

UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF MICROCONTROLLER-BASED DUAL DIRECTIONAL COUPLER MICROWAVE SYSTEM TO MEASURE MOISTURE CONTENT OF HEVEA RUBBER LATEX

AHMAD MOHAMMADI

FS 2009 5

DEVELOPMENT OF MICROCONTROLLER-BASED DUAL DIRECTIONAL COUPLER MICROWAVE SYSTEM TO MEASURE MOISTURE CONTENT OF HEVEA RUBBER LATEX

By

AHMAD MOHAMMADI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

July 2009

Dedicated

То

This thesis is dedicated to my beloved wife, Mahtab Mohammadi, to my dear mother Zahra Khoshkeif, my dear father Ramazan Mohammadi and my dear sister Afsaneh Mohammadi that I owe them all of success in my life.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in Fulfilment of the Requirement for the Master Degree

DEVELOPMENT OF MICROCONTROLLER-BASED DUAL DIRECTIONAL COUPLER MICROWAVE SYSTEM TO MEASURE MOISTURE CONTENT OF HEVEA RUBBER LATEX

By

AHMAD MOHAMMADI

July 2009

Chairman: Professor Kaida Khalid, PhD

Faculty: Science

The rubber industry is one of the most important industries in South-East Asian countries and moisture content determination is the main parameter for quality inspection and process control. Developing digital, portable, accurate chip and measurement instruments certainly facilitates the trading and helps the growth of the industry. It is important that true moisture content of the rubber latex can be determined correctly and instantly to ensure a fair price quotation is given to the tapper at the rubber collection center on the same day.

This thesis describes the development of digital, portable, rapid, simple to operator, chip and accurate microwave instrument to determine the total solid content (TSC) or moisture content (MC) of hevea rubber latex using microcontroller, dual directional coupler, and open-ended coaxial sensor. Various coaxial sensors were

simulated using FEMLAB to study the reflection coefficient of the sensor corresponding to the total solid content of hevea rubber latex. The performance of the fabricated open-ended coaxial sensor was tested using Vector Network Analyzer (VNA) and the results then compared with commercial HP 85070B flanged sensor.

The Microwave Office 2001 (MWO) was used to simulate the Dual Directional Coupler (DDC). The developed DDC was operated at 5 GHz which gave the high correlation between dielectric properties and moisture content of latex. S-parameters of the fabricated DDC were measured using VNA and they compared satisfactory to theoretical simulations.

One coaxial voltage controlled oscillator was used as the signal source in the sensor system at 5 GHz. Two coaxial detectors were used to measure the coupled and reflected signals in this system. The calibration equation which relates the measured output voltages from detectors and TSC of latex was found.

The whole sensor system was interfaced to an ATMega16 microcontroller. Based on the calibration equation and set-zero point, software program of the microcontroller was developed using BASCOM-AVR software to follow by calculation setup, calibration, and display the value of TSC on the LCD. The whole system was tested using diluted rubber latex with different TSCs at room temperature (25°C) and the results from standard oven drying method and this study were found in good agreement with the accuracy and reproducibility at the level of less than 0.5%.

iv

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains.

Pembinaan meter mikrogelombang lembapan menggunakan pengawal mikro

Oleh

AHMAD MOHAMMADI

July 2009

Pengerusi: Professor Kaida Khalid, PhD

Fakulti: Sains

Tesis ini memperihalkan tentang pembangunan alat gelombang mikro digital untuk menentukan jumlah kandungan pepejal (TSC) atau kandungan lembapan (MC) dalam susu getah dengan menentukan pengawal mikro, penganding dual aruhan, dan sensor talian sepaksi terbuka dihujung. Pelbagai sensor sepaksi telah disimulasikan dengan menggunakan FEMLAB untuk mempelajari pekali pemantul sensor yang sepadan dengan jumlah kandungan pepejal (TSC) dalam susu getah (hevea). Pencapaian sensor talian sepaksi terbuka yang dihujung direka telah diuji dengan menggunakan penganalisa rangkaian vector (VNA) dan keputusan telah dibandingkan dengan flanged sensor HP 85070B.

