HARVEST AGE AND PLANTING DENSITY EFFECTS ON YIELD AND QUALITY OF TWO KENAF (HIBISCUS CANNABINUS L.) VARIETIES FOR FIBRE AND ANIMAL FEED

MASNIRA BINTI MOHAMMAD YUSOFF

FP 2015 8
HARVEST AGE AND PLANTING DENSITY EFFECTS ON YIELD AND QUALITY OF TWO KENAF (HIBISCUS CANNABINUS L.) VARIETIES FOR FIBRE AND ANIMAL FEED

By

MASNIRA BINTI MOHAMMAD YUSOFF

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

April 2015
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Specially dedicated to my husband, family and friends for their continued support
and everlasting love
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the Degree of Master of Science

HARVEST AGE AND PLANTING DENSITY EFFECTS ON YIELD AND QUALITY OF TWO KENAF (Hibiscus cannabinus L.) VARIETIES FOR FIBRE AND ANIMAL FEED

By

MASNIRA MOHAMMAD YUSOFF

April 2015

Chairman: Associate Prof. Mohd Ridzwan bin Abd Halim, PhD
Faculty: Agriculture

Kenaf (Hibiscus cannabinus L.) has been identified as a viable alternative crop to replace tobacco in Malaysian agriculture in the 21st century. Kenaf can be utilized for multiple purposes, whether for industrial applications or for livestock feed. Much information on components of yield such as plant height and density, stalk and leaf yield and total biomass have been obtained for the variety V 36. However, information on the new variety, MHC 123 is lacking, especially the understanding on how the yield components are affected by plant density and age. As plant density usually has an interaction with variety and harvest age the study looked at these factors in factorial combinations. From this information the optimum age and planting density for production of feed and fibre can be determined. The study was comprised of two experiments, one looking at harvest age and the other one on planting density effect.

The first experiment had four harvest age treatments (8, 12, 16 and 20 weeks after planting) and two varieties (MHC 123 and V 36) as the treatments. The results indicated that the most suitable harvesting age for forage for kenaf variety V 36 was at 8 weeks after planting (WAP) while for MHC 123 it was at 12 WAP. This is based on the low decline in crude protein content from 8 to 12 WAP in MHC 123 (18.9 to 17.2 %) compared to the rapid decline for V 36 (21.7 to 11.3 %). In addition, acid detergent fibre content in MHC 123 increased slowly (31.7 to 36.9 %) but in V 36 it increased drastically (39.5 to 55.6 %) from 8 to 12 WAP. Dry matter yield also was higher at 12 WAP (11.2 t ha$^{-1}$) compared with 8 WAP (8.5 t ha$^{-1}$) for MHC 123.

The harvesting age for fibre was based on biomass yield and fibre quality (tensile strength, water absorption, bast and core yield). The suitable harvesting age for MHC 123 and V 36 were at same age, 16 WAP. However, MHC 123 had greater biomass yield with 11.7 t ha$^{-1}$ compared to V 36 which was 8.7 t ha$^{-1}$. The tensile strength of the fibre from MHC 123 (101.7 MPa) was higher than that of V 36 (59.8 MPa). Fibre from MHC 123 absorbed less water (116%) compared to V 36 (124.3%). The bast yield was also higher in MHC 123 (3.4 t ha$^{-1}$) compared to V 36 (3.3 t ha$^{-1}$).
In the second experiment, there were 3 treatment combinations: planting density, harvest age and variety in split-split plot design with 4 replications. Harvest age was set as the main plot, planting density as a sub plot and variety as a sub-sub plot. The suitable plant density for MHC 123 and V 36 for forage was at 666,700 plants ha\(^{-1}\). This was based on MHC 123 and V 36 having higher CP content and lower ADF content at planting density of 666,700 plants ha\(^{-1}\).

