UNIVERSITI PUTRA MALAYSIA

MECHANICAL PROPERTIES OF PULTRUDED KENAF FIBRE
REINFORCED VINYL ESTER COMPOSITES

MOHD FAIRUZ BIN ABD MANAB

FK 2016 18
MECHANICAL PROPERTIES OF PULTRUDED KENAF FIBRE REINFORCED VINYL ESTER COMPOSITES

By
MOHD FAIRUZ BIN ABD MANAB

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

June 2016
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

MECHANICAL PROPERTIES OF PULTRUDED KENAF FIBRE REINFORCED VINYL ESTER COMPOSITES

By

MOHD FAIRUZ BIN ABD MANAB

June 2016

Chairman: Professor Mohd Sapuan Salit, PhD, P.Eng
Faculty: Engineering

Pultrusion is one of the polymer composite fabrication processes employing the combination of pulling and extrusion processes. The composite profiles are obtained by pulling resin impregnated fibres through a series of heated dies. The ability of pultrusion technique that supports high volume of fibre fraction produces the high stiffness of the composite profile. There are many parameters such as filler loading, mold temperature and pulling speed to be considered and controlled during pultrusion process. In the research, the studies on the optimal parameters that influence the mechanical properties of pultruded kenaf composites revealed that the pulling speed has the highest influence in the fabrication process which is 49.3% of the contribution. The combination of the optimal parameters was obtained from Analysis of Variance (ANOVA) are pulling speed 0.4 m/min, gelation temperature 120°C, curing temperature 180°C and filler loading 30% of the weight. The investigation of the effect of filler loading on mechanical properties of pultruded kenaf composites shown the highest tensile strength was obtained when the filler loading reached at 50%, flexural strength at 30%, flexural modulus at 50% and compressive strength at 40%. The studies on the effect of gelation and curing temperatures shows the optimum tensile strength of gelation and curing temperatures were at 100°C and 140°C respectively, tensile modulus 80°C and 180°C respectively, flexural strength 100°C and 140°C, flexural modulus 120°C and 180°C and compressive strength at 120°C and 180°C respectively. The investigation of the effect of pulling speed on the mechanical properties of pultruded kenaf composites shows the optimal pulling speed for tensile strength and compressive strength is 0.3 m/min, tensile modulus 0.1 m/min, flexural strength 0.4, flexural modulus 0.2 m/min. The effect of filler loading, gelation and curing temperatures and pulling speed on tensile properties of composites was observed morphologically in the micrograph images of tensile fractured samples. Fibre wetting, fibre and matrix adhesion, the gaps within the samples and fibre breakages were among the phenomena occurring in the composites.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

