UNIVERSITI PUTRA MALAYSIA

CHARACTERIZATION OF NEWCASTLE DISEASE VIRUS (NDV) ISOLATED FROM NDV VACCINATED BROILER FARMS AND INVESTIGATION OF VACCINE EFFICACY AGAINST CHALLENGE WITH VELOGENIC GENOTYPE VII NDV

KIARASH ROOHANI SHAHRESTANI

IB 2014 13
CHARACTERIZATION OF NEWCASTLE DISEASE VIRUS (NDV) ISOLATED FROM NDV VACCINATED BROILER FARMS AND INVESTIGATION OF VACCINE EFFICACY AGAINST CHALLENGE WITH VELOGENIC GENOTYPE VII NDV

By

KIARASH ROOHANI SHAHRESTANI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

September 2014
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

This thesis is dedicated to my parents who have supported me all the way since the beginning of my life and my dear sister. Also, this thesis is dedicated to my beloved wife who has been a great source of motivation and inspiration.

Finally, this thesis is dedicated to all those who believe in the richness of learning.
CHARACTERIZATION OF NEWCASTLE DISEASE VIRUS (NDV) ISOLATED FROM NDV VACCINATED BROILER FARMS AND INVESTIGATION OF VACCINE EFFICACY AGAINST CHALLENGE WITH VELOGENIC GENOTYPE VII NDV

By

KIARASH ROOHANI SHAHRESTANI

September 2014

Chairman: Abdul Rahman Omar, DVM, PhD

Faculty: Institute of Bioscience

Vaccines to control Newcastle disease (ND) were introduced more than 60 years ago. Despite that, ND is still one of the most significant avian diseases affecting major poultry farms in various countries. Class II of Newcastle disease viruses (NDV) can be divided into 10 different genotypes based on the F gene. However, since 1990s genotype VII NDV is the predominant velogenic NDV circulating in South-East Asia causing outbreaks even in well vaccinated flocks. Various factors such as inappropriate vaccination scheme, concurrent infections, immunosuppression and presence of variant NDV have been implicated as the probable causes of the outbreak. The current NDV vaccines comprised of genotype I and/or II viruses. Through the use of reverse genetic technology, genotype–matched NDV vaccine has been used in certain countries. However, the efficacy of this vaccine against the circulating velogenic genotype VII NDV is not well characterized.

This study focused on the isolation and characterization of velogenic NDV from NDV vaccinated chickens in Malaysia. Sequencing and phylogenetic analysis based on the F gene of five NDV isolates (IBS001 to IBS005) showed that the viruses belong to genotype VII and sub-genotype VIIId of NDV, with F cleavage site motif of 112RRRKRF117. In addition, sequencing of the C-terminus of the HN gene revealed that, viruses lack extension and encoded a typical amino acid sequence length of virulent NDV. Hence, molecular characterization based on the F and HN genes indicated the viruses (IBS001 to IBS005) belong to velogenic genotype VII NDV.

One of the isolates, IBS002, was further characterized based on sequencing of the complete length of F and HN genes and pairwise comparisons between different genotypes. A maximum distance was detected between IBS002 and LaSota with nucleotide/amino acids variation between 17.71% to 18.67% for
F gene and 20.89% to 23.37% for HN gene. Nucleotide/amino acids variations of 8.79% to 9.77% for F gene and 9.17% to 11.60% for HN genes were detected between isolate IBS002 and genotype VII Dalguban N+ vaccine. In addition, IBS002 has a mean death time (MDT) of 51.2 hours and intracerebral pathogenicity index (ICPI) of 1.76, further confirming that the virus is a velogenic strain.

Both genotype matched (Dalguban N+) and mismatched (LaSota and Avinew) vaccines induced 100% protection against mortality and severe clinical symptoms following challenge with 10^5 ELD_{50} of IBS002. Vaccinated chickens also showed significant (P<0.05) lower pathogenicity scores although there was no significant (P<0.05) difference among the vaccinated groups. However, sentinel birds of Avinew and Dalguban N+ groups showed lower pathogenicity score compared to sentinels in LaSota group (P<0.05). Furthermore, Avinew and Dalguban N+ vaccinated chickens shed significantly (P<0.05) less virus after challenge and the viral load decreased faster than LaSota group. Moreover, sentinel birds mortality in LaSota vaccinated and non-vaccinated groups were significantly (P<0.05) higher than Avinew and Dalguban N+ vaccinated groups suggesting the importance of genotype matched vaccine (Dalguban N+) and enteric based NDV vaccine (Avinew) in inducing vaccine induced immunity. Vaccine that matched with the hemagglutination-inhibition (HI) test’s antigen induced significantly (P<0.05) higher antibody compared to vaccine from other genotypes where a 2 Log$_2$ difference were detected when genotype VII and genotype II NDV antigens were used to detect homologous and heterologous HI titers.

Immunophenotyping study showed significant increased (P<0.01) in KUL-1+ macrophages in PBMCs and splenocytes of control challenged birds. On the other hand, CD3+/CD4+ and CD3+/CD8+ T cells in spleen of different vaccinated groups were increased upon challenge suggesting the possible involvement of these cells in curtailing virus replication.