Planting density of 444,400 plants ha\(^{-1}\) was the best for fibre production for MHC 123 and V 36. This was based from the finding that MHC 123 and V 36 were higher in dry matter yield, bast yield, core yield at density of 444,400 plants ha\(^{-1}\). The dry matter yield was significantly (p<0.05) higher at the lowest density, 444,400 plants ha\(^{-1}\) with 12.7 t ha\(^{-1}\), followed by decreasing dry matter yield of 11.5, 11.2 and 10.3 t ha\(^{-1}\) for plant density at 500,000, 571,500, and 666,700 plants ha\(^{-1}\) respectively. MHC 123 has a potential to replace V 36. The superiority of MHC 123 over V 36 includes the higher leaf yield, stem yield, number of leaf plot\(^{-1}\), leaf to stem ratio, leaf area index (LAI), number of day to flowering and bast yield. The result of this study indicated that optimum harvest age and planting density vary with the variety of kenaf.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KESAN KEPADATAN TANAMAN DAN UMUR PENUAIAN TERHADAP HASIL DAN KUALITI DUA VARIETI KENAF (Hibiscus cannabinus L.) UNTUK PENGELOUARAN SERAT DAN MAKANAN TERNAKAN

Oleh

MASNIRA MOHAMMAD YUSOFF

Januari 2015

Pengerusi: Profesor Madya. Mohd Ridzwan bin Abd Halim, PhD
Fakulti: Pertanian

Eksperimen 1 melibatkan empat rawatan umur penuaian (8, 12, 16 dan 20 minggu selepas tanam) dan 2 varieti (MHC 123 dan V 36). Keputusan menunjukkan umur penuaian yang paling sesuai untuk makanan ternakan untuk kenaf varieti V 36 adalah pada 8 minggu selepas tanam (MST) manakala untuk MHC 123 adalah pada 12 MST. Ini adalah berdasarkan kepada penurunan yang perlahan kandungan protein kasar daripada 8 kepada 12 MST dalam MHC 123 (18.9 kepada 17. 2%) berbanding penurunan mendadak dalam V 36 (21.7 kepada 11.3%). Tambahan pula, kandungan serat detergen acid (ADF) di dalam MHC 123 meningkat dengan perlahan (31.7 kepada 36.9%) tetapi di dalam V 36 ia meningkat secara drastik (39.5 kepada 55.6%) daripada 8 kepada 12 MST. Hasil berat kering juga lebih tinggi pada 12 MST (11.2 t ha⁻¹) berbanding pada 8 MST (8.5 t ha⁻¹) untuk MHC123.

Umur penuaian untuk serat adalah berdasarkan hasil biomassa dan kualiti serat (kekuatan tegangan, serapan air, hasil serat luar dan dalam). Umur penuaian yang sesuai untuk MHC 123 dan V 36 adalah pada umur yang sama, 16 MST.
Walau bagaimanapun, MHC 123 mempunyai hasil biomassa yang lebih tinggi iaitu 11.7 t ha\(^{-1}\) berbanding V 36 dengan 8.7 t ha\(^{-1}\). Kekuatan tegangan serat MHC 123 (101 Mpa) adalah lebih tinggi daripada V 36 (59.8 MPa). Serat daripada MHC 123 menyerap air lebih rendah (116%) berbanding dengan V 36 (124.3%). Hasil serat luar MHC 123 (3.4 t ha\(^{-1}\)) juga lebih tinggi berbanding V 36 (3.3 t ha\(^{-1}\)).

Dalam eksperimen kedua, terdapat 3 kombinasi rawatan: kepadatan tanaman, umur penuaan dan varieti dalam susunan plot belah belahan dengan 4 replikasi. Umur penuaan disusun sebagai plot utama, kepadatan tanaman sebagai sub plot dan varieti sebagai sub-sub plot. Kepadatan tanaman yang sesuai untuk MHC 123 dan V 36 bagi makanan ternakan adalah pada 666,700 pokok sehektar. Ini adalah berdasarkan MHC 123 mempunyai kandungan protein kasar dan kandungan ADF yang rendah di kepadatan tanaman 666,700 pokok sehektar.