Microwave Office (MWO) telah digunakan untuk mensimulasikan penganding Dual-Aruhan(DDC). Pembangunan DDC telah dioperasikan pada 5 GHz mengikut

V

kepada korelasi tinggi diantara sifat dielektrik dan kandungan lembapan susu getah dalam frekuensi ini. Parameter-S daripada rekaan DDC telah diukur dengan menggunakan VNA dan mereka telah membandingkan kepuasar produk terhadp simulasi teori. Satu voltan sepaksi dikawal oleh pengayun telah digunakan sebagai punca isyarat dalam sistem sensor pada 5GHz. Dua pengesan sepaksi telah digunakan untuk mengukur isyarat gandingan dan isyarat pantulan dalam sistem ini.

Persamaan kalibrasi yang berhubungkait telah diukur voltan keluarannya daripada pengesan dan TSC daripada susu getah telah dikenalpasti. Keseluruhan sistem sensor adalah diantaramukakan pada satu produk pengawal-mikro ATMega16 keluaran syarikat Atmel. Berdasarkan kepada persamaan kalibrasi dan titik set-sifar, program perisian daripada pengawal-mikro telah dibangunkan dengan menggunakan perisian penyusun C untuk mengikut set pengiraan,kalibrasi,dan paparan nilai TSC pada LCD.

Sebagai satu contoh aplikasi,keseluruhan sistem diuji dengan menggunakan susu getah yang dicairkan dengan berbeza TSCs yang berbe pada suhu bilik dan keputusan daripada kaedah piawai pengeringan ketuhar,dan penyelidikan ini didapati bertepatan dengan nilai R^2 =0.998.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor, Professor Dr. Kaida bin Khalid for his parentally guidance and advice during this research. His encouragement, moral and technical support made this work possible.

I am also grateful to members of my supervisory committee, Associate Professor Dr. W. Mohamed. Daud W. Yusoff, Associate Professor Dr. Jumiah Hassan and for their advice and helpful discussion during this period of study.

I would also like to thank:

- Mr. Mohd. Roslim who has helped in fabricating the patch and provided technical support in the Laboratory.
- All the staff in physics department, UPM for the co-operation given to me throughout my work.
- > The Universiti Putra Malaysia for research fellowship.
- All my lovely friends in Malaysia for enjoyable social life in a wonderful country.

Last but not least, I wish to express my gratitude to my family for the support they gave throughout my studies.

I certify that a Thesis Examination Committee has met on 28 July 2009 to conduct the final examination of Ahmad Mohammdi on his thesis entitled " Development of Microcontroller-Based Dual Directional Coupler Microwave System to Measure Moisture Content of Hevea Rubber Latex " in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Sciences.

Members of the Thesis Examination Committee were as follows:

Elias Saion, PhD

Professor Faculty of Sciences Universiti Putra Malaysia (Chairman)

Zainal Abidin Talib, PhD

Associate Professor Faculty of Sciences Universiti Putra Malaysia (Internal Examiner)

Mahmood Bin Mat Yunus, PhD

Professor Faculty of Sciences Universiti Putra Malaysia (Internal Examiner)

Mohd Rizal bin Arshad, PhD

Associate Professor School of Electrical and Electronic Engineering Universiti Sains Malaysia Malaysia (External Examiner)

BUJANG BIN KIM HUAT, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 15 October 2009

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Kaida Khalid, PhD

Professor Faculty of Science Universiti Putra Malaysia (Chairman)

WAN MOHAMED DUAD WAN YUSOFF, PhD

Associate Professor Faculty of Forestry Universiti Putra Malaysia (Member)

Jumiah Hassan, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Member)

HASANAH MOHD. GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 16 November 2009

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

AHMAD MOHAMMADI

Date:

TABLE OF CONTENTS

Page

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	V
ACKNOWLEDGEMENTS	vii
APPROVAL	viii
DECLARATION	Х
LIST OF TABLES	xiv
LIST OF FIGURES	XV
LIST OF ABBREVIATIONS	xix
LIST OF SYMBOLS	xxi

