UNIVERSITI PUTRA MALAYSIA

COMBINATION THERAPY USING PLASMID DNA-MEDIATED VP3 AND SHCD147 GENES FOR COLON CANCER IN A MURINE MODEL

RUZILA ISMAIL

IB 2014 16
COMBINATION THERAPY USING PLASMID DNA-MEDIATED VP3 AND SHCD147 GENES FOR COLON CANCER IN A MURINE MODEL

By

RUZILA ISMAIL

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

December 2014
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Seeking His pleasure...

Dedicated to my father Ismail Mohamed,
My late mother Pathimah Md.Nasir,
My husband Ahmad Mubarak Tajul Arifin

and my beloved family
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

COMBINATION THERAPY USING PLASMID DNA-MEDIATED VP3 AND SHCD147 GENES FOR COLON CANCER IN A MURINE MODEL

By

RUZILA ISMAIL

December 2014

Chairman : Associate Professor Zeenathul Nazariah Allaudin, PhD

Faculty : Institute of Bioscience

Several strategies have been pursued to develop cancer therapies that selectively act on and kill cancer cells preferentially, leaving normal cells unaffected. The VP3, an avian virus-derived protein, can specifically impulse the death signal to different signal transduction pathways and finally lead to the apoptosis of the host cancer cells. The present work utilized a stress-inducing promoter which is a glucose-regulated protein (GRP) promoter to enhance VP3 expression in solid tumor condition. On the other hand, the over-expression of Basigin/CD147, a transmembrane glycoprotein has association with malignant melanoma invasiveness, metastasis and angiogenesis. Since CD147 has been indicated to be one of the critical cell-surface proteins in promoting chemo-resistance and survivability of cancer stem cells (CSC), down regulation of its expression by RNAi is an attractive way to suppress CD147-dependent cell proliferation, invasion and metastatic activity of cancer cells to eventually induce anoikis. All necessary impact of efficiencies and in vitro evaluation to optimize in this project has been established. In this study, tumor-bearing murine model was established. Investigation was conducted on 175-200 mm³ tumor model receiving highly purified plasmid DNA in single treatment or combination of VP3 and shCD147 via intratumoral route (n=8). An alternate-date dosing approach was practiced whenever 3 doses were needed. Control groups were either a) non-treated, b) received 3 doses of 100 µg of pVIVO1-GFP/LacZ or c) 3 doses of 100 µg of psiRNA-h7SKzeo. Whilst treated mice received either a) 3 doses of 100 µg of pVIVO1-GFP/VP3 or b) 3 doses of 100 µg of psiRNA-CD147. For combinative therapy, mice received either a) 3 doses of 50 µg of pVIVO1-GFP/VP3 with combination of 3 doses of 50 µg of psiRNA-CD147 or b) 3 doses of 100 µg of pVIVO1-GFP/VP3 plus 3 doses of 100 µg of psiRNA-CD147, as representative for low-dose and high-dose respectively. All the 56 mice were subjected to 12 h light/ 12 h dark cycle and kept in individually ventilated cages (IVC) with constant rotation rate of 70 air-changes/ h to ensure sterility. Administration of VP3 alone led to
percentage tumor growth inhibition (TGI) of 40.0% and a 1.3-fold increase in the
tumor growth delay index (TGDI) whilst administration of shCD147 led to TGI of
45.2% and 1.2-fold increase in the TGDI value. Whereas combination of low-dose
treatment led to TGI of 51.1% (p<0.001) and a 2.0-fold increase in the TGDI whilst
high-dose combinative treatment led to higher TGI of 60.3% (p<0.001) and 2.3-fold
increase in the TGDI. These results demonstrated an extensive inhibition of CT26
tumor xenograft growth by VP3 and shCD147 combinative approach. Moreover,
there is no discernible effect observed on histopathology and clinical chemistry
profile of the host. The anti-proliferation and anti-angiogenic activities of the
combinative approach were investigated by the use of the immunohistochemistry
analysis, PCNA and vWF. Apoptotic cells were determined in the treated group by
DNA fragmentation, TUNEL assay and confirmed by AnnV/PI double staining. The
apoptosis percentage in the combinatively (VP3 + shCD14/2) treated tumor was
markedly increased compared to individually treated samples at day-25 post-
treatment. Here, it was found that CD147 silencing induced dual coordinated effects,
resulting in inhibition of tumor cell proliferation and sensitization to VP3-induced
apoptosis. In conclusion, this study showed that the combinative approach was more
promising and effective in controlling tumor growth and inducing apoptosis than
introducing VP3 or shCD147/2 alone. The combinative treatment also offers
potential advantages in control of tumorigenesis, and thus deserves further research
as a preferred approach in cancer gene therapy.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