In conclusion, isolated NDVs were classified as velogenic strains and belonged to genotype VIIId of class II of NDV. Both genotype matched and mismatched NDV vaccines were able to confer protection against challenge with velogenic genotype VII NDV. However, genotype matched and enteric based NDV vaccines seems to be able to confer a more complete protection against virus shedding and transmission to susceptible chickens following challenged with velogenic genotype VII NDV.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Sarjana Sains

PENCIRIAN VIRUS PENYAKIT SAMPAR (NDV) DARI LADANG AYAM PEDAGING YANG DISUNTIK VAKSIN NDV DAN SIASATAN EFIKASI VAKSIN TERHADAP CABARAN DENGAN NDV GENOTIP VII VELOGENIK

Oleh

KIARASH ROOHANI SHAHRESTANI

September 2014

Pengerusi: Abdul Rahman Omar, DVM, PhD

Fakulti: Institut Biosains

Walaupun lebih 60 tahun, vaksin bagi mengawal penyakit sampar (ND) telah diperkenalkan, ND masih merupakan salah satu penyakit unggas yang mempunyai impak besar terhadap ladang ayam di setiap pelusuk negara. Virus penyakit sampar (NDV) kelas II boleh dibahagikan kepada 10 genotip yang berbeza berdasarkan kepada gen F. Walau bagaimanapun, sejak tahun 1990an NDV genotip VII adalah virus velogenik utama yang tersebar di Asia Tenggara dan menyebabkan wabak mahupun dalam ayam yang disuntik vaksin. Pelbagai faktor yang menyumbang kepada penularan wabak ini termasuklah skim vaksinasi yang tidak sesuai, jangkitan secara serentak, imunotindas dan juga kemunculan virus penyakit sampar (NDV) varian. Vaksin NDV yang ada pada masa kini terdiri daripada virus genotip I dan/atau genotip II. Walau bagaimanapun, melalui penggunaan teknologi genetik terbalik, vaksin NDV genotip-padanan telah digunakan di negara-negara tertentu. Tetapi, efikasi vaksin ini terhadap NDV genotip VII beredar velogenik tidak dicirikan dengan begitu jelas lagi.

Kajian ini bertumpu kepada pengasingan dan pencirian NDV velogenik daripada ayam yang disuntik vaksin di Malaysia. Penjuzukan dan analisis filogenetik berdasarkan gen F daripada lima isolat NDV (IBS001 hingga IBS005) menunjukkan bahawa virus-virus ini terdiri daripada NDV genotip VII dan sub-genotip VIIId dengan tapak belahan F bermotifkan 112RRKKRF117. Selain daripada itu, jujukan terminus C gen HN menunjukkan bahawa virus-virus ini tidak tidak mempunyai lanjutan jujukan dengan panjang jujukan asid amino yang kerap ditemui bagi NDV virulen. Oleh itu, pencirian molekul berdasarkan gen F dan HN menunjukkan virus-virus ini (IBS001 hingga IBS005) tergolong dalam genotip VII NDV velogenik. Salah satu virus yang disinggingan, IBS002, telah dilanjutkan penciriannya berdasarkan jujukan lengkap gen F dan HN, dan seterusnya dibandingkan di antara genotip yang berbeza. Satu perbezaan jarak maksimum dikesan di antara IBS002 dan
LaSota dengan nukleotida/asid amino, daripada 17.71% kepada 18.67% bagi gen F dan 20.89% kepada 23.37% bagi gen HN. Variasi nukleotida/asid amino daripada 8.79% kepada 9.77% untuk gen F dan 9.17% kepada 11.60% bagi gen HN telah ditemui di antara IBS002 dan vaksin genotip VII Dalguban N+. Di samping itu, IBS002 mempunyai purata masa kematian (MDT) iaitu 51.2 jam dan indeks patogenisiti intraserebrum (ICPI) iaitu 1.76 seterusnya mengesahkan bahawa virus ini tergolong dalam kumpulan NDV velogenik.

Kedua-dua vaksin genotip-padanan (Dalguban N+) dan tidak padanan (LaSota dan Avinew), memberi perlindungan 100% terhadap kematian dan gejala klinikal yang teruk ekoran cabaran dengan IBS002 pada sukatana virus 10^5ELD_{50}. Ayam yang disuntik vaksin menunjukkan bacaan skor patogenisiti rendah yang signifikan ($P<0.05$), manakala tiada perbezaan yang signifikan ($P<0.05$) didapati di kalangan kumpulan ayam yang disuntik vaksin. Walau bagaimanapun, ayam sentinel daripada kumpulan Avinew dan Dalguban N+ menunjukkan skor patogenisiti yang lebih rendah berbanding dengan sentinel dalam kumpulan LaSota ($P<0.05$). Selain itu, ayam yang telah disuntik vaksin Avinew dan Dalguban N+ menunjukkan perluaran virus yang rendah ($P<0.05$) selepas cabaran dan kuantiti virus menurun dengan lebih cepat daripada kumpulan LaSota. Tambah lagi, skor kematian ayam sentinel dalam kumpulan vaksin LaSota dan kumpulan yang tidak disuntik vaksin ($P<0.05$) adalah sangat tinggi jika dibandingkan dengan Avinew dan Dalguban N+ mencadangkan kepentingan vaksin genotip-padanan (Dalguban N+) dan vaksin berasas enterik dalam mengaruh keimunan vaksin. Vaksin yang sepadan dengan antigen ujian perencatan-hemagglutinin (HI) menunjukkan titter antibodi yang lebih tinggi ($P<0.05$) berbanding dengan vaksin dari genotip lain di mana perbezaan 2 Log$_2$ dikesan pada titter antibodi HI homolog dan heterolog bila virus genotip VII dan II digunakan sebagai antigen.