CHAPTER

2.2

1	INT	RODUCTION	
	1.1	Introduction	1
	1.2	Hevea Rubber Latex	2
	1.3	Microwave Aquametry	4
	1.4	Benefits of Microcontrollers	6
	1.5	State of the Art in Moisture Content Measurement	
		in Hevea Rubber Latex	7
	1.6	Aim and Objectives	9
	1.7	Outline of the Thesis	10
2	LIT	ERATURE REVIEW	
	2.1	Properties of Materials	12
		2.1.1 Frequency Dependence	14
		2.1.2 Complex Dielectric Spectrum of Water	15

2.1.3 Complex Dielectric Spectrum of Hevea Rubber Latex 17

	2.1.4	Moisture Content Dependence	19
	2.1.5	Temperature Dependence	20
	2.1.6	Mixture Model	21
Conventional Methods for Latex Moisture Measurement		24	
	2.2.1	U-Shaped Microstrip Latexometer	25

- 2.2.1O-Shaped Wieldship Eatexoneter252.2.2Analog MRT-Latexometer26
- 2.2.3 Dual Frequency Moisture Meter

3 THEORY OF COAXIAL SENSOR AND DUAL DIRECTIONAL COUPLER

- 3.1Microwave Measurement Techniques303.1.1Non Resonant Methods31
 - xi

28

Reflection Methods		31
3.1.2 Resonators Method		37
3.2 Coaxial Sensor		38
3.2.1 Analytical Model		40
3.2.2 Numerical modelin	g	45
Finite Element Met	hod (FEM)	45
3.2.3 Finite Element Met	hod Analysis Using FEMLAB	46
Boundary and Inter	face Conditions	47
3.3 Dual Directional Coupler		50
3.3.1 Stripline		52
3.3.2 Theory of Stripline	Dual Directional Coupler	54
Characteristic Impe	dance for Single Conductor	55
Characteristic impe	dance for edge-coupled stripline	56
3.3.3 Stripline Parameter		58
Variation in Charac	eteristic Impedance with	
Substrate's Permitt	ivity, Normalized Thickness	
and Width		58
Optimum Paramete	r of 50 Ω Characteristic Impedance	60
3.3.4 Edge-Coupled Strip	oline	62
Variation in Even a	nd Odd Mode Characteristic	
Impedance of the Ed	lge- Coupled Stripline	62
Optimum W/b and	S/b for Coupled Stripline	64

4 METHODOLOGY

4.1	General Description of the Measurement Setup	67
4.2	Coaxial Voltage Controlled Oscillator	69
4.3	Coaxial Power detectors	70
4.4	Dual Directional Coupler (DDC)	71
	4.4.1 Microwave Office Simulation	71
	4.4.2 Fabrication of DDC	74
4.5	Open-Ended Coaxial Sensor	74
	4.5.1 FEMLAB Simulation Procedure for Open-Ended	
	Coaxial Sensor	75
4.6	AVR Microcontroller	76
	4.6.1 Microcontroller Background	77
	4.6.2 Criteria for choosing a microcontroller	77
	4.6.3 Atmel AVR Microcontroller	79
	Atmel ATmega16 Microcontroller	79
	ATmega16 Data Memories	82
	ATmega16 PORT SYSTEM	83
	ATmega16 Analog-to-Digital Converter	85
	ATmega16 Clock & Timer	86
	ATmega16 Power Consumption	86
	ATmega16 Programming	86
4.7	Samples Preparation	88
4.8	Main Control Board	89
4.9	Performance of Fabricated Digital Latexometer	91

