

UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT AND CHARACTERIZATION OF NORMOXIC POLYHYDROXYETHYLACRYLATE (nPHEA) GEL DOSIMETERS USING MAGNETIC RESONANC IMAGING (MRI) CLINICAL SCANNER

MARYAM ERFANI HAGHIRI

FS 2009 7

DEVELOPMENT AND CHARACTERIZATION OF NORMOXIC POLYHYDROXYETHYLACRYLATE (nPHEA) GEL DOSIMETERS USING MAGNETIC RESONANC IMAGING (MRI) CLINICAL SCANNER

By

MARYAM ERFANI HAGHIRI

Thesis submitted to the School of Graduated Studies, Universiti Putra Malaysia, in Fulfilment of the requirement for the Degree of Master of Science

September 2009

ii

In the name of Allah, the most gracious, the most merciful

ٱلْحَمَدُ لِلَهِ ٱلَّذِي لَهُ ُ مَا فِي ٱلسَّمَوَأَتِ وَمَا فِي ٱلْأَرْضِ وَلَهُ ٱلْحَمَدُ فِي ٱلْأَخِرَةَ وَهُوَ ٱلْحَكِيمُٱلْخَبِيرُ (١) يَعْلَمُ مَا يَلِجُ فِي ٱلْأَرْضِ وَمَا يَخْرُجُ مِتْهَا وَمَا يَنزِلُ مِنَ ٱلسَّمَاء وَمَا يَعْرُجُ فِيهَآؤَهُوَ ٱلرَّحِيمُ ٱلْغَفُورُ

Praise is to Allah, unto whom belonged whatsoever is in the heavens and whatsoever is in the earth. His is the praise in the Hereafter, and He is the Wise, the Aware. (1) He knows that which go down into the earth and that which cometh forth from it and that descend from the heaven and that which ascend into it. He is the Merciful, the Forgiving.

Saba, ayat (1) & (2)

iii

DEDICATION

TO THE MEMORY OF MY SWEETHEART EBRAHIM,

MY FATHER AND MY GRANDMA

God bless them, Amin

Abstract of the thesis presented to the senate of Universiti Putra Malaysia in fulfillment of requirement for degree of Master of Science

DEVELOPMENT AND CHARACTERIZATION OF NORMOXIC POLYHYDROXYETHYLACRYLATE (nPHEA) GEL DOSIMETERS USING MAGNETIC RESONANCE IMAGING (MRI) CLINICAL SCANNER

By

MARYAM ERFANI HAGHIRI

September 2009

Chairman: Professor Elias Saion, PhD

Faculty: Science

Polymer gel dosimeter is a three dimensional (3D) polymer gel system for recording radiation dose distribution in radiotherapy treatment planning. The dosimeter is based on polymerization of copolymers induced locally by free radicals, the products of water radiolysis. Interaction of free radicals with the monomer and crosslinker causes a breakage of double C=C bonds into single C-C bonds, leading to copolymerization between the two copolymers to form high density insoluble polymer in gelatin matrix and is normally achieved by purging nitrogen into the system to remove oxygen during preparation. In this work, new type of polymer dosimeter, i.e. the 'normoxic' polymer gels, is synthesized by adding oxygen scavenger to remove oxygen. The dosimeter is

۷

based on polyhydroxyethylacrylate (nPHEA) gels containing 2-4% (w/w) 2-hydroxythylacrylate (HEA) monomer, 2-4% (w/w) bisacrylamide (BIS) comonomer, 3-5% (w/w) gelatin, and 87-93% (w/w) water in normal atmospheric condition. The polymer gel phantoms were irradiated with beam doses up to 30 Gy using ⁶⁰Co teletherapy -ray source at a constant dose rate of 0.22 Gy/min.