SIFAT MEKANIKAL KEPADA KOMPOSIT BERPULTRUD VINIL ESTER DIPERKUATKAN DENGAN GENTIAN KENAF

Oleh

MOHD FAIRUZ BIN ABD MANAB

Jun 2016

Pengerusi : Professor Mohd Sapuan Salit, PhD, P.Eng
Fakulti : Kejuruteraan

Pultrusi adalah salah satu process fabrikasi komposit menggabungkan kaedah penarikan dan penolakan. Profil komposit gentian dihasilkan dengan disaluti resin melalui acuan panas secara bersiri. Keupayaan teknik pultrusi mampu menampung kepadatan gentian yang tinggi menghasilkan profil komposit yang berkeliatan tinggi. Terdapat banyak parameter yang diambil kira dalam penghasilan komposit menggunakan kaedah pultrusi iaitu, muatan pengisi, suhu acuan dan kelajuan penarik. Dalam tesis ini, pengoptimuman parameter komposit pultrusi vinil ester diperkuatkan dengan kenaf telah dijalankan. Dalam penyelidikan ini, kajian kepada parameter-parameter optimum yang mempengaruhi sifat-sifat mekanik komposit kenaf pultrusi mendedahkan bahawa kelajuan penarik mempunyai pengaruh yang paling tinggi dalam proses fabrikasi iaitu 49.3% daripada sumbangan. Gabungan parameter-parameter yang optimum diperoleh daripada Analisis Varians (ANOVA) adalah kelajuan penarik 0.4 m/min, suhu mengejel 120°C, suhu pengerasan 180°C dan pembbebanan pengisi 30% daripada berat. Siasatan kesan pebebanan pengisi ke atas sifat-sifat mekanikal komposit kenaf berpultrudi menunjukkan kekuatan tegangan tertinggi diperolehi apabila bebanan pengisi mencapai pada 50%. kekuatan lenturan pada 30%, keliatan lenturan pada 50% dan kekuatan mampatan pada 40%. Kajian mengenai kesan suhu mengejel dan mengeras menunjukkan kekuatan tegangan yang optimum bagi suhu mengejel dan mengeras masing-masing berada pada 100°C dan 140°C, keliatan tegangan masing-masing pada 80°C dan 180°C, keliatan lenturan masing-masing pada 100°C dan 140°C, keliatan lenturan masing-masing pada 120°C dan 180°C dan keliatan mampatan masing-masing pada 120°C dan 180°C. Siasatan kepada kesan kelajuan penarik pada sifat-sifat mekanikal komposit kenaf berpultrudi menunjukkan kekuatan tegangan dan kekuatan mampatan yang optimum adalah ketika penarik berada pada kelajuan 0.3m/min, keliatan tegangan pada 0.1m/min, kekuatan lenturan 0.4 m/min, keliatan lenturan 0.2m/min . Kesan bebanan pengisi, suhu mengejel dan mengeras dan kelajuan penarik kepada sifat tegangan komposit diperhatikan morfologi dalam imej mikrograf sampel tegangan patah. Kebasahan gentian, kelekatan antara gentian dan matriks, jurang dalam sampel dan putusnya gentian adalah antara fenomena yang berlaku dalam komposit.
ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and the Most Merciful.

Alhamdulillah, all praise to Allah for the strengths and His blessing in completing this thesis. First and foremost, I wish to express my special appreciation and thanks to Prof. Ir. Dr. Mohd Sapuan Salit, Chairman of the Supervisory Committee for his dedications and overwhelming guidance throughout the completion of the research. I am also very thankful to the members of the Supervisory Committee: Assoc. Prof. Dr. Edi Syams Zainudin and Dr. Che Nor Aiza Jaafar for your most valuable contributions and assistances in this research. I also wish to extend my deepest gratitude to Kementerian Pendidikan Malaysia for providing the opportunity and supports especially through the financial scholarship (MyPhD) in pursuing my doctoral study.

Last but not least, I wish to dedicate my heartiest thanks to my beloved mother: Zainab bt Daud, family members and dearest friends for your precious encouragements and endless supports given throughout the entire course of my study. To my beloved wife Nur Marliana Mohamad and my precious children Muhammad Muaz and Muhammad Ziyad: Thank you for everything and this is for all of you.
I certify that a Thesis Examination Committee has met on 7 June 2016 to conduct the final examination of Mohd Fairuz b Abd Manab on his thesis entitled "Mechanical Properties of Pultruded Kenaf Fibre-Reinforced Vinyl Ester Composites" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Mohd Khairol Anuar bin Mohd Ariffin, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Faizal bin Mustapha, PhD
Associate Professor Ir.
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Zulkiflle bin Leman, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Faiz Mohammad, PhD
Professor
Aligarh Muslim University
India
(External Examiner)

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 3 November 2016
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Mohd Sapuan Salit, PhD
Professor Ir
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Edi Syams Zainudin, PhD
Associate Professor
Faculty of Engineering,
Universiti Putra Malaysia
(Member)

Che Nor Aiza Jaafar
Senior Lecturer
Faculty of Engineering,
Universiti Putra Malaysia
(Member)

BUJANG KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: __________________ Date: __________________

Name and Matric No.: MOHD FAIRUZ ABD MANAB, GS32755
Declaration by Members of Supervisory Committee

This is to confirm that:

• the research conducted and the writing of this thesis was under our supervision;
• supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: _____________________

Name of Chairman of Supervisory Committee:

Prof. Ir. Dr. Mohd Sapuan Salit

Signature: _____________________

Name of Member of Supervisory Committee:

Assoc. Prof. Dr. Edi Syams Zainudin

Signature: _____________________

Name of Member of Supervisory Committee:

Dr. Che Nor Aiza Jaafar
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xi</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION
1.1 Research background | 1 |
1.2 Problem statements | 2 |
1.3 Research aim and objectives | 3 |
1.5 Structure of the thesis | 3 |

2 LITERATURE REVIEW
2.1 Introduction | 4 |
2.2 Polymer | 4 |
2.1.1 Thermoset resin | 4 |
2.3 Natural fibre | 5 |
2.3.1 Kenaf fibre | 5 |
2.4 Composites | 6 |
2.4.1 Kenaf composites | 7 |
2.4.2 Bioresin composites | 7 |
2.5 Pultrusion process | 7 |
2.5.1 Manufacturing of pultruded composites | 8 |
2.5.2 Pultruded composites application | 12 |
2.6 Pultruded parameters | 14 |
2.7 Mechanical properties of pultruded composites | 17 |
2.8 Summary | 20 |

3 METHODOLOGY
3.1 Introduction | 21 |
3.2 Pultruded kenaf composites samples preparation | 22 |
3.3 Design of experiment | 22 |
3.3.1 Orthogonal array | 22 |
3.3.2 Analysis of variance (ANOVA) | 23 |
3.3.2.1 The best combination of parameters | 23 |
3.3.2.2 Percentage contribution of parameters 23
3.4 Mechanical testing 24
 3.4.1 Tensile test 24
 3.4.2 Flexural test 24
 3.4.3 Compressive test 24
3.5 Scanning electron microscopy 25

4 OPTIMIZATION OF PULTRUSION PROCESS FOR KENAF REINFORCED VINYL ESTER COMPOSITES
Copyright Permission 26
Article 1 27

5 THE EFFECT OF FILLER LOADING ON MECHANICAL PROPERTIES OF PULTRUDED KENAF REINFORCED VINYL ESTER COMPOSITES
Acceptance Letter 33
Article 2 34

6 THE EFFECT OF GELATION AND CURING TEMPERATURES ON MECHANICAL PROPERTIES OF PULTRUDED KENAF FIBRE REINFORCED VINYL ESTER COMPOSITES
Copyright Permission 46
Article 3 47

7 THE EFFECT OF PULLING SPEED ON MECHANICAL PROPERTIES OF PULTRUDED KENAF REINFORCED VINYL ESTER COMPOSITES
Acceptance Letter 62
Article 4 63

8 DISCUSSION CHAPTER TO ANSWER THE QUESTION/IMPROVE THE PAPER 77

9 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK
 8.1 Conclusions 80
 8.2 Recommendations for future work 81