Kajian imunofenotip menunjukkan ayam disuntik vaksin LaSota mempunyai peratus makrofaj KUL-1+ dan IgM+ B limfosit yang lebih tinggi berbanding dengan kumpulan disuntik vaksin lain. Walaupun begitu, tiada perbezaan yang ketara dikesan pada kedua-dua sel T limpa, CD3+/CD4+ dan CD3+/CD8+ dikelangan kumpulan yang disuntik vaksin yang berbeza. Peningkatan yang ketara ($P<0.01$) makrofaj KUL-1+ dalam PBMCs dan limpa telah dikesan dalam kumpulan kawalan yang dicabar. Sungguhpun begitu, peningkatan yang ketara pada jumlah sel T ($P<0.01$) limpa dari ayam yang disuntik vaksin dan dicabar dengan IBS002 mungkin menunjukkan peranan penting sel ini dalam mengekang replikasi virus. Kesimpulannya, kedua-dua vaksin genotip-padanan dan tidak padanan dapat memberikan perlindungan terhadap cabaran dengan NDV genotip VII velogenik. Walau bagaimanapun, vaksin NDV padanan dan berasaskan enterik dapat memberikan perlindungan yang lebih lengkap terhadap peluruhan virus dan transmisi virus kepada perumah rentan.
ACKNOWLEDGEMENTS

This research project would not have been possible without the support of many people. The author wishes to express his gratitude to his supervisor, Prof. Dr. Abdul Rahman Omar who was abundantly helpful and offered invaluable assistance, support and guidance. Deepest gratitude are also due to the members of the supervisory committees, Prof. Datin Paduka Dr. Aini Ideris, Prof. Dr. Mohd Hair Bejo, Dr. Tan Sheau Wei and Dr. Yeap Swee Keong without whose knowledge and assistance, this study would not have been successful.

Special thanks also to all the graduate students and friends, especially group members; Dr. Davoud Jazayeri, Dr. Mehdi Rasouli Piroziyan, Mozhgan Mollayee, Farhana Zaini, Nor Yasmin, Amanda Teo, Kristeen Teo, Aimi Jamil, Dilan and many others for sharing their ideas, information and invaluable assistance. In addition, many thanks to all the staff of Institute of Bioscience, especially staffs at Laboratory of Vaccines and Immunotherapeutics for their assistance and kindness.

The author would also like to convey thanks to the Ministry of Higher Education (MOHE), Government of Malaysia for providing Institute of Bioscience Higher Institution Center of Excellence (IBS HICoE) grant, Institute of BioScience for providing the financial means and laboratory facilities and Prof. Dr. Abdul Rahman Omar for providing the Special Graduate Research Assistantship, under MOHE grant.

The author wishes to express his love and gratitude to his beloved families; for their understanding and endless love, through the duration of the study.
I certify that a Thesis Examination Committee has met on 23 September 2014 to conduct the final examination of Kiarash Roohani Shahrestani on his thesis entitled "Characterization of Newcastle Disease Virus (NDV) Isolated from NDV-Vaccinated Broiler Farms and Investigation of Vaccine Efficacy Against Challenge with Velogenic Genotype VII NDV" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Md Zuki bin Abu Bakar @ Zakaria, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Noorjahan Banu binti Mohammed Alitheen, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Internal Examiner)

Jalila binti Abu, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Muhammad Munir, PhD
Senior Lecturer
The Pirbright Institute
United Kingdom
(External Examiner)

[Signature]

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 23 October 2014
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Abdul Rahman bin Omar, PhD
Professor
Institute of Bioscience
Universiti Putra Malaysia
(Chairman)

Datin Paduka Aini binti Ideris, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Mohd Hair bin Bejo, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Tan Sheau Wei, PhD
Research Officer
Institute of Bioscience
Universiti Putra Malaysia
(Member)

Yeap Swee Keong, PhD
Research Fellow
Institute of Bioscience
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work
- quotations, illustrations and citations have been duly referenced
- the thesis has not been submitted previously or concurrently for any other degree at any institutions
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be owned from supervisor and deputy vice-chancellor (Research and innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: __________________

Name and Matric No.: Kiarash Roohani Shahrestani – GS29346
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature: ____________________________
Name of Chairman of Supervisory Committee: PROF. DR. ABDUL RAHMAN OMAR
Position: Pengarah
Institution: Institut Biosains
Address: Universiti Putra Malaysia
43400 UPM, Serdang, Selangor