Kepadatan tanaman 444,400 pokok sehektar adalah kepadatan terbaik untuk pengeluaran serat untuk MHC 123 dan V 36. Ini adalah berdasarkan hasil kajian MHC 123 dan V 36 mempunyai hasil berat kering, hasil serat luar dan hasil serat dalam yang tinggi di kepadatan 444,400 pokok sehektar. Hasil berat kering secara signifikannya lebih tinggi (p<0.05) pada kepadatan yang rendah, 444,400 pokok sehektar dengan 12.7 tan sehektar diikuti dengan penurunan hasil berat kering kepada 11.5, 11.2 dan 10.3 tan sehektar masing-masing untuk 500,000, 571,500 dan 666,700 pokok sehektar. MHC 123 mempunyai potensi untuk menggantikan V 36. Kelebihan MHC 123 berbanding V 36 meliputi hasil daun, hasil batang, bilangan daun per plot, nisbah daun dan batang, indek keluasan daun (LAI), bilangan hari berbunga dan hasil serat luar yang lebih tinggi. Keputusan kajian menunjukkan umur tuaian dan kepadatan tanaman yang optimum berbeza untuk setiap varieti kenaf.
ACKNOWLEDGEMENTS

Alhamdulillahi Rabbil ‘alamin, first of all I would like to express my gratitude to the Almighty Allah SWT for His grace and permission able to complete this thesis. My selawat and salam to His messenger, prophet Muhammad SAW.

My utmost appreciation and heartfelt gratitude go to my supervisor Associate Prof. Dr. Mohd Ridzwan Abd Halim for his guidance, advice and support throughout the course of this study leading to the completion of the thesis. My sincere thanks are extended to Prof. Dr. Mohd Rafii Yusop and Mr. Mohamad Jani Saad of the supervising committee for their assistance and encouragement.

My deepest appreciation is dedicated to my husband Ahmad Emi, my sister Dr. Martini, Mr. Zakry, Mr. Abdul Rahman, Mr. Zainal Abidin, Mr. Wan Aznan, Mr. Badrul Hisham and Mr. Nurul Nahar for their assistance and support throughout the duration of my study. Also to Mok, Cik and Ma for their prayers and support.

I am also thankful to Malaysian Agricultural Research and Development Institute (MARDI) for awarding me a scholarship during my study at UPM and also to many individuals who have directly or indirectly assisted me in carrying out the study.
APPROVAL

I certify that a Thesis Examination Committee has met on 23 April 2015 to conduct the final examination of Masnira Mohammad Yusoff on her thesis entitled “Harvest age and Planting Density Effects on yield and Quality of Two Kenaf (Hibiscus cannabinus L.) Varieties For Fibre and Animal Feed” in accordance with the Universities and University College Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Siti Aishah Binti Hassan, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Chairman)

Yahya Bin Awang, PhD
Associate Professor
Faculty of Agriculture
Universiti Putra Malaysia
(Internal Examiner)

Zakaria Wahab, PhD
Professor
Universiti Malaysia Perlis
Malaysia
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 17 June 2015
This thesis submitted to the senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Agricultural Science. The members of the Supervisory Committee are as follows:

Mohd. Ridzwan Abd Halim, PhD
Associate Professor
Faculty of Agriculture
University Putra Malaysia
(Chairman)

Mohd Rafii Yusop, PhD
Professor
Faculty of Agriculture
University Putra Malaysia
(Member)

Mohd Jani Saad, MSc
Agrobiodiversity and Environmental research centre
Malaysian Agricultural Research and Development Institute (MARDI)
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

Declaration by graduate student

I hereby confirm that:
- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: __________________

Name and Matric No.: Masnira Mohammad Yusoff (GS32357)
Declaration by Members of Supervisory Committee

This is to confirm that:
- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: __________________________
Name of Chairman of Supervisory Committee: __________________________

Signature: __________________________
Name of Member of Supervisory Committee: __________________________

Signature: __________________________
Name of Member of Supervisory Committee: __________________________

Signature: __________________________
Name of Member of Supervisory Committee: __________________________
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>ABSTRAK</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
</tr>
<tr>
<td>APPROVAL</td>
<td></td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Background
1.2 Problem statement
1.3 Aims and research objective

2 LITERATURE REVIEW

2.1 Kenaf
2.2 Uses of kenaf in Malaysia
2.2.1 Fibre products
2.2.2 Animal feed
2.3 Morphological characteristic
2.3.1 Stalk
2.3.2 Leaves
2.3.3 Flower
2.3.4 Seed
2.4 Kenaf varieties
2.5 Agronomic characteristic of kenaf variety MHC 123 and V
2.6 Kenaf growth phases
2.6.1 Vegetative phase
2.6.2 Reproductive phase
2.7 Factors affecting kenaf yield and quality
2.7.1 Plant density and row spacing
2.7.2 Harvesting age and planting date