The polymerization of nPHEA dosimeters was evaluated by means of magnetic resonance imaging (MRI) clinical scanner, which produced 3D optical density distribution and registered as MRI films. The gray scale of MRI images was measured using an optical densitometer. The optical density of the polymer gels was found to increase with increasing of absorbed dose and decreased with the increase of depth inside the phantom. The optical density was then converted to absorb dose by a mathematical relationship obtained from the experiment. The dose-depth maps for nPHEA gels were obtained for different concentrations of co-monomers, gelatin and at different beam doses. The results indicated that dose decreases of with decreasing of depth and gelatin concentration and increases with increasing of co-monomer concentrations. Finally the cross beam dose-depth map has been acquired by irradiating nPHEA phantom from two (3) cm x 3 cm) square -ray beams of 14 Gy and 25 Gy which perpendicular to each other. The results showed the distribution of 3D dose-depth profile that decreased with increasing depth and lower beam dose. One region of high dose

vi

distribution in particular was seen in the overlapped beams, which in the actual clinical practices, it may represent a cancer volume that to be inactivated with higher dose than the surrounding healthy non-cancer tissues.

Abstrak tesis yang dikemukakan kepada senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PEMBANGUNAN DAN PENCIRIAN DOSIMETER GEL NORMOXIC POLYHYDROXYETHYLACRYLATE (nPHEA) DENGAN MENGGUNAKAN IMBASAN KELINIK PENGIMEJAN RESONAN MAGNET (MRI)

Oleh

MARYAM ERFANI HAGHIRI

September 2009

Pengerusi: Profesor Elias Saion, PhD

Faculti: Sains

Dosimeter gel berpolimer ialah system gel berpolimer tiga dimensi (3D) untuk merekodkan taburan dos sinaran dalam plan rawatan radiotrepi. Dosimeter ini berasaskan kepada pempolimeran copolymer yang dirangsang oleh radikal bebas yang terhasil semasa radiolysis air. Salingtindakan antara radikal bebas dengan monomer dan tautsilang menyebabkan terputusnya ikatan dedua C=C kepada ikatan tunggal C-C, lalu menghasilkan kopolimeran antara dua kopolimer dan membentuk satu polimer tak larut dan mempunyai ketumpatan tinggi dalam matrik gelatin yang lazimnya diperolehi semasa penyediaan dengan menyalurkan nitrogen dalam system untuk mengeluarkan oksigen. Dalam kajian ini satu dosimeter polimer baharu iaitu gel normoxic polimer telah disintisis dengan menambahkan anti oksigen untuk menyerap oksigen.

Dosimeter itu berasaskan gel polyhydroxyethylacrylate (nPHEA) yang menggandungi 2-4% (w/w) monomer 2-hydroxythylacrylate (HEA), 2-4% (w/w) ko-monomer bisacrylamide (BIS), 3-5% (w/w) gelatin, and 87-93% (w/w) air dalam keadaan tekanan amosfera. Fentom-fentom gel polimer digunakan dan disinarkan dengan dos sehingga 30 Gy menggunakan sumber sinar gama ⁶⁰Co jenis teletherapi pada kadar dos malar 0.22 Gy/min.

Pempolimeran dosimeter nPHEA dosimeters telah dianalisis dengan menggunakan pengimbas kelinik pengimejan resonan magnet (MRI) yang menhasilkan taburan ketumpatan optik 3D dalam film MRI. Skalar gray imej MRI telah diukur dengan menggunakan densitometer optik. Didapati ketumpatan optik bertambah dengan pertambahan dos terserap dan berkurangan dengan penambahan kedalaman fentom. Ketumpatan optik telah dipindahkan kepada dos terserap dengan menggunakan hubungan matematik yang diperolehi daripada eksperimen ini. Peta dos-kedalaman telah diperolehi pada kepekatan ko-monomer dan gelatin yang berbeza dan juga pada dos berbeza. Keputusan menunjukkan bahawa dos berkurangan dengan penambahan kedalam fentom dan kepekatan gelatin dan bertambah dengan kepekatan ko-monomer. Akhir sekali peta dos-kedalaman persilangan alur gama segiempat (3 cm x 3 cm) telah diperolehi daripada dos 14 Gy and 25 Gy berkeadaan mengcacang antara satu sama lain. Keputusan itu menunjukkan bahawa profil dos-kedalaman taburan 3D yang berkurangan dengan

ix

pertambahan kedalaman dan dos alur rendah. Satu kawasan pada taburan dos tinggi didapati pada pertindihan dos alur dimana dalam amalan kelinik ia mewakili isipadu kanser yang perlu dimusnahkan keaktifannya pada dos lebih tinggi berbanding dos yang terima oleh tisu bukan kanser disekitarnya.