TERAPI GABUNGAN MENGGUNAKAN GEN VP3 DAN SHCD147
BERPERANTARAAN DNA PLASMID UNTUK KANSER KOLON DALAM
MODEL MENCIT

Oleh

RUZILA ISMAIL

Disember 2014

Pengerusi : Profesor Madya Zeanathul Nazariah Allaudin, PhD

Fakulti : Institut Biosains

Beberapa strategi telah dilaksanakan untuk membangunkan terapi kanser yang
bertindak secara terpilih dan membunuh sel-sel kanser secara pilihan, meninggalkan
sel-sel normal tidak terjejas. VP3, protein virus yang diperolehi dari burung, boleh
mendorong isyarat kematian yang berbeza isyarat transduksi dan akhirnya membawa
dapat apoptosis kepada sel-sel kanser perumah secara khusus. Kajian semasa
menggunakan promotor tekanan-mendorong iaitu promotor glukosa dikawal-selia
protein (GRP) untuk meningkatkan ekspresi VP3 dalam keadaan tumor pepejal. Di
sisi lain, lebih-ekspresi Basigin/CD147, glikoprotein transmembran mempunyai
dapat kaitan dengan pencerobohan, metastatik dan angiogenik melanoma malignan.
Memandangkan CD147 telah ditunjukkan untuk menjadi salah satu protein sel
permukaan kritikal dalam menggalakkan rintangan kimo dan kemandirian stem sel
cancer (CSC), menurunkan ekspresinya dengan RNAi adalah cara yang menarik
untuk menindas proliferasi sel, serangan dan aktiviti metastatik sel-sel kanser yang
bergantung kepada CD147 untuk akhirnya mendorong kepada anoikis. Semua kesan
kecekapan dan penilaian dalam vitro yang perlu untuk mengoptimumkan dalam
projek ini telah dilakukan. Dalam kajian ini, model mencit pembawa-tumor telah
ditubuhkan. Siasatan telah dijalankan ke atas model tumor 175-200 mm³ yang
menerima plasmid DNA berketulenan tinggi dalam rawatan tunggal atau kombinasi
VP3 dan shCD147/2 melalui kaedah intratumoral (n=8). Pendekatan dos silih ganti
hari diamalkan apabila 3 dos yang diperlukan. Kumpulan kawalan adalah sama ada
a) tidak dirawat, b) menerima 3 dos 100 μg daripada pVIVO1-GFP/LacZ atau c) 3
dos 100 μg daripada psiRNA-h7SKzeo. Manakala mencit yang dirawat menerima
sama ada a) 3 dos 100 μg daripada pVIVO1-GFP/VP3 atau b) 3 dos 100 μg daripada
psiRNA-CD147/2. Untuk terapi kombinasi, mencit menerima sama ada a) 3 dos 50
μg daripada pVIVO1-GFP/VP3 dengan gabungan 3 dos 50 μg daripada psiRNA-
CD147/2 atau b) 3 dos 100 μg daripada pVIVO1-GFP/VP3 ditambah 3 dos 100 μg
Daripada psiRNA-CD147/2, masing-masing sebagai wakil dos rendah dan dos tinggi. Kesemua 56 mencit telah tertakluk kepada kitaran 12 jam cahaya/12 jam gelap dan disimpan dalam sangkar pengudaraan secara individu (IVC) dengan kadar putaran udara berterusan 70 kali/jam untuk memastikan kesterilan. Pemberian suntikan VP3 membawa kepada perencatan peratusan pertumbuhan tumor (TGI) sebanyak 40.0% dan peningkatan 1.3 kali ganda dalam indeks kelewatan pertumbuhan tumor (TGDI) manakala pemberian suntikan shCD147/2 menyebabkan TGI sebanyak 45.2% dan peningkatan 1.2 kali ganda dalam nilai TGDI. Sedangkan gabungan rawatan dos rendah menyebabkan TGI sebanyak 51.1% (p <0.001) dan peningkatan 2.0 kali ganda dalam TGDI manakala rawatan kombinasi dos tinggi membawa kepada yang lebih tinggi TGI sebanyak 60.3% (p <0.001) dan peningkatan 2.3 kali ganda dalam TGDI. Keputusan ini menunjukkan satu perencatan yang banyak terhadap pertumbuhan tumor xenograft CT26 oleh pendekatan kombinasi VP3 dan shCD147. Tambahan pula, tidak ada kesan yang ketara diperhatikan pada histopatologi dan profil kimia klinikal perumah. Aktiviti anti-proliferasi dan anti-angiogenik daripada pendekatan kombinasi telah disiasat oleh penggunaan analisis immunohistokimia, PCNA dan vWF. Sel-sel apoptotic ditentukan dalam kumpulan yang dirawat menggunakan fragmentasi DNA, asei TUNEL dan disahkan menggunakan pewarnaan berganda AnnV/PI. Peratusan apoptosis dalam tumor dirawat secara kombinasi (VP3 + shCD14/2) telah meningkat dengan ketara berbanding dengan sampel yang dirawat secara individu pada hari-25 selepas rawatan. Di sini, didapati bahawa penyenyap CD147 mendorong kesan penyelarasan dwi, menyebabkan perencatan percambahan sel tumor dan pemekuan untuk apoptosis VP3-teraruh. Kesimpulannya, kajian ini menunjukkan bahawa pendekatan secara kombinasi lebih menjanjikan dan berkesan dalam mengawal pertumbuhan tumor dan mendorong apoptosis daripada memperkenalkan VP3 atau shCD147/2 sahaja. Rawatan secara kombinasi juga menawarkan kelebihan yang berpotensi mengawal tumorigenesis, dan dengan itu layak mendapat penyelidikan lanjut sebagai pendekatan utama dalam terapi gen kanser.
ACKNOWLEDGEMENTS

Praise to Almighty Allah who bestowed me with wisdom and strength to accomplish this work.

I would like to thank my supervisor, Assoc. Prof. Dr. Zeenathul Nazariah, for her enthusiastic and sagacious support throughout my PhD research. Whether through stimulating discussion or critical editing notes, Assoc. Prof. Dr. Zeenathul always praised my current accomplishment while challenging me to pursue innovative ideas and strategies.

I also would like to thank my committee members Datuk Prof. Dr. Mohd.Azmi Mohd.Lila, Prof. Emeritus Dato’ Sheikh Omar Sheikh Abdul Rahman, and Prof. Dr. Rasedee Abdullah for sharing their knowledge and expertise with me.

For my MAKNA’s group member (Nik, Hidayah, Caryn, John and Tan), LIVES’ Officers (Miss Arbaah), LIVES’ (Tam), Virology’, and COMET’ lab members, thank you for your support, critical ideas, friendship and making my research enjoyable.