Signature: ____________________________
Name of Member of Supervisory Committee: PROF. DR. MOHD HAIR BEJO
Position: Dekan
Institution: Fakulti Perubatan Veterinar
Address: Universiti Putra Malaysia
43400 UPM Serdang, Selangor

Signature: ____________________________
Name of Member of Supervisory Committee: DR. YEAP SWEE KEONG
Position: Felo Penyelidik
Institution: Laboratori Vaksin dan Imunoterapeutik
Address: Institut Biosains
Universiti Putra Malaysia
43400 Serdang, Selangor

Signature: ____________________________
Name of Member of Supervisory Committee: PROF. DATIN PADUKA DR. AINI IDERIS
Position: Pejabat Strategi Korporat dan Komunikasi
Institution: Universiti Putra Malaysia
43400 UPM Serdang

Signature: ____________________________
Name of Member of Supervisory Committee: DR. TAN SHEAU WEI
Position: Pegawai Penyelidik
Institution: Laboratori Vaksin dan Imunoterapeutik
Address: Institut Biosains
Universiti Putra Malaysia
43400 Serdang, Selangor
TABLE OF CONTENTS

ABSTRACT ... i
ABSTRAK .. iii
ACKNOWLEDGEMENTS v
APPROVAL ... vi
DECLARATION ... viii
LIST OF TABLES .. xiv
LIST OF FIGURES ... xvi
LIST OF APPENDICES xviii
LIST OF ABBREVIATIONS xix

CHAPTER

1 INTRODUCTION ... 1

2 LITERATURE REVIEW 4
2.1 Aetiology ... 4
2.1.1 Morphology 4
2.1.2 Viral Genome Organization 4
2.1.3 NDV Classification 6
2.2 Epidemiology and Regulation of NDV 10
2.2.1 Hosts ... 10
2.2.2 Transmission 10
2.2.3 Panzootics and Spread 10
2.3 Disease .. 11
2.3.1 Pathogenesis 11
2.3.2 NDV Pathogenicity 11
2.3.3 Clinical Signs and Symptoms 13
2.3.4 Diagnosis 13
2.4 Immune Response Against NDV 15
2.5 NDV Prevention and Control 17
3 ISOLATION AND CHARACTERIZATION OF GENOTYPE VII NEWCASTLE DISEASE VIRUS FROM NDV VACCINATED BROILER FARMS

3.1. Introduction 21

3.2. Materials and Methods 22

3.2.1. Sample Specimens 22

3.2.2. Sample Processing 22

3.2.3. Viral RNA Extraction 24

3.2.4. Evaluation of RNA Concentration and Purity 24

3.2.5. Fast Detection of NDV Positive Samples Using RT-PCR 24

3.2.6. Partial NDV F and HN gene RT-PCR amplification 25

3.2.7. Full F and HN Gene RT-PCR Amplification of NDV Isolate IBS002 27

3.2.8. Agarose Gel Electrophoresis of RT-PCR Product 27

3.2.9. Gel Purification of RT-PCR Product 28

3.2.10. Sequencing of RT-PCR Product 28

3.2.11. Sequence Alignment, Analysis and Phylogenetic Study 29

3.2.12. Virus Propagation 31

3.2.13. ELDT Measurement 32

3.2.14. Mean Death Time (MDT) Calculation 32

3.2.15. Hemagglutination Test 33

3.2.16. ICPI Calculation 33

3.3. Results 33

3.3.1. RT-PCR Detection of NDV Based on NP Gene 33

3.3.2. RT-PCR Amplification of Partial NDV F and HN 34

3.3.3. RT-PCR Amplification and Sequencing of Full F and HN Gene of NDV Isolate IBS002 45

3.3.4. ELDT Measurement 51

3.3.5. Determination of MDT and ICPI 52

3.4. Discussion 54
3.5. Conclusion

4 Efficacy of Genotype-Match and Genotype-Mismatched NDV Vaccines Against Challenge with Velogenic Genotype VII NDV in SPF Chickens

4.1. Introduction

4.2. Materials and Methods
 4.2.1. Chickens and Husbandry
 4.2.2. Vaccine and Challenge Strains
 4.2.3. Experimental Trial
 4.2.4. Samplings
 4.2.5. Hemagglutination Test
 4.2.6. Hemagglutination Inhibition Test
 4.2.7. Virus Shedding Measurement
 4.2.8. Pathogenicity Scoring System
 4.2.9. Leukocytes Isolation
 4.2.10. Immunophenotyping
 4.2.11. Statistics

4.3. Results
 4.3.1. Hemagglutination Inhibition Test
 4.3.2. Mortality, Morbidity and Pathogenicity Scoring
 4.3.3. Weight
 4.3.4. Virus Shedding
 4.3.5. Immunophenotyping of Splenocytes and PBMC