ACKNOWLEDGEMENTS

First of all, I must say Al-hamdolelah and send my greatest thankfulness to our gracious Allah who is support and guide me step by step in my work, who has greatest supervision on my life and my works, I believe that I am indebted to his compassion more than everyone or everything. After that I should thank my mother for my upbringing, her kindness and for the support of my receiving high education. I would like to dedicate and express my utmost love and thanks to my dear fiance Ebrahim (Ali Mohammad) who had greatest help and support to me during his short life. God bless him; Amin.

I would like to express my greatest appreciation to Prof. Dr. Elias Saion, Chairman of the Supervisory Committee who has been very helpful in providing me intellectual guidance, as well as my co-supervisors, namely Dr. Noriah Mod Ali and Associate Prof. Zainal Abidin Talib who sincerely helped me through my studies.

Also I would like to show my most appreciation to my friends and my labmates Miss. F. Rafieh., Mrs. T. sara., Mrs. K. Zohre., Miss. J. Maryam., Mrs. Sh. Parvaneh., Miss. R. Saeedeh., Mrs. H. Hasnieda., Mrs. N. Habibeh., Mrs. V. Parisa., Mr. K. Naghavi., Mr. M. A. Shafaee., Mr. H. Soleimani. Also sincere thanks and acknowledge to Mr. Mohammad Zein for his assistance.

xi

Thanks are expressed to Malaysian Nuclear Agency (MNA) for allowing me to irradiate my research samples. I extend my words to the SSDL staff, namely Mrs. Noor hayati who is truly helped me in my research and Mr. Taiman Kadni.

I really would like to say thanks to Diagnostic Imaging department of Hospital Serdang for allowing me to get MRI scanning of my research samples. Also the MRI staffs, namely Mrs. Khatijah Ali., Mrs. Siti Normasitah for their truthfully help of me.

Finally I would like to thank all my family for their encouragement during my education.

xii

I certify that a Thesis Examination Committee has met on 10th of September 2009 to conduct the final examination of MARYAM ERFANI HAGHIRI on her thesis entitled "Development and Characterization of normoxic Polyhydroxyethylacrylate (nPHEA) gel dosimeters using Magnetic Resonance Imaging (MRI) clinical scanner " in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Azmi Zakaria, PhD

Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Halimah Mohamed Kamari, PhD

Lecturer Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Nor azowa Ibrahim, PhD

Lecturer Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Md. Soot Hj. ahmad, PhD

Associate Professor Department of Chemistry Universiti Kabangsaan Malaysia (External Examiner)

BUJANG BIN KIM HUAT, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 16 Nov 2009

This thesis was submitted to the senate of Universiti Putra Malyasia and has been acceptance fulfilment of the requirement for the degree of Master of Science. The members of the supervisory Committee were as follows:

Elias Saion, PhD Professor Faculty of Science Universiti of Putra Malaysia (Chairman)

Zainal Abidin Talib, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Cosupervisor)

Noriah Mod Ali, PhD

Lecturer Malaysian Nuclear Agency (MNA) (member)

HASANAH MOHD GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malyasia

Date: 16 November 2009

DECLARATION

I declare that the thesis is my original work expect for quotations and citations, which have been duly acknowledgement. I also declare that it has not been previously or concurrently submitted for any other quantity at UPM or other institutions.

MARYAM ERFANI HAGHIRI

Date: 2 Oct 2009

TABLE OF CONTENANTS

DEDICATION	iii
ABSTRACT	iv
ABSTRAK	vii
ACKNOWLEDGEMENTS	x
APPROVAL	xii
DECLARATION	xiv
LIST OF TABLES	xviii
LIST OF FIGURES	xix
LIST OF ABBRIVATIONS	xxii

