solid medium) after 14 days of culture. Isolates were from UPM, Semenyih (S) and Dengkil (D) oil palm plantations.</td>
<td>28</td>
</tr>
<tr>
<td>3.2</td>
<td>The diameter of clearing zone of 25 PSB isolates on PVK (solid medium) after 14 days of culture. Isolates were from UPM, Semenyih (S) and Dengkil (D) oil palm plantations.</td>
<td>29</td>
</tr>
<tr>
<td>3.3</td>
<td>Phosphate solubilization in broth culture after 5 days of culture. Isolates were from UPM, Semenyih (S) and Dengkil (D) oil palm plantations.</td>
<td>30</td>
</tr>
<tr>
<td>3.4</td>
<td>Phosphate solubilization in broth culture after 8 days of culture. Isolates were from UPM, Semenyih (S) and Dengkil (D) oil palm plantations.</td>
<td>31</td>
</tr>
<tr>
<td>3.5</td>
<td>pH of culture after 5 days of culture. Isolates were from UPM, Semenyih (S) and Dengkil (D) oil palm plantations.</td>
<td>33</td>
</tr>
<tr>
<td>3.6</td>
<td>pH of culture after 8 days of culture. Isolates were from UPM, Semenyih (S) and Dengkil (D) oil palm plantations.</td>
<td>34</td>
</tr>
<tr>
<td>3.7</td>
<td>Phosphate solubilization halo zones NBRIP-Glucose after 14 days of culture. Isolates were from UPM, Semenyih (S) and Dengkil (D) oil palm plantations.</td>
<td>36</td>
</tr>
<tr>
<td>3.8</td>
<td>Phosphate solubilization halo zones NBRIP- Lactose after 14 days of culture. Isolates were from UPM, Semenyih (S) and Dengkil (D) oil palm plantations.</td>
<td>38</td>
</tr>
<tr>
<td>3.9</td>
<td>Phosphate solubilization halo zones NBRIP- Galactose after 14 days of culture. Isolates were from UPM, Semenyih (S) and Dengkil (D) oil palm plantations.</td>
<td>40</td>
</tr>
<tr>
<td>3.10</td>
<td>Phosphate solubilization halo zones NBRIP- Monnitol after 14 days of culture. Isolates were from UPM, Semenyih (S) and Dengkil (D) oil palm plantations.</td>
<td>42</td>
</tr>
<tr>
<td>3.11</td>
<td>Phosphate solubilization halo zones NBRIP- Fructose after 14 days of culture. Isolates were from UPM, Semenyih (S) and Dengkil (D) oil palm plantations.</td>
<td>44</td>
</tr>
<tr>
<td>3.12</td>
<td>Phosphate solubilization halo zones NBRIP- Sucrose after 14 days of culture. Isolates were from UPM, Semenyih (S) and Dengkil (D) oil palm plantations.</td>
<td>46</td>
</tr>
</tbody>
</table>
3.13 The overall comparison between different carbon sources related to bacteria halo zones.

3.14 Phosphate solubilization halo zones NH₄NO₃ after 14 days of culture. Isolates were from UPM, Semenyih (S) and Dengkil (D) oil palm plantations.

3.15 Phosphate solubilization halo zones KNO₃ after 14 days of culture. Isolates were from UPM, Semenyih (S) and Dengkil (D) oil palm plantations.

3.16 The overall comparison between different nitrogen sources related to bacteria halo zones.

4.1 Rooted phylogenetic tree of Pseudomonas isolated with similar sequence from NCBI

4.2 PCR amplification of the 16S rRNA of each Pseudomonas isolates indicated by a single band at ~ 1,500 bp

4.3 PCR amplification of the 16S rRNA of each Pseudomonas isolates indicate by a single band at ~ 1,500 bp

5.1 The dendrogram of cluster analysis showing all of the phosphate solubilizing Pseudomonas isolates relationship based on the REP-PCR marker

5.2 The dendrogram of cluster analysis showing the only phosphate solubilizing Pseudomonas isolates relationship based on the REP-PCR marker which are used for 16S rRNA