4.4. Discussion

4.5. Conclusion

5 General Discussion, Conclusion and Recommendations

REFERENCES
APPENDICES
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Summary of different genotypes of class II of NDV</td>
<td>9</td>
</tr>
<tr>
<td>3.1</td>
<td>Clinical descriptions and vaccination history of samples specimen used in this study</td>
<td>23</td>
</tr>
<tr>
<td>3.2</td>
<td>Primers used for RT-PCR amplification</td>
<td>26</td>
</tr>
<tr>
<td>3.3</td>
<td>List of NDV isolates used for phylogenetic study</td>
<td>30</td>
</tr>
<tr>
<td>3.4</td>
<td>Percentage of total nucleotide (lower triangle) and amino acid (upper triangle in Bold) variations among F protein cleavage site of the 5 NDV isolates in this study, previously published genotype VII and VIII Malaysian NDV isolates and 3 different NDV vaccine isolates</td>
<td>37</td>
</tr>
<tr>
<td>3.5</td>
<td>Amino acid substitution of F gene for 5 newly isolated NDV isolates, previously published genotype VII and VIII Malaysian NDVs and 3 different NDV vaccine isolates. F cleavage site is highlighted in grey</td>
<td>39</td>
</tr>
<tr>
<td>3.6</td>
<td>Deduced amino acid sequences of the C terminus region of the HN protein of the newly isolated NDV</td>
<td>43</td>
</tr>
<tr>
<td>3.7</td>
<td>Percentage of total nucleotide (lower triangle) and amino acid (upper triangle in Bold) variations among F protein of NDV isolate IBS002, previously published genotype VIII Malaysian NDV and 3 different NDV vaccine isolates</td>
<td>47</td>
</tr>
<tr>
<td>3.8</td>
<td>Amino acid substitution of F gene for isolate IBS002, previously published genotype VIII Malaysian NDVs and 3 different NDV vaccine isolates. F cleavage site is highlighted in grey</td>
<td>48</td>
</tr>
<tr>
<td>3.9</td>
<td>Percentage of total nucleotide (lower triangle) and amino acid (upper triangle in Bold) variations among HN protein of isolate IBS002, previously published genotype VIII Malaysian NDV and 3 different NDV vaccine isolates</td>
<td>51</td>
</tr>
<tr>
<td>3.10</td>
<td>Amino acid substitution of HN gene for isolate IBS002, previously published genotype VIII Malaysian NDVs and 3 different NDV vaccine isolates</td>
<td>53</td>
</tr>
<tr>
<td>4.1</td>
<td>Newcastle disease virus vaccines used in vaccine efficacy trial</td>
<td>59</td>
</tr>
<tr>
<td>4.2</td>
<td>Primers and probes used in one-step real-time RT-PCR for evaluation of viral load</td>
<td>63</td>
</tr>
<tr>
<td>4.3</td>
<td>HI antibody level (in Log₂) using homologues and heterologous NDV antigens. Values with significance difference are marked with different alphabets with P-value < 0.05 as statistically significant relationship</td>
<td>66</td>
</tr>
<tr>
<td>4.4</td>
<td>Morbidity and mortality rates and scores of NDV vaccinated and challenged SPF chickens. Values with</td>
<td>68</td>
</tr>
</tbody>
</table>
significance difference are marked with different characters with P-value < 0.05 as statistically significant relationship

4.5 Weight of chickens in different groups following challenged with virulent NDV at 38 days-old. Values with significance difference are marked with different characters with P-value < 0.05 as statistically significant relationship

4.6 Oropharyngeal and cloacal virus shedding from vaccinated challenged chickens. Values with significance difference (P<0.05) are marked with different characters

4.7 Oropharyngeal and cloacal virus shedding from sentinel exposed chickens. Values with significance difference (P<0.05) are marked with different characters

4.8 The percentage of KUL1+, IgM+, CD3+/CD4+ and CD3+/CD8+ cells in spleen of control and vaccinated birds, before challenge (0 DPI) and at day 3 (3 DPC) and day 5 (5 DPC) post challenge. Same symbols in each graph indicates statistically significance relationship (P<0.01)