CHAPTER

1	INT	RODUCTION	
	1.1	Radiation Therapy treatment	1
	1.2	Objective of study	2
	1.3	Statement of the problem	3
	1.4	Significant of the study	4
	1.5	Outline of the thesis	5
2	LITI	ERATURE REVIEW	
	2.1	Background of gel dosimetry	6
		2.1.1 Fricke gel dosimeter	6
		2.1.2 Polymer gel dosimeter	7
		2.1.3 Normoxic dosimeters	9
	2.2	Effective factors on polymer gel dosimeters	11
		2.2.1 Effect of oxygen	11
		2.2.2 Effect of light	11
		2.2.3 Effect of temperature	12
	2.3	Advantages of gel dosimetry	12
	2.4	Reaction process of polymerization	13
	2.5	Evaluation techniques	16
		2.5.1 Magnetic Resonance Imaging (MRI)	16
		2.5.2 Computed Tomography (CT) scanning	17
		2.5.3 Raman Spectroscopy	18
	2.6	Clinical applications of polymer gel dosimetry	21
		2.6.1 Brachytherapy	21

	2.6.2	Intensity Modulated Radiation Therapy (IMRT)	23
	2.6.3	Steotactic Radiosurgery and Radiotherapy	24
	2.6.4	Carbon ion Radiotherapy	25
	2.6.5	Boron neutron capture Therapy	25
TH	EORIT	TCAL	
3.0	Radia	ation Interaction with matter	27
3.1	Туре	of ionizing radiation	28
	3.1.1	Direct ionizing radiation	28
	3.1.2	Indirect ionization	29
3.2	Gamr	ma Ray interaction	29
3.3	Physi	cal principle of radiation action	30
	3.3.1	Photoelectric Effect	30
	3.3.2	Compton Scattering	31
	3.3.3	Pair Production	33
	3.3.4	Triple Production	34
3.4	Abso	rption	35
3.5	Abso	rbed dose	37
3.6	Radia	ation effects	37
	3.6.1	Ions and Excited molecules	37
	3.6.2	Radiolysis	40
	3.6.3	Recombination	40
	3.6.4	Polymerization	41
	3.6.5	Cross-linking	42
	3.6.6	Chain Scission	42
	3.6.7	Role of oxygen scavengers and oxygen	43
3.7	React	ion Mechanism of THPC	44
	3.7.1	THPC reaction with gelatin	47
	3.7.2	THPC reaction with Acrylamide and BIS	47
3.8	Magr	netic Resonance Imaging (MRI)	48
	3.8.0	Introduction	48
	3.8.1	Basic MR physics	48
	3.8.2	Nuclear spin and behavior in magnetic field	49
	3.8.3	Resonance	51
	3.8.4	Magnetization and Relaxation	52
	3.8.5	Spin-echo	54
	3.8.6	Contrast-Image	55
3.9	Optic	al Density	55

MATERIALS AND METHODS 4

3

- 4.1
- Sample Preparation 4.1.1 Synthesis of normoxic Polyhydroxyethylacrylate

57

		(nPHEA) gels	57
	4.2	Irradiation of polymer gels	60
	4.3	Magnetic Resonance Imaging (MRI) scanning	63
	4.4	Densitometer	66
5	RES	SULTS AND DISCCUSION	
	5.0	Introduction	68
	5.1	Mechanism of polymerization process normoxic PHEA	
		Polymer gel	70
	5.2	MRI scans at different beam doses and different composi-	ition
		Concentrations	72
	5.3	Optical density versus depth of given dose	76
		5.3.1 Different concentration of co-monomers (HEA	
		and BIS)	76
		5.3.2 Different concentration of gelatin	78
		5.3.3 Different concentration of cross-linker (BIS)	81
	5.4	Changes in optical density versus dose	84
		5.4.1 Different concentrations of co-monomers (HEA	
		and BIS)	84
		5.4.2 Different concentration of gelatin	86
		5.4.3 Different concentration of cross-linker (BIS)	88
	5.5	Changes in absorbed dose versus depth	90
		5.5.1 Different concentration of co-monomers (HEA	
		and BIS)	90
		5.5.2 Different concentration of gelatin	93
		5.5.3 Different concentration of cross-linker (BIS)	95
	5.6	Cross dose map	97
6	CO	NCLUSION AND FUTURE WORKS	
	6.1	Conclusion	102
	6.2	Suggestions for future works	104
	6.3	References	105
	6.4	Appendix A	113
	6.5	Biodata of Authur	115