Thanks and much love goes out to my family, especially my late mother, father, brothers, sisters and my husband for their continued support and encouragement throughout many years in my PhD journey.

Finally, I would like to acknowledge the financial support from Majlis Kanser Nasional (MAKNA), Kementerian Pengajian Tinggi and Universiti Putra Malaysia.
I certify that a Thesis Examination Committee has met on 8 December 2014 to conduct the final examination of Ruzila Ismail on her thesis entitled “Combination Therapy using Plasmid DNA-Mediated VP3 and shCD147 Genes for Colon Cancer in a Murine Model” in accordance with Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the degree of Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Noordin B Mohamed Mustapha, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Rozita bt Rosli, PhD
Professor
Faculty of Medicine & Health Science
Universiti Putra Malaysia
(Internal Examiner)

Abdul Rahman Bin Omar, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Ayodele Abdulkareem Alaiya, PhD
Professor
Stem Cell & Tissue Re-Engineering Program
King Faisal Specialist Hospital and Research Centre
Saudi Arabia
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 26 February 2015
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Zeenathul Nazariah Allaudin, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Sheikh Omar Abdul Rahman, PhD
Professor Emeritus
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Rasedee Abdullah, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Mohd Azmi Mohd Lila, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

BUJANG KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:
- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________________ Date: ___________________

Name and Matric No.: ___
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ___________________________ Signature: ___________________________
Name of Chairman of Supervisory Committee: ____________

Signature: ___________________________ Signature: ___________________________
Name of Member of Supervisory Committee: __________________________

Signature: ___________________________ Signature: ___________________________
Name of Member of Supervisory Committee: __________________________
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxi</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Background
1.2 Hypothesis of This Study
1.3 Objectives of This Study

2 LITERATURE REVIEW

2.1 Cancer Overview
 2.1.1 Colon Cancer
 2.1.2 Cancer Origin and Development

2.2 CD147
 2.2.1 CD147 Protein Structure and Expression
 2.2.2 CD147 as a Therapeutic Target
 2.2.3 CD147 Interaction in Cancer

2.3 RNA Interference
 2.3.1 The Mechanism of RNA Interference
 2.3.2 Therapeutic Application of RNA Interference
 2.3.2.1 siRNA
 2.3.2.2 shRNA
 2.3.2.3 miRNA
 2.3.3 Development of RNA Interference for Cancer

2.4 Cancer Gene Therapy
 2.4.1 Anti-tumorigenic Agent
 2.4.2 Anti-angiogenic Agent
 2.4.3 Pro-apoptotic Agent
 2.4.4 Combinatorial Gene Therapy

2.5 Safety of Gene Therapy
 2.5.1 Toxicity Study

x
2.5.2 Plasmid Biodistribution
2.5.3 Regulatory Elements for Transgene Expression
2.5.4 Murine Model of Colon Cancer Study

3 CONSTRUCTION OF RECOMBINANT PLASMID HARBORING
VP3 AND shCD147
3.1 Introduction
3.2 Materials and Methods
 3.2.1 Subcloning Of VP3 Gene into Sustained Eukaryotic Expression
 Vector
 3.2.1.1 Eukaryotic Expression Vector
 3.2.1.2 Amplification of VP3 Fragment Using PCR
 3.2.1.3 Double Restriction Digestion with NcoI and NheI
 3.2.1.4 Gel Purification of Digestion Products
 3.2.1.5 Cloning of VP3 Gene into pVIVO1-GFP Vector
 3.2.1.6 Transformation of Chemical Competent Top10
 3.2.2 Cloning of Short Hairpin RNA (shRNA) Expression Vector
 3.2.2.1 psiRNA Vector
 3.2.2.2 Double Restriction Digestion of psiRNA-h7SKzeo
 with Acc 65I and HindIII
 3.2.2.3 Annealing of shRNA Insert
 3.2.2.4 Ligation Of shRNA Insert into psiRNA
 3.2.2.5 Transformation of Lyocomp GT116
 3.2.3 Miniprep Plasmid Extraction
 3.2.4 Screening for Positive Recombinants
 3.2.5 DNA Sequencing Analysis
 3.2.6 Glycerol Storage for Correct Clones
3.3 Results
 3.3.1 Preparation of VP3 Gene and pVIVO1-GFP Plasmid
 3.3.2 Selection of Positive Recombinants
 3.3.3 Verification of VP3 Gene
 3.3.4 Double Restriction Digestion of Recombinant Clones
 3.3.5 DNA Sequencing Results
3.4 Discussion and Conclusion

4 ESTABLISHMENT AND SELECTION OF RECOMBINANT
PLASMIDS HARBORING PRO-APOPTOTIC AND ANTI-
TUMORIGENIC FACTORS
4.1 Introduction
4.2 Materials and Methods
 4.2.1 Expression Vector for VP3 and shCD147 Gene
 4.2.2 Endofree Plasmid Maxiprep
 4.2.3 Agarose Gel Analysis of the Purification Procedure

xi
4.2.4 Plasmid Analysis 46
4.2.5 Cultivation of Cell Lines 47
4.2.6 Preparation of Cell Culture Stocks 47
4.2.7 Calcium Phosphate Transfection 47
4.2.8 RNA Isolation from Cultures 48
4.2.9 Relative Quantification Real-Time RT-PCR 48
4.2.10 Analysis of shRNA-Induced Silencing 49
4.2.11 Confirmatory Immunohistochemistry for VP3 Expression in CT26 Cell Lines 50
4.2.12 Confirmatory Immunohistochemistry for CD147 Down-Regulation in CT26 Cell Lines 51
4.2.13 Statistical Analysis 51