5 **RESULTS AND DISCUSSION**

5.1	Performance of Stripline Dual Directional Coupler	92
	5.1.1 Comparison between Simulated and Exact Results	
	of S-parameter	92
	5.1.2 Comparison between Simulated and Measurement	
	Results of S-parameter	93
5.2	Performance of Open-Ended Coaxial Sensor	95
	5.2.1 FEMLAB Simulation Result for Open-Ended	
	Coaxial Sensor	95
	5.2.2 Comparison between Simulated and Measurement	
	Results of Open-Ended Coaxial Sensor	98
	5.2.3 Comparison between Open-Ended Coaxial Sensor	
	and Commercial HP 85070B Flanged Sensor	100
5.3	Performance of a New Digital Latexometer	100

6 CONCLUSION AND SUGGESTION

6.1	Concl	usion	106
6.2	Recor	nmendations for Future Work	108
	6.2.1	Complex Reflection Coefficient Measurement	108
	6.2.2	Other Agriculture Use	108
		-	

REFERENCES	110
APPENDICES	113
LIST OF PUBLICATIONS	127
BIODATA OF STUDENT	128

LIST OF TABLES

Table		Page
2.1	The performance characteristics of the MRT-Latexometer	28
3.1	Several value of 50 Ω characteristic impedance of stripline	61
3.2	Several representative W/b and S/b of 50Ω coupled stripline in Selected RTDuriod substrate	66
4.1	Coaxial voltage controlled oscillator Specification	69
4.2	Coaxial Power Detector's Specifications	70
4.3	Several 50 Ω coaxial cables	75
4.4	Comparison between the four major 8-bit microcontrollers	78
5.1	Comparison between simulated and exact results of S-parameter	93
5.2	Comparison between measured and simulated S-parameters	95
5.3	The Reflection Coefficient of the Simulated and Measured Open-Ended Coaxial Sensor	99
5.4	The Comparison between Output Results from Digital Latexometer and Standard method	104
5.5	Physical Data and Specification of the Digital Latexometer	105

LIST OF FIGURES

Figure	igure Pa	
1.1	Latex collection from rubber tree	3
1.2	State of the Art of the Development of Microwave Latexometer using Microcontroller	8
2.1	Mechanisms Contributing to the Value of the Effective Loss Factor as a Function of Frequency	14
2.2	Real and imaginary part of the complex permittivity, ε of water plotted versus frequency, v	16
2.3	Complex Dielectric Properties of Hevea Latex as a Function of Frequency, (a) Dielectric Constant, (b) Dielectric Loss Factor	18
2.4	Complex Dielectric Properties of Hevea Rubber Latex with versus MC(%) at 5 GHz	19
2.5	Dielectric Properties of Hevea Rubber Latex versus Temperature at 10GHz, (a) Dielectric Constant, (b) Dielectric Loss Factor	21
2.6	Comparison between experimental dielectric data for hevea latex with theoretical data calculated from the mixture model at 5 GHz and 26°C. (a)Dielectric constant (b) Dielectric loss factor Plotted versus Frequency	23
2.7	U-shaped microstrip sensor and cross section of sensing aria	25
2.8	Analog MRT-Latexometer and its Sensor	26
2.9	Variation of reflection signal in the form of detected current with MC and DRC	27
2.10	Top and Bottom View of the Sensor Patch	28
2.11	A prototype model for dual-frequency microwave liquid moisture meter	29
3.1	Open- Ended Coaxial Sensor	32
3.2	Closed-Ended Sensor	32
3.3	Free Space Reflection Method	35