3 EFFECT OF AGE AT HARVEST ON THE YIELD AND QUALITY OF KENAF FOR ANIMAL FEED AND FIBER

3.1 Introduction
3.2 Materials and methods
3.2.1 Weather pattern
3.2.2 Soil chemical analysis
3.2.3 Treatments
3.2.4 Experimental design
3.2.5 Planting materials
3.2.6 Planting density and row spacing
3.2.7 Site preparation and sowing
3.2.8 Fertilizer application

Page
i
iii
v
vi
viii
xii
xiv
xvi
1
1
2
3
4
4
6
7
7
8
9
10
10
11
12
12
13
14
14
15
16
16
16
17
18
18
19
19
19
19
19
19
19
19
19
19
19
19
19
x
3.2.9 Water management
3.2.10 Pest and weed control
3.2.11 Data collection
3.2.12 Statistical analysis
3.3 Result and discussion
 3.3.1 Yield and yield component
 3.3.2 Forage quality
 3.3.3 Fibre quality
3.4 Conclusion

4 EFFECT OF PLANT DENSITY ON THE YIELD AND QUALITY OF KENAF FOR ANIMAL FEED AND FIBER

4.1 Introduction
4.2 Materials and methods
 4.2.1 Treatments
 4.2.2 Experimental design
 4.2.3 Planting materials
 4.2.4 Site preparation and sowing
 4.2.5 Fertilizer application
 4.2.6 Water management
 4.2.7 Pest and weed control
 4.2.8 Data collection
4.3 Result and discussion
 4.3.1 Dry matter yield
 4.3.2 Plant growth measurements
 4.3.3 Forage quality
 4.3.4 Fibre quality
4.4 Conclusion

5 CONCLUSION AND RECOMMENDATION

REFERENCES
APPENDICES
BIODATA OF STUDENT
LIST OF PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>International kenaf bast fibre price</td>
</tr>
<tr>
<td>2.2</td>
<td>Major commercial fibre sources in the world</td>
</tr>
<tr>
<td>2.3</td>
<td>The crude protein content in various varieties at various harvesting age</td>
</tr>
<tr>
<td>2.4</td>
<td>Mean dry matter yield at 8 week after planting for different varieties</td>
</tr>
<tr>
<td>2.5</td>
<td>Fibre types</td>
</tr>
<tr>
<td>2.6</td>
<td>Morphological characteristics of kenaf variety MHC 123</td>
</tr>
<tr>
<td>3.1</td>
<td>Soil chemical properties of the experiment area</td>
</tr>
<tr>
<td>3.2</td>
<td>Dry matter yield based on harvest age and variety</td>
</tr>
<tr>
<td>3.3</td>
<td>Mean number of days to flowering for variety MHC 123 and V36 at first flowering, 50% flowering and 100% flowering</td>
</tr>
<tr>
<td>3.4</td>
<td>Mean crude protein and acid detergent fibre content for MHC 123 and V36 at 8 and 12 week after planting</td>
</tr>
<tr>
<td>3.5</td>
<td>Correlation coefficients between crude protein and acid detergent fibre content</td>
</tr>
<tr>
<td>3.6</td>
<td>Mean leaf yield, stem yield and leaf to stem ratio for MHC 123 and V36 at 8 and 12 week after planting</td>
</tr>
<tr>
<td>3.7</td>
<td>Mean bast yield, core yield and bast to core ratio for MHC 123 and V36 at 16 and 20 week after planting</td>
</tr>
<tr>
<td>3.8</td>
<td>Correlation coefficient between bast and core yield</td>
</tr>
<tr>
<td>3.9</td>
<td>Maximum tensile strength of two kenaf varieties at 16 and 20 Week after planting</td>
</tr>
<tr>
<td>3.10</td>
<td>Mean water absorption of MHC 123 and V36 at 16 and 20 week after planting</td>
</tr>
<tr>
<td>4.1</td>
<td>Mean dry matter yield of MHC 123 and V36 at three harvest age and four planting density</td>
</tr>
<tr>
<td>4.2</td>
<td>Mean plant height and stem diameter for MHC 123 and</td>
</tr>
</tbody>
</table>
V 36 at four plant density and bi-weekly interval