4.3 Results
4.3.1 Quality Control of the Recombinant Plasmid Batches 51
4.3.2 Comparison of VP3 Expression Using pcDNA3.1 and pVIVO1 51
4.3.3 Analysis of shRNA-Induced Silencing 54
4.3.4 Immunohistochemistry for VP3 Expression in CT26 Cell Lines 54
4.3.5 Immunohistochemistry for CD147 Expression in CT26 Cell Lines 54

4.4 Discussion and Conclusion 61

5 BIODISTRIBUTION AND ACUTE TOXICITY OF INTRAMUSCULARLY ADMINISTERED DNA PLASMID HARBORING APOPTOTIC GENE IN MICE
5.1 Introduction 64
5.2 Materials and Methods
 5.2.1 Animals 65
 5.2.2 Experimental Design 65
 5.2.3 Necropsy and Sample Storage 67
 5.2.4 DNA Isolation from Tissues and Blood 67
 5.2.5 Standard Curve Preparation and Validation of Absolute Quantification Real-Time PCR 68
 5.2.6 Real-Time qPCR Analysis 68
 5.2.7 Complete Blood Count 69
 5.2.8 Blood Film and White Blood Cell Count 69
 5.2.9 Serum Biochemical Analysis 69
 5.2.10 Histological Assessment on Liver and Kidney 69
 5.2.10.1 Tissue Preparation and Sectioning 69
 5.2.10.2 Hematoxylin and Eosin Staining 70
 5.2.10.3 Microscopic Observation and Lesion Scoring 70
 5.2.11 GFP Distribution 71
5.2.12 Conventional PCR Analysis of Tumors and Organs 71
5.2.13 Statistical Analysis 71

5.3 Results
5.3.1 Standard Curve Validation 72
5.3.2 Real-Time qPCR Analysis 72
5.3.3 Body Weight Evaluation 76
5.3.4 Hematological Profile 76
5.3.5 Biochemical Analysis 78
5.3.6 Histological Assessment on Liver 78
5.3.7 Histological Assessment on Kidney 81
5.3.8 GFP Distribution of the Plasmids Post Intratumoral Injection 83

5.4 Discussion and Conclusion 85

6 TUMOR GROWTH AND EVIDENCE OF APOPTOSIS ON POST-TREATED TUMOR-BEARING MICE
6.1 Introduction 88
6.2 Materials and methods
6.2.1 Animals 89
6.2.2 Cancer Cells Preparation 90
6.2.3 Animal Model for Colon Cancer 90
6.2.4 Measurement of Tumor Growth and Evaluation of Antitumoral Effect 90
6.2.5 Experimental Design 91
6.2.6 Tissue Preparation and Sectioning 94
6.2.7 Hematoxylin and Eosin Staining 94
6.2.8 DNA Fragmentation Analysis 94
6.2.9 Terminal Deoxynucleotidyl Transferase-Mediated Nick End-Labeling Assay 95
6.2.10 Flow Cytometry (Annexin V/PI double staining) 96
6.2.11 Statistical Analysis 97

6.3 Results
6.3.1 Colon Cancer Mice Model 97
6.3.2 Effects of VP3 and shCD147/2 on Small Tumor Mass 98
6.3.3 Tumor Growth Assessment and Evaluation of Antitumoral Effect 100
6.3.4 Biochemical Analysis 104
6.3.5 H&E Stained Tumor Tissue 104
6.3.6 DNA Fragmentation Detection 107
6.3.7 Qualitative Analysis of In Situ Apoptosis (TUNEL) 107
6.3.8 Quantitative Analysis of Apoptotic Cells via Flow Cytometry Detection 110

6.4 Discussion and Conclusion 114
7 EFFECT OF TREATMENTS AGAINST CELL PROLIFERATION AND INVASION IN POST-TREATED TUMOR MASS

7.1 Introduction
7.2 Materials and Methods
 7.2.1 Animals and Treatment
 7.2.2 Western Blot
 7.2.3 Gelatin Zymography
 7.2.4 Proliferating Cell Nuclear Antigen (PCNA) Staining
 7.2.5 Von Willebrand factor (vWF) Staining
 7.2.6 Microscopic Quantification
 7.2.7 Statistical Analysis
7.3 Results
 7.3.1 CD147, VEGF and VP3 Relative Protein Expression
 7.3.2 Gelatin Zymography Analysis of Gelatinase Production
 7.3.3 Evaluation of Proliferating Cell Nuclear Antigen (PCNA)
 7.3.4 Evaluation of Endothelial Cells Blood Vessels Marker, vWF
7.4 Discussion and Conclusion

8 SUMMARY, GENERAL CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH
8.1 Summary
8.2 General Conclusion
8.3 Recommendations for Future Work