REFERENCES 82
BIODATA OF THE AUTHOR 99
LIST OF PUBLICATIONS 100
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>L9 orthogonal array for pultruded kenaf fibre reinforced vinyl ester composites</td>
</tr>
<tr>
<td>4.1</td>
<td>L9 orthogonal array for pultruded kenaf fibre reinforced vinyl ester composites</td>
</tr>
<tr>
<td>4.2</td>
<td>Flexural modulus and S/N results for pultruded kenaf reinforced vinyl ester composites</td>
</tr>
<tr>
<td>4.3</td>
<td>The effect of factors at different levels for pultruded kenaf reinforced vinyl ester composites</td>
</tr>
<tr>
<td>4.4</td>
<td>The effect of factors for the optimization of pultruded kenaf reinforced vinyl ester composite.</td>
</tr>
<tr>
<td>5.1</td>
<td>Properties of vinyl ester resin (Swancor 901-3)</td>
</tr>
<tr>
<td>5.2</td>
<td>Composites filler/matrix compositions</td>
</tr>
<tr>
<td>6.1</td>
<td>Data of pultruded kenaf composites</td>
</tr>
<tr>
<td>6.2</td>
<td>Pultruded kenaf composite samples at different gelation and curing temperatures</td>
</tr>
<tr>
<td>7.1</td>
<td>Properties of vinyl ester resin (Swancor 901-3)</td>
</tr>
<tr>
<td>7.2</td>
<td>Data of pultruded kenaf composites</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Various forms of kenaf fibre (Dan-mallam et al., 2014).</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>Kenaf tree (Fasanella, 2012)</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Kenaf fibre (Hazel, 2007)</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>Basic schematic diagram of pultrusion process (Baran et al., 2013a;2013b)</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td>Fibre creel (Senawi, 2012)</td>
<td>9</td>
</tr>
<tr>
<td>2.5</td>
<td>Guide plate for fibre yarn (Black, 2009)</td>
<td>10</td>
</tr>
<tr>
<td>2.6</td>
<td>Composites before entering heated die (Senawi, 2012)</td>
<td>10</td>
</tr>
<tr>
<td>2.7</td>
<td>Heated die with heater block and thermocouple sensors (Senawi, 2012)</td>
<td>11</td>
</tr>
<tr>
<td>2.8</td>
<td>Fully cured pultruded composite after leaving the heated die. (Senawi, 2012)</td>
<td>11</td>
</tr>
<tr>
<td>2.9</td>
<td>Pultruded composite profile puller (Pultrex LTD, 2015)</td>
<td>12</td>
</tr>
<tr>
<td>2.10</td>
<td>Pultruded composite profile puller (Pultrex LTD, 2015)</td>
<td>12</td>
</tr>
<tr>
<td>2.11</td>
<td>Pultruded composite step ladder (Senawi, 2014)</td>
<td>13</td>
</tr>
<tr>
<td>2.12</td>
<td>Pultruded composite grating holder (Senawi, 2014)</td>
<td>13</td>
</tr>
<tr>
<td>3.1</td>
<td>The methodology of research flows.</td>
<td>21</td>
</tr>
<tr>
<td>5.1</td>
<td>Production of kenaf reinforced vinyl ester composite rod:</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Resin impregnated fibres were pulled through a guide plate before entering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a heated die (Senawi, 2012)</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>Testing of compressive strength of a pultruded kenaf composite</td>
<td>40</td>
</tr>
<tr>
<td>5.3</td>
<td>The effect of filler loading on tensile strength of pultruded kenaf composites</td>
<td>41</td>
</tr>
<tr>
<td>5.4</td>
<td>The effect of filler loading on tensile modulus of pultruded kenaf composites</td>
<td>41</td>
</tr>
<tr>
<td>5.5</td>
<td>Flexural strength of pultruded kenaf composites with different filler loadings</td>
<td>42</td>
</tr>
<tr>
<td>5.6</td>
<td>Flexural modulus of pultruded kenaf composites with different filler loadings</td>
<td>43</td>
</tr>
<tr>
<td>5.7</td>
<td>Compressive strength of pultruded kenaf composites with different filler loadings</td>
<td>43</td>
</tr>
<tr>
<td>5.8</td>
<td>Scanning electron micrographs (SEM) of pultruded kenaf composites for (a) 30%</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>filler loading (b) 50% filler loading</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Illustration of the pultrusion process</td>
<td>49</td>
</tr>
<tr>
<td>6.2</td>
<td>Schematic view of a pultrusion process and the presentation of</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>the phase change of thermosetting composites inside the heating die (Star, 2000)</td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>Pultrusion process to produce kenaf vinyl ester composite specimens</td>
<td>53</td>
</tr>
<tr>
<td>6.4</td>
<td>The effect of gelation and curing temperatures on tensile strength of</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>pultruded composites</td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td>The effect of gelation and curing temperatures on tensile modulus of</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>pultruded composites</td>
<td></td>
</tr>
<tr>
<td>6.6</td>
<td>The effect of gelation and curing temperatures on flexural strength of</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>pultruded composites</td>
<td></td>
</tr>
</tbody>
</table>
6.7 The effect of gelation and curing temperatures on flexural modulus of pultruded composites 58
6.8 The effect of gelation and curing temperatures on compressive strength of pultruded composites 58
6.9 The effect of gelation and curing temperatures on compressive strength of pultruded composites 59
6.10 SEM image of samples with different curing temperatures; (a) 140ºC and (b) 180ºC 61
7.1 Examples of pultruded glass fibre composite products (Senawi 2012) 64
7.2 Main part of pultrusion process 67
7.3 Impregnation of kenaf fibre in the resin bath. 67
7.4 Fibre guide plate 68
7.5 Tube profile fibre formation before entering the heated die 68
7.6 Schematic of heated mould 68
7.7 The effect of pulling speed on tensile strength of pultruded composites 70
7.8 The effect of pulling speed on tensile modulus of pultruded composites 71
7.9 The effect of pulling speed on the flexural strength of pultruded 72
7.10 The effect of pulling speed on flexural modulus of pultruded composites. 73
7.11 The effect of pulling on compressive strength of pultruded composites 74
7.12 SEM image of samples with different pulling speeds; (a) 0.3 m/min and (b) 0.1 m/min 75
7.13 SEM image of samples with different pulling speed; (a) 0.3 m/min and (b) 0.5 m/min 76
8.1 The mean of Signal to Noise (S/N) ratio of filler loading level 77
8.2 The mean of Signal to Noise (S/N) ratio of gelation temperature level 78
8.3 The mean of Signal to Noise (S/N) ratio of curing temperature level 78
8.4 The mean of Signal to Noise (S/N) ratio of pulling speed level 79
CHAPTER 1