4.9 The percentage of KUL1+, IgM+, CD3+/CD4+ and CD3+/CD8+ cells in PBMCs of control and vaccinated birds, before challenge (0 DPI) and at day 3 (3 DPC) and day 5 (5 DPC) post challenge. Same symbols in each graph indicates statistically significance relationship (P<0.01)
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Newcastle disease virus structure and genomic organization</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Phylogenetic trees of Class II NDV based on 372 bp region of the fusion protein and their relation to Lineage classification</td>
<td>7</td>
</tr>
<tr>
<td>3.1</td>
<td>Schematic demonstration of allantoic cavity inoculation of NDV</td>
<td>32</td>
</tr>
<tr>
<td>3.2</td>
<td>Agarose gel electrophoresis analysis of RT-PCR detection of NDV based on NP gene. Band of the expected size, 243 bp were detected from 5 samples. Lane M: 100 bp DNA ladder, Lane M: 100 bp DNA ladder (Fermentas, USA), Lanes 1 to 6: Sample 1 to 6, respectively, Lane 7: Negative Control and Lane 8: Positive Control (NDV isolate AF2240)</td>
<td>34</td>
</tr>
<tr>
<td>3.3</td>
<td>Agarose gel electrophoresis analysis of RT-PCR for amplification of partial F gene. Band of the expected size of 535 bp were detected from all the tested samples. Lane M: 100 bp DNA ladder (Fermentas, USA), Lane 1: IBS001, Lane 2: IBS002, Lane 3: IBS003, Lane 4: IBS004, Lane 5: IBS005, Lane 6: Negative control and Lane 7: Positive control</td>
<td>35</td>
</tr>
<tr>
<td>3.4</td>
<td>Agarose gel electrophoresis analysis of RT-PCR for amplification of partial HN gene. Band of the expected size of 386bp were detected from all the tested samples. Lane M: 100 bp DNA ladder (Fermentas, USA), Lane 1: IBS001, Lane 2: IBS002, Lane 3: IBS003, Lane 4: IBS004, Lane 5: IBS005, Lane 6: Negative control and Lane 7: Positive control</td>
<td>35</td>
</tr>
<tr>
<td>3.5</td>
<td>Phylogenetic relationship among 53 published NDV isolates and 5 recent isolates based on F gene nucleotide sequence between positions 28 and 535. Sequences were obtained from GenBank. The phylogenetic tree was constructed via maximum likelihood method after 1000 bootstrap replication. Isolates in this current study are indicated by (▲) and other Malaysian genotype VII isolates are marked by (●)</td>
<td>41</td>
</tr>
<tr>
<td>3.6</td>
<td>Phylogenetic relationship among published genotype VII NDV isolates and 5 recent isolates based on F gene nucleotide sequence between positions 28 and 535. Sequences were obtained from GenBank. The phylogenetic tree was constructed via maximum likelihood method after 1000 bootstrap replication. Isolates in this current study are indicated by (▲)</td>
<td>42</td>
</tr>
</tbody>
</table>
3.7 Amino acid sequence alignment of C terminus of HN protein of different NDV isolates. Amino acid differences are donated by the single letter code with the consensus on top, and identical amino acids are indicated by a ".". Stop colon is shown by "*".

3.8 Agarose gel electrophoresis analysis of RT-PCR for amplification of full F gene. Band of the expected size, 2.4 kb was detected from IBS002 (S), 1000 bp DNA marker (Fermentas, USA) (M).

3.9 Agarose gel electrophoresis analysis of RT-PCR for amplification of full HN gene. Band of the expected size, 1.9 kb was detected from IBS002 (S), 1000 bp DNA marker (Fermentas, USA) (M).

3.10 Phylogenetic relationship among 45 published NDV isolates and isolate IBS002 based on full F gene nucleotide sequences. The phylogenetic tree was constructed via maximum likelihood method after 1000 bootstrap replication. Isolate in this current study is indicated by (▲).

4.1 Schematic flowchart of NDV vaccine efficacy trial.

4.2 A linear relationship between quantification cycle (Cq) and 10 fold serial dilution of RNA. Standard cure was generated using serially diluted RNA of IBS002.

4.3 The percentage of KUL1+ (a), IgM+ (b), CD3+/CD8+ (c) and CD3+/CD4+ (d) cells in spleen of control and vaccinated birds, before challenge (0 DPI) and at day 3 and day 5 post challenge (PC). Same symbols in each graph indicates statistically significance relationship (P<0.01).