REFERENCES
APPENDICES
BIODATA OF STUDENT
LIST OF PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Malaysia cancer incidence per 100,000 population and age-standardized incidence rate (ASR), by sites and gender.</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>CD147-interacting proteins.</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>RNAi cancer therapeutics in pre-clinical trials.</td>
<td>18</td>
</tr>
<tr>
<td>2.4</td>
<td>Selected recent gene therapy for cancer</td>
<td>19</td>
</tr>
<tr>
<td>3.1</td>
<td>The oligonucleotide primer sequences for VP3 insert.</td>
<td>27</td>
</tr>
<tr>
<td>3.2</td>
<td>The oligonucleotides for shRNA insert.</td>
<td>31</td>
</tr>
<tr>
<td>4.1</td>
<td>The oligonucleotide sequence for real-time RT-PCR.</td>
<td>50</td>
</tr>
<tr>
<td>4.2</td>
<td>Percentage knockdown of CD147 and VEGF gene expression.</td>
<td>56</td>
</tr>
<tr>
<td>5.1</td>
<td>Lesion scoring grades</td>
<td>70</td>
</tr>
<tr>
<td>5.2</td>
<td>Hematological profile of mice treated with PBS (control) or with different dosage of pVIVO1-GFP/VP3</td>
<td>77</td>
</tr>
<tr>
<td>5.3</td>
<td>Liver lesions scoring of the control and variable dosage of pVIVO1-GFP/VP3 treated-animals.</td>
<td>81</td>
</tr>
<tr>
<td>5.4</td>
<td>Scoring of kidney lesions for the control and variable dosage of pVIVO1-GFP/VP3 treated-animals.</td>
<td>83</td>
</tr>
<tr>
<td>6.1</td>
<td>Treatment regimen for tumor size 50 mm³.</td>
<td>92</td>
</tr>
<tr>
<td>6.2</td>
<td>Treatment regimen for tumor size 175-200 mm³.</td>
<td>93</td>
</tr>
<tr>
<td>6.3</td>
<td>Statistical analysis of total apoptotic cells at day-3 and day-25 post-treatment.</td>
<td>114</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Ten most frequent cancer incidence and mortality worldwide.</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Ten most frequent cancers in Malaysia.</td>
<td>5</td>
</tr>
<tr>
<td>2.3</td>
<td>The hallmark capabilities of cancer.</td>
<td>7</td>
</tr>
<tr>
<td>2.4</td>
<td>CD147 molecule structure.</td>
<td>9</td>
</tr>
<tr>
<td>2.5</td>
<td>The complex interaction of CD147 between epithelial and stromal cells in cancer and its role in tumor metastasis.</td>
<td>12</td>
</tr>
<tr>
<td>2.6</td>
<td>RNA interference pathway.</td>
<td>14</td>
</tr>
<tr>
<td>2.7</td>
<td>Proposed mechanism of VP3/Apoptin.</td>
<td>22</td>
</tr>
<tr>
<td>3.1</td>
<td>Physical map of pVIVO1-GFP/LacZ.</td>
<td>26</td>
</tr>
<tr>
<td>3.2</td>
<td>Physical map of psiRNA-h7SKzeo.</td>
<td>29</td>
</tr>
<tr>
<td>3.3</td>
<td>PCR amplification of VP3 gene from the pcDNA3.1-VP3.</td>
<td>33</td>
</tr>
<tr>
<td>3.4</td>
<td>Double digestion (NcoI and NheI) of pVIVO1-GFP/LacZ vector.</td>
<td>33</td>
</tr>
<tr>
<td>3.5</td>
<td>Bacterial colony of psiRNA.</td>
<td>34</td>
</tr>
<tr>
<td>3.6</td>
<td>PCR amplification of VP3 gene from the pVIVO1-GFP/VP3.</td>
<td>35</td>
</tr>
<tr>
<td>3.7</td>
<td>Double digestion (NcoI and NheI) analysis of recombinant pVIVO1-GFP/VP3 vector.</td>
<td>36</td>
</tr>
<tr>
<td>3.8</td>
<td>Double digestion (XbaI) analysis of recombinant psiRNA-CD147 vector.</td>
<td>37</td>
</tr>
<tr>
<td>3.9</td>
<td>The DNA sequence of recombinant pVIVO1-GFP/VP3 as compared to the established UPM/ma.1 strain (AF030518).</td>
<td>39</td>
</tr>
<tr>
<td>3.10</td>
<td>The complete amino acid (a.a) sequence of VP3 gene compared to the established amino acid sequence of UPM/ma.1 strain (AF030518).</td>
<td>39</td>
</tr>
<tr>
<td>3.11</td>
<td>Verification of designated recombinant psiRNA-CD147/1, psiRNA-CD147/2 and psiRNA-CD147c with siRNA Wizard generated sequences.</td>
<td>40</td>
</tr>
<tr>
<td>4.1</td>
<td>Promoter for pcDNA3.1-VP3 and pVIVO1-GFP/VP3.</td>
<td>44</td>
</tr>
<tr>
<td>4.2</td>
<td>Agarose gel analysis of the psiRNA-h7SKzeo and pVIVO1-GFP/LacZ during EndoFree plasmid purification procedure.</td>
<td>52</td>
</tr>
</tbody>
</table>
4.3 Agarose gel analysis of the pVIVO1-GFP/VP3 and psiRNA-CD147/2 during EndoFree plasmid purification procedure.

4.4 The fluorescence profile of VP3 expression from RNA samples measured with the Real-time RT-PCR.

4.5 Real-time RT-PCR amplification graph of the VP3 expression.

4.6 siRNA-mediated silencing of CD147 was assessed using a ΔΔCt method to determine CD147 relative gene expression from qPCR data at 24 hr, 48 hr and 72 hr post-transfection.

4.7 siRNA-mediated silencing of CD147 was assessed using a ΔΔCt method to determine VEGF relative gene expression from qPCR data at 24 hr and 48 hr post-transfection.

4.8 Low magnification image showing distribution of immunoperoxidase staining for VP3 protein expression on CT26 murine colon cancer cells at 72 hours post-transfection.

4.9 Manifestation of apoptosis in immunoperoxidase stained VP3 treated CT26 murine colon cancer cells at 72 hours post-transfection.

4.10 Low magnification image showing reduction of the CD147 protein expression on CT26 murine colon cancer cells at 72 hours post-transfection by immunoperoxidase staining.

4.11 Comparison of CD147 knockdown effect in immunoperoxidase stained CT26 murine colon cancer cells at 72 hours post-transfection.

5.1 Experimental design for biodistribution of DNA plasmid in mice.

5.2 Real-time qPCR standard curve of plasmid harboring VP3.

5.3 Levels of pVIVO1-GFP/VP3 plasmids in injected muscle and blood.

5.4 Levels of pVIVO1-GFP/VP3 plasmids in opposite muscle and vital organs.

5.5 Relative body weight of Balb/c mice after last systemic treatment.

5.6 Biocompatibility (liver and kidney enzyme parameters) of BALB/c mice treated with different dosage of pVIVO1-GFP/VP3, in comparison to PBS-treated animals.