4.3 Number of days to flowering 49

4.4 Mean leaf area index for MHC 123 and V 36 at four plant densities 50

4.5 Mean crude protein and acid detergent fibre content for MHC 123 and V 36 at two harvest age and four densities 52

4.6 Mean leaf yield, stem yield, leaf number and leaf to stem ratio of MHC 123 and V 36 at two harvest age and four plant densities 56

4.7 Mean bast yield, core yield and bast to core ratio of MHC 123 and V 36 for four plant densities 62

4.8 Mean tensile strength and water absorption of MHC 123 and V 36 for four plant densities 64
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Various application of Kenaf Polymer Composite (KPC)</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Kenaf stalk</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Shape of kenaf leaves</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>Kenaf flower cross section</td>
<td>9</td>
</tr>
<tr>
<td>2.5</td>
<td>Kenaf seed</td>
<td>10</td>
</tr>
<tr>
<td>2.6</td>
<td>MHC 123 growth development</td>
<td>12</td>
</tr>
<tr>
<td>3.1</td>
<td>Rainfall distribution during the period of study</td>
<td>16</td>
</tr>
<tr>
<td>3.2</td>
<td>Monthly minimum and maximum temperature during the period of study</td>
<td>17</td>
</tr>
<tr>
<td>3.3</td>
<td>Field lay out of the experiment</td>
<td>18</td>
</tr>
<tr>
<td>3.4</td>
<td>Mounting card of fibre test piece</td>
<td>19</td>
</tr>
<tr>
<td>3.5</td>
<td>Tensile test</td>
<td>19</td>
</tr>
<tr>
<td>3.6</td>
<td>Increment in plant height of the two kenaf varieties</td>
<td>25</td>
</tr>
<tr>
<td>3.7</td>
<td>Increment in stem diameter of the two kenaf varieties</td>
<td>26</td>
</tr>
<tr>
<td>3.8</td>
<td>The crude protein content of two kenaf varieties harvested at 8 and 12 weeks</td>
<td>28</td>
</tr>
<tr>
<td>3.9</td>
<td>Interaction between harvest age and variety on acid detergent fibre content</td>
<td>29</td>
</tr>
<tr>
<td>3.10</td>
<td>Interaction between harvest age and variety on maximum tensile strength</td>
<td>33</td>
</tr>
<tr>
<td>3.11</td>
<td>Rate of water absorption to the fibre</td>
<td>34</td>
</tr>
<tr>
<td>4.1</td>
<td>Field lay out of the experiment</td>
<td>38</td>
</tr>
<tr>
<td>4.2</td>
<td>Mounting card of fibre test piece</td>
<td>41</td>
</tr>
<tr>
<td>4.3</td>
<td>Tensile test</td>
<td>42</td>
</tr>
<tr>
<td>4.4</td>
<td>Increment of plant height of the two varieties of kenaf</td>
<td>46</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Increment of stem diameter of the two kenaf varieties</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>Increment of stem diameter of two kenaf varieties at four plant densities</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>Interaction between density and variety on stem diameter</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>Mean leaf area index at every two week until harvest date</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>Mean leaf area index on variety tested</td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>Interaction between harvest age, variety and density on crude protein content at 8 and 12 WAP</td>
<td></td>
</tr>
<tr>
<td>4.11</td>
<td>Interaction between density and variety on Acid detergent fibre content for harvest age at 8 and 12 WAP</td>
<td></td>
</tr>
<tr>
<td>4.12</td>
<td>Interaction between harvest age and variety on leaf yield</td>
<td></td>
</tr>
<tr>
<td>4.13</td>
<td>Interaction between density and variety on stem yield of harvest age at 8 and 12 WAP</td>
<td></td>
</tr>
<tr>
<td>4.14</td>
<td>Interaction between harvest age and variety on number of leaf per plot</td>
<td></td>
</tr>
<tr>
<td>4.15</td>
<td>Interaction between density and variety on number of leaf plot</td>
<td></td>
</tr>
<tr>
<td>4.16</td>
<td>Interaction between density and harvest age on number of leaf per plot</td>
<td></td>
</tr>
<tr>
<td>4.17</td>
<td>Interaction between density and variety on leaf to stem ratio of harvest age at 8 and 12 WAP</td>
<td></td>
</tr>
<tr>
<td>4.18</td>
<td>Interaction between density and variety on bast to core ratio</td>
<td></td>
</tr>
<tr>
<td>4.19</td>
<td>Water absorption of the fibre</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