4.4 The percentage of KUL1+ (a), IgM+ (b), CD3+/CD8+ (c) and CD3+/CD4+ (d) cells in PBMCs of control and vaccinated birds, before challenge (0 DPI) and at day 3 and day 5 post challenge (PC). Same symbols in each graph indicates statistically significance relationship (P<0.01).
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Buffer, Chemicals and Reagents</td>
</tr>
<tr>
<td>B</td>
<td>Some used techniques</td>
</tr>
<tr>
<td>C</td>
<td>ELD50 Recorded Data</td>
</tr>
<tr>
<td>D</td>
<td>MDT Recorded Data</td>
</tr>
<tr>
<td>E</td>
<td>ICPI Recorded Data</td>
</tr>
<tr>
<td>F</td>
<td>Nucleotide sequence alignment of partial F gene of 5 NDV isolates in this study and 40 previously published NDV isolates</td>
</tr>
<tr>
<td>G</td>
<td>Amino acid sequence alignment of partial F gene of 5 NDV isolates in this study and 40 previously published NDV isolates</td>
</tr>
<tr>
<td>H</td>
<td>Single, 3-letter and ambiguity codes for Amino Acids</td>
</tr>
<tr>
<td>I</td>
<td>Nucleotide sequence alignment of Full F gene from different NDV isolates</td>
</tr>
<tr>
<td>J</td>
<td>Amino acid sequence alignment of Full F gene from different NDV isolates</td>
</tr>
<tr>
<td>K</td>
<td>Nucleotide sequence alignment of Full HN gene from different NDV isolates</td>
</tr>
<tr>
<td>L</td>
<td>Amino acid sequence alignment of Full HN gene from different NDV isolates</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aa</td>
<td>Amino Acid</td>
</tr>
<tr>
<td>APMV</td>
<td>Avian Paramyxovirus</td>
</tr>
<tr>
<td>BLAST</td>
<td>Basic Local alignment Search Tool</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>dsRNA</td>
<td>Double strand Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylene-Diamine-Tetraacetic Acid</td>
</tr>
<tr>
<td>ELD₉₀</td>
<td>Mean Egg Lethal Dose</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immunosorbent assays</td>
</tr>
<tr>
<td>F</td>
<td>Fusion Protein</td>
</tr>
<tr>
<td>F₀</td>
<td>Fusion Protein 0</td>
</tr>
<tr>
<td>F₁</td>
<td>Fusion Protein 1</td>
</tr>
<tr>
<td>F₂</td>
<td>Fusion Protein 2</td>
</tr>
<tr>
<td>GIT</td>
<td>Gastrointestinal Tract</td>
</tr>
<tr>
<td>HI</td>
<td>Hemagglutination Inhibition</td>
</tr>
<tr>
<td>HN</td>
<td>Hemagglutinin-Neuraminidase</td>
</tr>
<tr>
<td>IBD</td>
<td>Infectious Bursal Disease</td>
</tr>
<tr>
<td>ICPI</td>
<td>Intra Cerebral Pathogenicity Index</td>
</tr>
<tr>
<td>IVPI</td>
<td>Intra Venus Pathogenicity Index</td>
</tr>
<tr>
<td>L</td>
<td>Large Polymerase Protein</td>
</tr>
<tr>
<td>M</td>
<td>Matrix Protein</td>
</tr>
<tr>
<td>MAB</td>
<td>Monoclonal Antibodies</td>
</tr>
<tr>
<td>MDT</td>
<td>Mean Death Time</td>
</tr>
<tr>
<td>MEGA</td>
<td>Molecular Evolutionary Genetics Analysis</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Center for Biotechnology Information</td>
</tr>
<tr>
<td>ND</td>
<td>Newcastle Disease</td>
</tr>
<tr>
<td>NDV</td>
<td>Newcastle Disease Virus</td>
</tr>
<tr>
<td>NP</td>
<td>Nucleocapsid Protein</td>
</tr>
<tr>
<td>NV-ND</td>
<td>Neurotropic Velogenic Newcastle Disease</td>
</tr>
<tr>
<td>OIE</td>
<td>Office International des Epizooties</td>
</tr>
<tr>
<td>P</td>
<td>Phosphoprotein Protein</td>
</tr>
<tr>
<td>PBMC</td>
<td>Peripheral Blood Mononuclear Cells</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>rHVT</td>
<td>Turkey Herpesvirus-based Recombinant Vaccine</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic Acid</td>
</tr>
<tr>
<td>Rpm</td>
<td>Revolutions Per Minute</td>
</tr>
<tr>
<td>RT</td>
<td>Reverse Transcription</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse Transcription-Polymerase Chain Reaction</td>
</tr>
<tr>
<td>SPF</td>
<td>Specific-Pathogen-Free</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris-Acetate-EDTA</td>
</tr>
<tr>
<td>VG/GA</td>
<td>Villegas-Glisson/University of Georgia</td>
</tr>
<tr>
<td>VV-ND</td>
<td>Viscerotropic Velogenic Newcastle Disease</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

After more than 80 years since the first discovery of Newcastle disease (ND) in England and Java (Kraneveld, 1926; Doyle, 1927) and the introduction of vaccine in 1950s to control the disease (Alexander, 2008), ND is still the most significant avian disease that continue to cause huge economical loss to the poultry industry. Because of its worldwide outbreaks and geographical spread, World Organization for Animal Health (OIE) has listed ND as a notifiable disease (OIE, 2013). The disease is caused by Newcastle disease virus (NDV), a highly infectious agent capable of causing high mortality in non-vaccinated chickens, beside the subclinical forms of ND in vaccinated and/or NDV exposure flocks which could have synergist effect with other bacterial or viral infections and cause more severe disease and bigger economic losses (Capua and Alexander, 2009).

Newcastle disease virus (NDV) is an avian paramyxovirus serotype-1 (APMV-1), a member of sub-family Paramyxovirinae of family Paramyxoviridae from virus order Mononegavirales (Mayo 2002; Fauquet and Fargette 2005). The virus has a negative sense, single stranded RNA genome which encodes for 6 genes (Lamb and Parks, 2006). Although all APMV-1 viruses are from one serotype, they share different genome structures and have been divided into different genotypes (Diel et al., 2012). NDVs are categorized based on their F gene into 2 classes. Class I NDV were mostly isolated from water fowls (Anatidae) and shore birds whilst, Class II NDVs are able to induce disease in poultry, and are divided into 10 genotypes (Miller et al., 2010). Some of virulent NDV isolates from different countries in Europe during 1990s were found not belonged into any of known genotypes by that days, hence, were classified as genotype VII NDVs (Lomniczi et al., 1998). These NDVs are believed to be originated from East-Asia (Lomniczi et al., 1998), later spread to Europe, Africa, Middle-East and South Africa (Wang et al., 2006; Bogoyavlenskiy et al., 2009). Recent studies have shown that presently genotype VII is the predominant circulating NDV in South-East Asia causing major outbreaks including in NDV vaccinated flocks (Cho et al., 2008a; Tan et al., 2010a; Yi et al., 2011; Umali et al., 2013).