5.3 REP-PCR fingerprint pattern of phosphate solubilizing Pseudomonas isolates

5.4 REP-PCR fingerprint pattern of phosphate solubilizing Pseudomonas isolates
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.F.U</td>
<td>Colony Forming Unite</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>Dnase</td>
<td>Deoxyribonuclease</td>
</tr>
<tr>
<td>LB</td>
<td>Luria Bertoni</td>
</tr>
<tr>
<td>LMW</td>
<td>Low Molecular Weight</td>
</tr>
<tr>
<td>NBRIP</td>
<td>National Botanical Institute</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain Reaction</td>
</tr>
<tr>
<td>PSB</td>
<td>Phosphate solubilizing Bacteria</td>
</tr>
<tr>
<td>PVK</td>
<td>Pikovskaya</td>
</tr>
<tr>
<td>PGPR</td>
<td>Plant Growth Promoting Rhizobacteria</td>
</tr>
<tr>
<td>REP</td>
<td>Repetitive Exteragentic Palindromic</td>
</tr>
<tr>
<td>REP-PCR</td>
<td>Repetitive Exteragentic Palindromic-PCR</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic Acid</td>
</tr>
<tr>
<td>Rnase</td>
<td>Ribonuclease</td>
</tr>
<tr>
<td>16S rDNA</td>
<td>16s Ribosomal Deoxyribo Nucleic Acid</td>
</tr>
<tr>
<td>ºC</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>Blast</td>
<td>Basic Local Alignment Search Tool</td>
</tr>
<tr>
<td>bp</td>
<td>Base Pair</td>
</tr>
<tr>
<td>OD</td>
<td>Optimal Density</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolution Per Minute</td>
</tr>
<tr>
<td>VU</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>W/V</td>
<td>Weight/Volume</td>
</tr>
<tr>
<td>Pi</td>
<td>Soluble Phosphorus / Orthophosphate</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Soil is considered as a complex habitat with a large number of different microorganisms including bacteria, fungi, protozoa and algae. The rhizosphere is often separated into the endorhizosphere, the rhizoplane, and the ecotorhizosphere (Lynch, 1990). These separated parts consist of the root tissue, the top and related soil. Soil that is a distance from the rhizosphere is usually referred to as ‘bulk soil’. It has been demonstrated that the immediate area of the roots or rhizosphere contains a much higher concentration of bacteria compared to the bulk soil, and is able to support higher rates of microbial development and activities than the bulk soil (Söderberg and Bååth, 1998). Phosphorous is one of the most limiting nutrients for growth of crops in tropical and subtropical regions (Ae et al., 1990).

The total phosphate (P) in the soil is estimated to be around 0.04 % to 0.1 % (Son et al., 2006; Chen et al., 2008). Though abundant phosphate is found in soil, the concentration of orthophosphate is extremely low (Yi et al., 2008). Lack of soluble phosphate could hinder plant growth and the development of crops and this had led to the intensive use of synthetic fertilizers. However, the application of chemical phosphate fertilizers may supply orthophosphate for only a short period and consequently changes the soluble phosphate to insoluble form via precipitation or adsorption (Lin et al., 2006). Over-application of synthetic fertilizer for long periods leads to the accumulation of a large amount of fixed phosphate in arable soils and one of the long-term effects of over application of synthetic phosphate fertilizer is eutrophication (Son et al., 2006), an excess of nutrients in water. It has also led to adverse impact on the water reservoirs and environment as well as the disruption of the food chain of aquatic organisms.