5.7 Representative photomicrographs showing histomorphological evaluation of livers after H&E staining.
5.8 Representative photomicrographs showing histomorphological evaluation of kidneys after H&E staining. 82
5.9 GFP protein expression on organ tissues. 84
5.10 GFP protein expression on tumor tissues. 84
5.11 Analysis of pVIVO1-GFP/VP3 dissemination in tumor-bearing mice by amplification of VP3 and GFP transgenes. 85
6.1 Tumor growth was measured by measuring two perpendicular tumor diameters with calliper at alternate day. 91
6.2 Experimental design for 50 mm³ tumor treatments. 92
6.3 Experimental design for 175-200 mm³ tumor treatments. 93
6.4 Fluorescence densities of 3% formaldehyde-treated CT26 tumor cells under different staining solutions. 97
6.5 Subcutaneous xenograft mice model with small tumor mass 98
6.6 Subcutaneous xenograft mice model with large tumor mass 98
6.7 Time course inhibition on small CT26 colon cancer tumor growth with VP3 or shCD147/2 treatment. 99
6.8 Photographs of mice with mock treatment. 99
6.9 Photographs of mice after VP3 treatment. 100
6.10 Photographs of mice received shCD147/2 treatment. 100
6.11 Representative photographs of tumors taken at day-1 before treatment and day-3 after treatment. 102
6.12 Time course inhibition of CT26 colon cancer tumor growth by either single, high-dose or low-dose combination treatments. 103
6.13 Biocompatibility (liver and kidney enzyme parameters) of BALB/c mice treated with either control (LacZ, zeo), single (VP3, shCD147/2) or combinative (low- or high-dose) treatments, in comparison to untreated animals (UT). 105
6.14 H&E stained tumor sections for pathologic evaluation at the cellular level. 106
6.15 Qualitative analysis of DNA fragmentation. 107
6.16 In situ apoptotic detection in tumor cell. 109
6.17 Percentage of TUNEL-positive cells (%) in the counted areas. 110
6.18 Cell population detection in treated tumors by fluorescence-activated cell sorting (FACS) flow cytometry at day-3.

6.19 Cell population detection in treated tumors by fluorescence-activated cell sorting (FACS) flow cytometry at day-25.

6.20 Apoptotic cell analysis of treated mice tumor at day-3 post-treatment.

6.21 Apoptotic cell analysis of treated mice tumor at day-25 post-treatment.

7.1 SDS-PAGE analysis of protein extracted from treated tumors.

7.2 Western blot analysis of CD147, VEGF and VP3 protein expression in tumor samples.

7.3 Quantitative analysis of the bands from three independent experiments for CD147 and VEGF protein expression.

7.4 Gelatin zymography analysis of MMP-2 and MMP-9 activity in tumor samples.

7.5 Effect of VP3, shCD147/2 and combination of VP3 and shCD147/2 treatment on cell proliferation.

7.6 Quantification of the PCNA-labelled positive cells for untreated tumor, control LacZ, control zeo, VP3, shCD147/2, combination of low- and high-dose (VP3 +shCD147/2) at 25-days post treatment.

7.7 Changes in blood vessel morphology and tumor cell invasion 25 days after VP3, shCD147/2, and combination treatment.

7.8 Quantification of blood vessel density at day-25 for untreated, after control, VP3, shCD147/2, and combination treatment.
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Media and Related Tissue Culture Solutions</td>
</tr>
<tr>
<td>B</td>
<td>Relative Quantification Value Calculation</td>
</tr>
<tr>
<td>C</td>
<td>Animal Care and Use Committee Approval</td>
</tr>
<tr>
<td>D</td>
<td>Tumor volume</td>
</tr>
<tr>
<td>E</td>
<td>TUNEL-positive Cells Analysis</td>
</tr>
<tr>
<td>F</td>
<td>SDS-PAGE and Western Blot Formulations</td>
</tr>
<tr>
<td>G</td>
<td>Gelatin Zymography</td>
</tr>
<tr>
<td>H</td>
<td>PCNA-positive Cells Analysis</td>
</tr>
<tr>
<td>I</td>
<td>vWF Analysis</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>µl</td>
<td>microliter</td>
</tr>
<tr>
<td>A</td>
<td>ampere</td>
</tr>
<tr>
<td>a.a</td>
<td>Amino acid</td>
</tr>
<tr>
<td>AI</td>
<td>Apoptotic Index</td>
</tr>
<tr>
<td>ALP</td>
<td>Alkaline phosphatase</td>
</tr>
<tr>
<td>ALT</td>
<td>Alanine aminotransferase</td>
</tr>
<tr>
<td>APS</td>
<td>Ammonium persulfate</td>
</tr>
<tr>
<td>AST</td>
<td>Aspartate aminotransferase</td>
</tr>
<tr>
<td>ATV</td>
<td>Antibiotic Trypsin Versin</td>
</tr>
<tr>
<td>BLAST</td>
<td>Basic Local Alignment Search Tool</td>
</tr>
<tr>
<td>bp</td>
<td>Base pair</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>BUN</td>
<td>Blood urea nitrogen</td>
</tr>
<tr>
<td>CAV</td>
<td>Chicken anaemia virus</td>
</tr>
<tr>
<td>CD147</td>
<td>Cluster of differentiation 147</td>
</tr>
<tr>
<td>CMVenh</td>
<td>Cytomegalovirus enhancer</td>
</tr>
<tr>
<td>CRC</td>
<td>Colorectal cancer</td>
</tr>
<tr>
<td>CT26</td>
<td>Colon Tumor #26</td>
</tr>
<tr>
<td>Cyp</td>
<td>cyclophilin</td>
</tr>
<tr>
<td>DAB</td>
<td>3', 3'-diaminobenzidine</td>
</tr>
<tr>
<td>ddH₂O</td>
<td>deionised distilled water</td>
</tr>
<tr>
<td>dH₂O</td>
<td>distilled water</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>dNTPs</td>
<td>Dideoxynucleotide triphosphates (dATP, dTTP, dCTP and dGTP)</td>
</tr>
<tr>
<td>dsRNA</td>
<td>Double-stranded RNA</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme Linked Immunosorbent Assay</td>
</tr>
<tr>
<td>EMMPRIN</td>
<td>Extracellular matrix metalloproteinase inducer</td>
</tr>
<tr>
<td>et al.</td>
<td>et alii</td>
</tr>
<tr>
<td>EtBr</td>
<td>Ethidium bromide</td>
</tr>
<tr>
<td>FBS</td>
<td>Fatal bivine serum</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescein isothiocyanate</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>G</td>
<td>Gauge</td>
</tr>
<tr>
<td>GFP</td>
<td>Green fluorescent protein</td>
</tr>
<tr>
<td>GRP</td>
<td>Glucose regulate protein</td>
</tr>
<tr>
<td>h</td>
<td>Hour(s)</td>
</tr>
<tr>
<td>HIV</td>
<td>Human Immunodeficiency Virus</td>
</tr>
<tr>
<td>HSV</td>
<td>Herpes Simplex Virus</td>
</tr>
<tr>
<td>i.e.</td>
<td>“id est”</td>
</tr>
</tbody>
</table>