Since the discovery of NDV, many efforts have been implemented to control ND in poultry industry. Beside biosecurity and good farm husbandry practices, ND is controlled through vaccination. Currently, several different vaccines are available commercially to control ND in both commercial chicken farms and backyard village chickens. Most of these vaccines belong to genotype II of class II of NDVs (Chong et al., 2010). In Malaysia, like most of other countries, farmers are utilizing low pathogenic NDVs namely lentogenic NDV such as Hitchner B1 and LaSota, as live vaccines for ND prevention. Beside these two live vaccines, other NDV vaccine strains such
are S, Ulster 2C, NDV-6/10 and enteric vaccine strain VG-GA have also been used (Aini, 2006). Various type of genetically engineered ND vaccines have been developed and tested experimentally. However, only a few recombinant NDV vaccines are available commercially, namely, herpesvirus turkey virus (HVT) based NDV vaccine (Palya et al., 2012). These vaccines have shown promising results in conferring protection against challenge with velogenic NDV.

Although it is possible to estimate vaccine efficacy through laboratory scale experiments, it would be very difficult to evaluate the vaccine efficacy in the field (Chulan et al., 1982). Hence, vaccination failure following NDV vaccination has been reported. Among the underlying factors that contribute to poor NDV vaccine induced immunity are inappropriate vaccination dose and regime, presence of concurrent infection especially immunosuppressive agents such as chicken infectious anaemia (CAV), infectious bursal disease (IBD) or Marek’s disease, nutritional deficiencies as well as mycotoxins in feed being the probably reason(s) for the break in the vaccine induced immunity (Saif, 1991; Zhang et al., 2012; Habibian et al., 2013). However, recent studies have shown that, commercial NDV vaccines provide different level of protections against challenged with different genotypes of NDV (Hu et al., 2009; Miller et al., 2009) raising the importance of relatedness between vaccine and field strains of NDV. Furthermore, it has been demonstrated that, LaSota vaccine, a genotype II NDV is not effective in reducing virus shedding and clinical signs upon challenge with genotype VII isolates compared to reverse genetic designed genotype VII vaccine (Cho et al., 2008b; Hu et al., 2009). However, the importance of virus shedding and transmission to susceptible chickens is not well defined. Numerous studies have shown that NDV vaccine was able to provide protection against mortality (disease immunity) but unable to provide sterilising immunity by preventing infection following challenged with velogenic NDV (Ezema et al., 2009; Cornax et al., 2012).

In Malaysia, since 2000, genotype VII NDV has been reported from both non-vaccinated and vaccinated chicken flocks (Maizan et al., 2001; Berhanu et al., 2010; Tan et al., 2010a). Recent survey indicated that genotype VII NDV is still circulating among the poultry flocks in Malaysia despite the extensive use of LaSota based vaccines (unpublished data). However, limited studies have been carried out in accessing the ability of genotype II (LaSota, B1, VG/GA, Avinew) (genotype mismatched vaccine) and genotype VII (genotype matched vaccine) in conferring protection against challenge with velogenic genotype VII in specific-pathogen-free (SPF) and commercial chicken flocks.

Hence, the first hypothesis of this study is that the genotype of NDV isolated from ND outbreaks from vaccinated broiler farms belongs to velogenic genotype VII that is highly pathogenic in chickens. The second hypothesis of
this study is vaccination with genotype matched NDV will provide better protection against genotype VII NDV challenge.

To address both hypotheses, the specific objectives of this study are:

- To isolate and characterize Newcastle disease virus (NDV) from Newcastle disease outbreaks originated from NDV vaccinated farms based on biological and molecular analysis.

- To investigate the efficacy of genotype matched and genotype mismatched NDV vaccines against velogenic genotype VII challenge in specific-pathogen-free chickens based on serological, biological and immunological analysis.
REFERENCES

vaccines upon challenge with highly virulent virus from the California 2002 exotic Newcastle disease outbreak." Vaccine 23(26): 3424-3433.

Lomniczi, B., E. Wehmann, J. Herczeg, A. Ballagi-Pordany, E. Kaleta, O. Werner, G. Meulemans, P. Jorgensen, A. Mante and A. Gielkens (1998). "Newcastle disease outbreaks in recent years in western Europe were caused by an old (VI) and a novel genotype (VII)." Archives of Virology 143(1): 49-64.

OIE (2012). Newcastle disease. OIE Terrestrial Manual, OIE.

Rosseel, T., B. Lambrecht, F. Vandenbussche, T. Van Den Berg and S. Van Borm (2011). "Identification and complete genome sequencing of paramyxoviruses in mallard ducks (Anas platyrhynchos) using

Singh, K. V. and A. El-Zein (1978). "Viral proliferation patterns of a velogenic (VLT), a mesogenic (Komarov), and a lentogenic (F) strain of Newcastle disease virus." Poultry Science 57(6): 1563-1566.