ANOVA : Analysis of variance
As : Arsenic
BRIS : Beach ridges interspersed with swale
Cd : Cadmium
DAP : Day after planting
et al: and friends
Hg : Mercury
LKTN : Lembaga Kenaf dan Tembakau Negara
MARDI: Malaysian Agricultural Research and Development Institute
MPa : Mega Pascal
NIRS : Near infrared reflectance spectrophotometer
Pb : Lead
RCBD : Randomized Complete Block Design
SAS : Statistical Analysis Software
St : Strontium
WAP : Week after planting
CHAPTER 1

INTRODUCTION

1.1 Background

Plant fibre includes natural fibres obtained from stem, leaves, roots, fruits and seeds of plant (Rao and Rao, 2007). Kenaf fibre from the stem is one of the important fibre in the new decade. Kenaf or its scientific name, *Hibiscus cannabinus* is a tropical plant that is grown around the world as a source of animal feed and fibre. Kenaf is a warm season annual fibre crop and is closely related to cotton and jute. Kenaf is cultivated in many countries in the world like Bangladesh, India, Thailand, Australia, Indonesia, Vietnam, Africa, China, Southeast Europe and Malaysia.

Kenaf was introduced in Malaysia in early 2000 (Mat Daham et al., 2006) mainly for use as forage while currently the crop is studied for other purpose such as biocomposite. In Malaysia, kenaf has become an important industrial crop supplying natural fibre source for the manufacture and building material.

1.2 Problem statement

Kenaf has a potential to be commercialized but there are a lot of barrier to achieve it. The limiting factor for commercialization of kenaf in Malaysia is lack of suitable variety to be cultivated under Malaysian condition. So far there was only one variety already introduced by MARDI which is V 36. The existing variety has limitations in yield and newer varieties with higher yield and good quality especially for forage and fibre may boost production. Various varieties of kenaf can be found in several countries like China, India and Bangladesh. They are variable in plant growth rate, photosensitivity to day length, stem and leaf colour, leaf and seed shape and the suitability to the different environment. To produce enough biomass of high quality which can be converted to fibre and animal feed there is need to identify kenaf varieties with potential for high biomass yield and specific quality traits (Agbaje et al., 2008). One of the potential varieties is MHC 123.

MHC 123 exhibits good agronomic characteristics compared to V36. New varieties like MHC 123 have to come with new agronomic practices because different varieties have different life spans. Normally for V36 it takes about 6-8 weeks to harvest for animal feed while for fibre it takes about 4 months. For MHC 123 the time to harvest which gives high dry matter yield with good quality may be different. Other factors such as planting density are also important and a combination of optimal planting density and appropriate harvest time are the key to maximixing kenaf yield and quality. Previous recommendation for cultivation were based solely on using existing farm equipment for kenaf production to minimize start-up cost and the lack of herbicide to control weeds in kenaf planted in narrow row. Practicing various planting densities may be useful in tailoring kenaf fibre production to its desired use. For example, the narrow row spacing in kenaf not only increases the total biomass yield, but also
increases the bast fibre percentage of the stalks (Baldwin and Graham, 2006). A better understanding on how the yield component (plant population, plant height, stalk and leaf yield, total biomass) are affected by agronomic practices and other factors needs to be studied especially in Malaysian condition.

The best economically viable management practices for growing kenaf must be developed (Danalatous and Archontoulis, 2010). This is necessary for farmers and industrialist to benefit from the recent innovative use of kenaf as a bio-renewable energy resources.

1.3 Aims and research objectives

The aims of the study were to identify the suitable harvesting age and planting density for new kenaf variety for forage and fibre to fit the high kenaf demand. The specific objectives of the experiments were:

1) To determine the optimum harvesting age for forage and fibre production for MHC 123 and V 36.
2) To determine the suitable planting density of MHC 123 and V 36 for animal feed and fibre production.
3) To compare MHC 123 with V 36 in terms of productivity and quality as animal feed and fibre.
REFERENCES