Besides that, the production of synthetic phosphate fertilizers involves huge costs. Thus, a substantial import bill for the purchase of synthetic phosphate fertilizers from other countries may cause economic constraints for a developing country like Malaysia. Depletion of the natural phosphate sources and lack of available phosphate in arable soil is of great concern as it will adversely affect the development of sustainable agriculture systems. Therefore it is very crucial to find suitable alternatives for natural phosphate, synthetic phosphate and unavailable phosphate in soils. In this respect, the role of bacteria is of great significance in providing phosphate for plants by their metabolic activity. Bacteria are the most important and more dominant microorganisms which have better ability to solubilize mineral phosphate compared to fungi or actinomyces (Kucey, 1983; Yin, 1988). There are several advantages in using bacteria as these microorganisms are known to have the ability to solubilize phosphate in
different environments through adsorption, metabolism and/or transport. Organic acids are naturally and inexpensively produced by bacteria, their rapid production rates make it possible to process large volumes of different organic acids in a timely manner, and the high selectivity organisms are able to solubilize different kinds of phosphate in different specific environments (McGrath et al., 1998). Knowledge of mineral phosphate solubilization is vital for the production of biofertilizers or bioinoculants. Biofertilizers play an important role in solubilizing insoluble soil phosphate; increasing the amount of phosphate uptake by crops and eventually boosting the growth and yield of the crops (Malboobi et al., 2009; Vyas and Gulati, 2009).

Generally, useful or pathogenic bacteria and fungi have a tendency to converge around plant roots and this is what provides a significant impact on plant growth as well as development and enhanced productivity. In such a situation, the colonies of bacteria, and fungi interact with the roots resulting in positive, negative or neutral outcomes due to the symbiotic interaction and soil conditions (Smith and Read, 1997). As a result of bacterial inoculation, plants are able to receive a balanced nutrition that includes nitrogen and phosphorus via the roots, which is the main interactive conduit between plants and bacteria (Belimov et al., 1995). *Pseudomonas* sp is introduced in the soil of agricultural lands and it is the behavior of the bacteria that makes them suitable as PGPR (Saharan and Nehra, 2011).

Observations showed that some *Pseudomonas* species enhance the absorption of nutrients, such as N, P and K, besides their function as agents of biocontrol of phytopathogenic fungi and promoting plant growth by production of phytohormones in the rhizosphere (O'sullivan and O'Gara, 1992). To characterize phosphate solubilizing *Pseudomonas* isolates, various biochemical and genotypical methods have been developed and used so far. Several researchers have used polymerase chain reaction (PCR) technology to detect and study the variability of the *Pseudomonas* species (Yamamoto and Harayama, 1995). The 16S ribosomal RNA sequence (16S RNA) has been used for deducing phylogenetic and evolutionary relationships among bacteria and other prokaryote species (Anzai et al., 2000). Another PCR-based technique, known as REP-PCR has also been used in the identification and classification of bacteria (Versalovic et al., 1991). It is a repeating sequence-based genomic fingerprinting that employs primers corresponding to the endogenous interspersed repetitive sequence of the bacteria. These scattered sequences are highly maintained features in the prokaryotic genomes. These elemental sequences have been widely considered in many prokaryotic microorganisms (Versalovic et al., 1991). This research focused on the phenotypic and genotypic characterization of phosphate solubilizing *Pseudomonas* from different oil palm soils by the application of biochemical and molecular techniques. The main objectives of this research were:

i. To biochemically characterize the phosphate solubilizing Pseudomonads isolated from oil palm soils.
ii. To identify the phosphate solubilizing \emph{Pseudomonas sp.} isolates from oil palm fields using 16srRNA.

iii. To study the genetic variation of the phosphate solubilizing \emph{Pseudomonas sp.} from oil palm soils by using REP-PCR.

The results will give a better insight on the molecular diversity of \emph{Pseudomonas} isolates from soils planted with oil palms.
REFERENCES

Gilson, E., Perrin, D., and Hofnung, M. (1990). DNA polymerase I and a protein complex bind specifically to *E. coli* palindromic unit highly repetitive DNA:
implications for bacterial chromosome organization. *Nucleic acids research* 18 (13), 3941-3952.

84

HB101: nucleotide sequence and probable involvement in biosynthesis of the coenzyme pyrroloquinoline quinone. *Journal of bacteriology* 174 (18), 5814-5819.

Tyler, S., Strathdee, C., Rozee, K., and Johnson, W. (1995). Oligonucleotide primers designed to differentiate pathogenic pseudomonads on the basis of the sequencing of