3.4	The setup of free-space bistatic reflection coefficient measurement	37
3.5	Typical Resonators with Different Coupling Schemes	38
3.6	Structure and Electromagnetic Filed of Coaxial Line	39
3.7	Open-Ended Reflection Method. a) Coaxial Sensor Terminated with Sample, b) Capacitance Equivalent Circuit	41
3.8	Equivalent Circuit for Antenna Model	42
3.9	Virtual Line Model	43
3.10	Excitation Boundary of Symmetric Region of Open-Ended Coaxial Sensor	48
3.11	Dual Directional Coupler	50
3.12	Directional Coupler	50
3.13	Single Center Conductor Stripline	52
3.14	Electric Field Conductor Lines in Single Center Stripline	54
3.15	Odd-Mode (left) and Even-Mode (right) Propagation in 'Edge-Coupled' Center Stripline	54
3.16	Odd-Mode (left) and Even-Mode (right) Propagation in 'Broadside-Coupled' Stripline	54
3.17	Edge-Coupled Stripline	56
3.18	Characteristic Impedance of Stripline with Various <i>W/b</i> in (a) RTDuriod6010, (b) RTDuriod6006, (c) RTDuriod5880	60
3.19	Normalized <i>W/b</i> of Stripline versus ε_r for several <i>t/b</i> Ratios of 50 Ω Characteristic Impedance	61
3.20	Relation of Coupling with Characteristic Impedance of Edge-Coupled Stripline	62
3.21	The Characteristic Impedance for Coupled Line (a) RTDuriod 5880, (b) RTDuriod 6006, (c) RTDuriod 6010	64
3.22	Optimum Value of (a) <i>W/b</i> and (b) <i>S/b</i> of 50 Ω Characteristic Impedance for various of Coupling and ε_r	65

4.1	Schematic Diagram of the new digital latexometer System	68
4.2	Designed of Dual Directional Coupler using Microwave Office	72
4.3	Stripline Dual Directional Coupler Circuit's Layout	73
4.4	Fabricated Stripline Dual Directional Coupler	74
4.5	Layout and Diameter of the Open-Ended Coaxial Sensor	76
4.6	Measuring Open-Ended Coaxial Sensor using Vector Network Analyzer (VNA)	76
4.7	Pin Configuration of the ATmega16	80
4.8	Block diagram of ATmega16	81
4.9	ATmega16 port configuration registers: (a) port-associated registers and (b) port pin configuration	84
4.10	Layout Connection Port of Atmega 16 Microcontroller	85
4.11	Bascom-AVR Compiler Environment	87
4.12	Process of Programming with TNM	88
4.13	Determination of Hevea Rubber Latex Samples Standard Moisture Content, MC% w.b. by Oven Drying Technique	89
4.14	Schematic Layout of Supply Board	90
4.15	Schematic Layout of the Main Electronic Board	90
4.16	Various components used in the Sensor System	91
4.17	Measurement Setup of whole Sensor System	91
5.1	Simulation and Measurement Results for DDC with all Ports at 50Ω	94
5.2	FEMLAB Simulation Reflection Coefficient Magnitude of various Coaxial Sensors	97
5.3	Reflection Coefficient Magnitude for Different Length of RG 402 Coaxial Cable	98
5.4	The Reflection Coefficient of the Simulated and Measured Open-Ended Coaxial Sensor	99

5.5	Comparison between Open-Ended Coaxial Sensor and Commercial HP 85070B Flanged Sensor	100
5.6	Fitting Curve for Output Voltage of Digital Latexometer for different TSC of latex using TCWIN	101
5.7	Flowchart of Programming and calibration Module of Digital Latexometer	102
5.8	The Comparison between Output Results from New Digital Latexometer and Standard method	103
5.9	Fabricated Digital Latexometer	105

LIST OF ABBREVIATIONS

DRO	Dielectric Resonant Oscillator
VCO	Voltage Controlled Oscillator
VNA	Vector Network Analyzer
MMIC	Monolithic Microwave Integrated Circuit
DRC	Dry Rubber Content
MUT	Material Under Test
MC	Moisture Content
TSC	Total Solid Content
VSWR	Voltage Standing Wave Ratio
TEM	Transverse Electric Magnetic Fields
TE	Transverse Electric Mode
ТМ	Transverse Magnetic Mode
RF	Radio Frequency
HF	High Frequency
VHF	Very High Frequency
UHF	Ultra High Frequency
VB	Visual Basic
DDC	Dual Directional Coupler
FEM	Finite Element Method
FEMLAB	Finite Element Method Laboratory
MOM	Method of Moment
FDTD	Finite Different Time Domain