xxi
i.m Intramuscular
i.p Intraperitoneal
i.t Intratumoral
i.v Intravenous
lg immunoglobulin
IHC Immunohistochemistry
Kb Kilo base
kDA Kilo Dalton
mA Milliampere
MCT monocarboxylate transporter
mg Milligram
MgCl$_2$ Magnesium chloride
min minute
miRNA micro Ribonucleic Acid
ml milliliter
mM millimolar
MMP Matrix metalloproteinase
mRNA Messenger Ribonucleic Acid
MT1 membrane type 1
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide
ng nanogram
nt Nucleotide(s)
NTC Non-template control
PBS Phosphate buffered saline
PBST Phosphate buffered saline tween-20
PCD Program cell death
PCNA Proliferating Cell Nuclear Antigen
PCR Polymerase chain reaction
pol polymerase
PVDF Polyvinylidene difluoride
RA rheumatoid arthritis
RE Restriction endonuclease
RISC RNA Interference Specificity Complex
RNA Ribonucleic Acid
RNAi Ribonucleic Acid interference
rpm Revolution per minute
RPMI Roswell Park Memorial Institute medium
RT Reverse transcription or reverse transcriptase
RTV Relative tumor volume
s.c. Subcutaneous
SDS Sodium Dodecyl Sulfate
SDS-PAGE SDS-polyacrylamide gel electrophoresis
sec Second(s)
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>shRNA</td>
<td>Short hairpin Ribonucleic Acid</td>
</tr>
<tr>
<td>siRNA</td>
<td>Short interfering Ribonucleic Acid</td>
</tr>
<tr>
<td>ssRNA</td>
<td>Single-stranded Ribonucleic Acid</td>
</tr>
<tr>
<td>SV40enh</td>
<td>Simian virus 40 enhancer</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris acetate EDTA buffer</td>
</tr>
<tr>
<td>Taq</td>
<td>Thermus aquaticus thermostable DNA</td>
</tr>
<tr>
<td>TBE</td>
<td>Tris borate EDTA buffer</td>
</tr>
<tr>
<td>TCSF</td>
<td>Tumor collagenase stimulatory factor</td>
</tr>
<tr>
<td>TE</td>
<td>Tris-EDTA buffer</td>
</tr>
<tr>
<td>TEMED</td>
<td>N, N, N', N'-tetramethylethylenediamine</td>
</tr>
<tr>
<td>TGD</td>
<td>Tumor growth delay</td>
</tr>
<tr>
<td>TGDI</td>
<td>Tumor growth delay index</td>
</tr>
<tr>
<td>TGI</td>
<td>Tumor growth inhibition</td>
</tr>
<tr>
<td>TIMP</td>
<td>Tissue inhibitor of metalloproteinase</td>
</tr>
<tr>
<td>TUNEL</td>
<td>Terminal deoxynucleotidyltransferse-mediated dUTP Nick End Labeling</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>VP3</td>
<td>Virus protein 3</td>
</tr>
<tr>
<td>vWF</td>
<td>von Willebrand factor</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

Cancer remains one of mankind’s most feared diseases worldwide. Malignant cancer has remained as one of the five main causes of mortality for the past 20 years. According to International Agency Research for Cancer, colorectal cancer was the third most commonly diagnosed cancer worldwide with total of 1.36 million incidence in 2012 (IARC 2014a). In Malaysia, cancer incidence was listed as one of the ten leading causes of hospitalization (3.82%) and five leading causes of death (13.63%) in both Ministry of Health (MoH) and private hospitals (MoH, 2013). Colorectal cancer was the second commonest form of cancer in both Malaysian men and women after lung and breast cancer, respectively. According to National Cancer Registry, a total of 1185 (14.6%) of male and 1011 (10.0%) of female incidence per 100,000 population were reported in 2007 and the figure was expected to increase (Omar & Ibrahim Tamin, 2011).

High incidence in colorectal cancer was due to the delay in diagnosis and ineffectiveness in treatment. The current treatment applies begin with surgical procedures to excise colon tumor segments followed by radiotherapy and/or chemotherapy. These conventional treatments may not be effective as it is not only killing the cancer cells, but also the healthy cells surround. Besides, their adverse side-effects are debilitating for patients. Thus, it is crucial to develop new therapeutic methods for cancer so that cancer patients can have more alternative for the best therapy they need.