LIST OF TABLES

Tabl	Label of tables	Page
2.1	Different formulations published for normoxic polymer gel Dosimeters	10
2.2	Vibrational band assignments for acrylamide (AAm), Bia-acrylamide and polyacrylamide	19
4.1	Compositions of normoxic PHEA gels based on 4% gelatin and 2-4% co-monomers	59
4.2	Compositions of normoxic PHEA gels based on 3-5% gelatin, 3%BIS, 3%HEA monomer	59
4.3	Compositions of normoxic PHEA gels based on 4% gelatin, 3% HEA, 2-4% BIS cross linker	59
4.4	Compositions of normoxic PHEA gel for cross-beam	60

LIST OF FIGURES

Figu	Figure Page		
2.1	Chemical structures of the some monomers used for polymer gel Dosimeters	8	
2.2	Chemical structure of (a) acrylamide, (b) methacrylamide, (c) N,N' methyelene-BIS-acrylamide, (d) polyacrylamide. After Billingham et al., 1972; Baldock et al., 1998b; Panajkar et al., 1997	15	
2.3	FT-Raman spectra of PAG samples at different absorbed doses	20	
2.4	Imaging of a brachytherapy phantom. After Deene et al., 2001	22	
3.1	The decay scheme of ⁶⁰ Co isotope	29	
3.2	Schematic diagram of photoelectric absorption	31	
3.3	Schematic diagram of Compton process for gamma radiation	32	
3.4	Schematic diagram of pair production and triple production process for -rays being interfered in the nucleus field and orbital electron to produce triplet particles	33	
3.5	Schematic diagram of absorption effect	35	
3.6	The total mass absorption coefficient of photon of energies below 100 MeV in iodine	36	
3.7	The process of permanent main-chain scission of polyisobutylene	43	
3.8	The energy separation ΔE between the two magnetic moment states	50	
3.9	The mechanisms of spin states	50	
3.10	The two states of a spin -1/2 sample in a magnetic field	53	
3.11	The schematic diagram of reflection part of densitometer	55	

хх

4.1	Schematic diagram of sample preparation	58
4.2	Control panel & Electrometer - PYW UNIDOSE of Eldorado 8, 60Co teletherapy (Atomic Energy of Canada Limited)	61
4.3	Photograph of water phantom acrylic tank and Eldorado8, ⁶⁰ Co Teletherapy	62
4.4	Normoxic PHEA gel dosimeters which were irradiated with different doses (14 Gy and 25 Gy)	64
4.5	Clinical 1.5 T whole body MRI scanner (magnetom SP Siemns, Germany)	66
4.6	Radiological fim obtained from MRI slice scans showing different contrast for different concentration and different doses: (a) 4% gelatin, 4%BIS, 4%HEA; (b) 4%gelatin, 3%BIS, 3%HEA; (c) 4% gelatin, 2%BIS, 2%HEA; (d) 5%gelatin, 3%BIS, 3%HEA	67
4.7	Digital densitometer (Victoreen, model 07-440, USA)	71
5.1	Chemical structure of (a) 2-hydroxyethylacrylate (b) N,N'-methylene bis-acrylamide (c) Polyhydroxyethylacrylate	74
5.2	R2-weight images of irradiated PHEA at 0.7 cm depth for(a) 4% gelatin, 3% HEA, 4% BIS (b) 4% gelatin, 3% HEA, 3% BIS (c) 4% gelatin, 3% HEA, 2% BIS	78
5.3	Change the optical density of nPHEA resulting from (a)14 Gy beam source, (b) 25 Gy beam source versus depth at different concentration of BIS	78
5.4	Changes of optical density versus depth in nPHEA gels for (a) 14 Gy beam source and (b) 25 Gy beam source at different concentration of gelatin	80
5.5	Change in optical density of nPHEA resulting from (a) 8Gy beam source (b) 14Gy beam source (c) 20 Gy beam source (d) 25Gy beam source versus depth at different concentration of BIS	83
5.6	Change in optical density of nPHEA resulting from (a) 14Gy beam source, (b) 25Gy beam source versus dose at different co-monomer concentration	86