PTFE	Polytetrafluoretylene (Teflon)
MATLAB	Matrix Laboratory
d.b.	Dry Basis Moisture Content Determination
w.b.	Wet Basis Moisture Content Determination

LIST OF SYMBOLS

Е	Electric Field Intensity	(V/m)
Н	Magnetic Field Intensity	(A/m)
ε ₀	Permittivity of Vacuum	(F/m)
μ_0	Permeability of Vacuum	(H/m)
ε* _r	Relative Permittivity (Complex)	(dimensionless)
μ^*_{r}	Relative Permeability (Complex)	(dimensionless)
η*	Medium Impedance (Complex)	(Ω)
L	Inductance	(H)
С	Capacitance	(F)
R	Resistance	(Ω)
G	Conductance	(S)
Х	Reactance	(Ω)
В	Susceptance	(S)
Ζ	Impedance	(Ω)
Y	Admittance	(S)
γ^*	Propagation Constant (complex)	(1/m)
α	Attenuation constant	(1/m)
β	Phase Constant	(rad/m)
δ	Skin Depth	(m)
σ	Conductivity	(S/m)
ω	Angular Frequency	(rad.Hz)
arepsilon'	Dielectric Constant	(F/m)

$arepsilon^{\prime\prime}$	Loss Factor	(F/m)
tanδ	Loss Tangent	(dimensionless)
Γ^*	Reflection Coefficient (complex)	(dimensionless)
τ*	Transmission Coefficient (Complex)	(dimensionless)
D	Directivity	(dimensionless)
е	Efficiency	(dimensionless)
RL	Return Loss	(dB)
S ₁₁	Scattering Parameter (Port 1 to Port 1)	(dB)
S ₂₁	Scattering Parameter (Port 1 to Port 2)	(dB)
S ₃₁	Scattering Parameter (Port 3 to Port 1)	(dB)
S_{41}	Scattering Parameter (Port 4 to Port 1)	(dB)

xxii

CHAPTER ONE

INTRODUCTION

1.1 Introduction

Knowledge of the moisture content of agricultural materials is a great importance in industrial and commercial applications. Moisture content of hevea latex is one of the most important parameters which determines the quality of the latex. The most widely recognized methods for moisture measurements are based on drying known weights of material in ovens and calculating moisture content from the loss in weight. This method is simple and has been employed as the standard method for calibration of moisture-testing equipment. However, this method is not practical used because it is time-consuming.

Various portable instruments and sensors have been developed using technology such as microwave, infrared, laser, electrical capacitance, and ultrasound. Microwave method has been used by many researchers to determine the moisture content in agricultural materials. These include the work by Nelson (Nelson, 1982, 1991, 1996), Kraszewski (Kraszewski and Nelson, 1994, 1996), and Khalid (Khalid, 1982) who determined the dielectric properties and moisture content in fresh fruits, soybean seeds, and hevea rubber latex.

However, latex moisture meter which is available today is still without a digital version. A digital version of the meter will give better accuracy, stability, and rapid readout. For this purpose a microcontroller will be used to develop the digital latexometer.

This chapter gives an overview of the hevea rubber latex. Microwave aquametry and the benefit of microcontrollers are briefly introduced. Section (1.5) describes the state of the art in latex moisture content measurement. Finally the objectives of this study and the scope of the thesis are stated at the end of the chapter.

1.2 Hevea Rubber Latex

Hevea Rubber Latex is one of the main agricultural products of Malaysia. As shown in Figure 1.1 it is a viscous liquid harvested by taping of rubber tree. The fresh latex consists of 55-80% water, 15-45% rubber hydrocarbons and approximately 2-4% of non carbon constituents (Chin, 1979). This composition varies widely according to season, weather, soil condition and tapping system. Normally 0.3 -0.5% ammonia is added as preservative to fresh latex because the fresh latex is highly perishable material and without preservative it will coagulate after few hours. Field latex can be concentrated to higher rubber constant to make it more uniform and economically more attractive. The latex used in this study was concentrated rubber latex supplied by Rubber Research Institute of Malaysia, (RRIM). The present standard of latex