Gene therapy is an alternative method to cure or slow down the progression of advanced stage of malignant cancer. In somatic gene therapy, therapeutic DNA transgene either integrated in the genome, as an external episomal or plasmid are introduce into cells. Selective therapy for cancer cells, only attacking actively dividing cells while sparing normal cells unaffected is an emerging field in recent years. Several viruses need actively dividing cells during completion of their life cycle, thus viral proteins have gained attention as a feasible cancer selective therapy.

Apoptosis or programmed cell death is an energy-dependent, innate and genetically determined process utilized by multicellular organisms to eliminate unwanted or damaged cells. Cancer is one of the diseases that is related to the loss of control between apoptosis and survival (Bjelaković et al., 2005). The use of apoptosis inducing gene is one of the alternative treatments for cancer therapy. Ideally, the killing cancer cells via apoptosis is a safer way for cancer therapy because the side effects of conventional treatments can be reduced to a minimum and the choice of
targeting therapeutic gene can kill cancer cells without affecting the surrounding cells.

VP3, a product of the third open reading frame (ORF) of the chicken anaemia virus can specifically impulse the apoptosis signals in cancer cells (Backendorf et al., 2008). Not hampered by tumor-suppressor p53 mutations or over-expression of anti-apoptosis proteins makes VP3 the most eligible candidate for various cancers. Therefore, recombinant plasmid expressing the VP3 therapeutic gene will increase chances of cure for cancer patient.

In addition, numerous macromolecules and cellular agents have been attempted to target tumor cells more specifically rather than other factors related to tumor growth. These include cytokines, small molecules antagonists, monoclonal antibodies, oligonucleotides and gene-targeting vector (Wong, 2011). Although apoptosis is a popular goal in treatment strategies, current preclinical and clinical findings have demonstrated the lack of desired expectation in achieving this matter. This is due to evasion of apoptosis by cancer cells.

These disappointing results arise due to multiple factors predominantly the vasculatures that supply nutrients and oxygen in tumors. When the continuous supply of nutrients and oxygen to the tumor cells keeps tumors growing, even well-designed drugs are hindered from acting on the target in an effective manner. One promising solution arisen from the observation that growing tumors are dependent on the multiple vascularisation mechanism, angiogenesis (Döme et al., 2007).

CD147, an integral plasma membrane protein has the capability to promote angiogenesis formation through stimulation of vascular endothelial growth factor (VEGF) expression on cancer cells (Tang et al., 2005). Not restricted to VEGF, it stimulates abundance of matrix metalloproteinase (MMP)-production which cause extracellular matrix degradation and increased cellular migration and invasion. During metastases, usually majority of cells undergo anoikis, a kind of apoptosis which is induced by the detachment of anchorage-dependent cells from the adjacent extracellular matrix. However, CD147 was identified as a contributor to anoikis-resistance which leads to tumor cells metastases (Ke et al., 2012). Recently, CD147 has been indicated to be one of the critical cell-surface proteins in promoting chemoresistant and survivability of cancer stem cells (CSC) (Kang et al., 2013). In this regard, down regulation of its expression using RNA interference is an attractive way to suppress CD147-dependent cell proliferation, invasion and metastases activity of cancer cells to eventually induce anoikis.

Before entering into human clinical trials, the safety of the incipient therapeutic gene has to be substantiated with animal studies. As consideration to safety in gene therapy, it is customary to assess the biodistribution of the DNA plasmid in order to cater information on potential toxicities. The development of new, safe and effective cancer therapy for 21st century are at the midst of explosion. Scientists have achieved
an advance experimental in the simultaneous use of two or more agents for treating cancer. However, new technologies in combination therapy need innovative approaches, new models, standards and assays.

The aim of this study is to understand the effect and interaction between the tumor and its blood vessel during combinatorial pro-apoptotic and anti-tumorigenic therapy. Recently developed genomic and proteomic technologies, gene silencing against CD147 will be applied as anti-tumorigenic therapy. Due to short half-life of the siRNA, here, gene silencing will be applied in a vector form for long term expression. Anti-tumorigenic agent would be expected to inhibit tumor cell proliferation and invasion, while enhancing sensitization to pro-apoptotic agent induced apoptosis. In this study, tumors will be treated with combined pro-apoptotic and anti-tumorigenic therapy. This combinative approach may improve effectiveness of the tumor treatment.

1.2 Hypothesis of This Study

It is hypothesized that by utilizing inducible GRP78 promoter to drive cancer-selective VP3 expression would improve the expression in solid tumor while combinative approach of pro-apoptotic and anti-tumorigenic gene therapy would provide better and more effective means in treating and inducing apoptosis in tumor-bearing model.

1.3 Objectives of This Study

This study investigates the effects and efficiency of plasmid DNA-mediated VP3 and shCD147 genes therapy in murine model for colon cancer including:

1) To develop recombinant plasmids harboring VP3 (pVIVO1-GFP/VP3) and shCD147 (psiRNA-CD147).

2) To compare between GRP78 and CMV driven VP3 expression in vitro.

3) To select the best shCD147 construct with highest silencing effect in vitro.

4) To evaluate in vivo biodistribution and acute toxicity effect of pVIVO1-GFP/VP3 using effective dose and up to 4X effective dose.

5) To investigate the inhibition of tumor growth and apoptosis analysis of VP3, shCD147/2 or combination treatment in tumor-bearing murine model.

6) To examine the effect of VP3, shCD147/2 or combination treatments against cell proliferation and invasion in post-treated tumor mass.
REFERENCES