5.7	Change in optical density(OD) of nPHEAG versus dose resulting from (a)14Gy dose beam source and (b) 25Gy dose beam source at different concentration of gelatin	87
5.8	Change in optical density of nPHEA resulting from (a) 8Gy beam source (b 14Gy beam source (c) 20Gy beam source (d) 25Gy beam source versus dose at different concentration of BIS	90
5.9	Change in absorbed dose in nPHEA versus depth for (a)2%BIS,2%HEA, 4%gelatin ; (b) 3%BIS, 3%HEA,4%gelatin ; (c) 4%BIS, 4%HEA,4%gelatin Concentration	93
5.10	Change in dose versus depth in nPHEAG for different concentration of gelatin (a) 3% gelatin, 3% BIS, 3% HEA ; (b) 4% gelatin, 3% BIS, 3% HEA; (c) 5% gelatin, 3% BIS, 3% HEA at two different dose beam source(14 Gy and 25Gy)	95
5.11	Change in absorbed dose in nPHEA versus depth for different concentration of BIS; (a) 4% gelatin, 2% BIS, 3% HEA concentration; (b) 4% gelatin, 3% BIS, 3% HEA concentration; (b) 4% gelatin, 4% BIS, 3% HEA concentration at different beam dose sources	97
5.12	R2-weight images of irradiated nPHEAG at 3%BIS, 3%HEA, 4%gelatin concentration irradiated form two sides perpendicular by square γ –ray to 14 Gy and 25 Gy beam source	98
5.13	Optical density of irradiated nPHEAG at 3%BIS, 3%HEA, 4%gelatin concentration irradiated form two sides perpendicular by square γ – ray to 14 Gy and 25 Gy beam source as a function of depth	99
5.14	Dose map of irradiated nPHEAG at 3%BIS, 3%HEA, 4% gelatin concentration irradiated from two sides by a square γ -ray to 14 Gy and 25 Gy beam source as function of depth	101

LIST OF ABBRIVATION

А	Atomic mass
AAm	Acrylamide
a.u	Arbitrary unit
B ₀	Magnetic field
<i>B</i> ₁	Magnetic induction
BIS	N,N'-methylene-bis-acrylamide
BNCT	Boron neutron capture therapy
С	Concentrations
С	Speed of light in vaccum ($c=3.0 \times 10^8 \text{ ms}^{-1}$)
СТ	Computed tomography
D	Absorbed dose
D_0	Dose sensitivity
D _r	Dose range
E	Electrical field
E _e	Energy of recoil electron
E _b	Binding energy
Ē	Mean energy deposited in the material
FID	Free Induction Decay
FOV	Field of view
Φ	Particle flounce
v, f	Frequency
γ	Gamma radiation

xxiii

h	Plank's constant
HEA	2-hydroxyethylacrylate
I ₀	Intensity of incident beam
Ι	Nuclear spin
IMRT	Intensity-Modulated Radiation Therapy
Κ	Boltzman constant (k= 8.63×10^{-5} ev.molecule ⁻¹ .k ⁻¹)
LET	Linear Energy Transfer
NA	Avogandro's number (6.022 \times 10 ²³ per mol)
NMR	Nuclear magnetic resonance
nPHEAG	Normoxic polyhydroxyethyl acrylate gel
m_0	Rest mass of electron
MNA	Malaysian Nuclear Agency
MRI	Magnetic resonance imaging
λ	Wavelength
μ	Linear absorption coefficient
μ/ρ	Mass absorption coefficient
π	Pi (=3.14)
q	Charge
Q_{f}	Quality factor
OD	Optical Density
RF	Radiofrequency
R_1	Spin-lattice relaxation rate
R ₂	Spin-spin relaxation rate
SSD	Radiation source to sample distance

xxiv

t	Time
Т	Temperature, kinetic energy
T_1	Spin-lattice relaxation rate
T_2	Spin-spin relaxation rate
TE	Echo time
TR	Pulse repetition time
THP	Tris (hydroxymethyl) phosphonium
THPC	Tetrakis (hydroxymethyl) phosphonium chloride
THP ((HOCH ₂) ₃ P)) Formaldehyde
THPOH	Tetrakis (hydroxymethyl)phosphonium hydroxide
TLD	Thermo luminescence dosimeter
σ	Cross section
ω	Angular frequency
ω_0	Angular Larmor frequency
x	Depth, distance
<i>x</i> ₀	Depth sensitivity
xr	Depth range

xxv