INTRODUCTION

1.1 Research background

Recently, there is great awareness within the society on the issues of sustainability and environmental friendliness. As far as composite technology is concerned, these issues are addressed partly by introducing natural fibres in polymer matrices. Natural fibres offer many features that are not found in conventional fibres (glass and carbon fibres) such as recyclability, biodegradability, abundance, low cost, and low processing energy consumption (Sapuan et al., 2003; Sastra et al., 2006; Rashdi et al., 2009;). Earlier past research works have shown that there are many natural fibres such as coir, hemp, jute, kenaf, sugar palm, pineapple leaf, and banana stem demonstrated the ability to replace the conventional fibres. Natural fibres have been developed as reinforcements or fillers in biocomposites. Studies on chemical, physical, mechanical and thermal properties of the natural fibres show very encouraging results, which made them suitable for reinforcements and fillers in polymer composites.

Kenaf fibre is one of natural fibres that have been spotted to be the replacement for conventional fibres such as aramid, glass and carbon fibres. Kenaf plants can be grown in short period, and can be found in abundance in countries such as India, Pakistan, Indonesia, Japan, China, Thailand, Vietnam and Malaysia (Ashori et al., 2006). These plants can be harvested twice a year.

Kenaf fibre composites had been developed and investigated over two decades by many researchers (El-Shekeil et al., 2012; Hamma et al., 2014; Intan et al., 2014; Saba et al., 2015; Yahya et al., 2016) and the fibres can be made into various forms such as woven and non-woven mats, short fibres, particles and twisted yarns (see Figure 1.1). Kenaf fibre composites have been widely commercialized and used in various industries capitalizing various fabrication processes such as compression moulding, extrusion, pultrusion and injection moulding.

One of the established composite manufacturing technologies is pultrusion process. This process combines pulling and extrusion method to form continuous pultruded composite profiles. Pultrusion process is currently dominated by glass fibre composites and they can be found in various applications such as in civil structures, marines, sporting goods, and oil and gas industries. The fibre fraction of pultruded composites can be as high as up to 70% (Nosbi et al., 2010) and this produced high stiffness profile and reduced total material cost. In pultrusion process high pressure is normally applied to the composite parts and this ensures better impregnation and fibre wetting, thus producing high quality pultruded composite profiles compared other composite fabrication methods.
The availability of kenaf fibres in the form of twisted yarn provides the advantage for the materials to be used in pultrusion process. In the past, investigation on the pultrusion process using natural fibre composites had been carried out by Akil et al., 2009a; Zamri et al., 2014; Mazuki et al., 2011; Nosbi et al., 2011; Omar et al., 2010; Safiee et al., 2011; Affzan et al., 2011 and the works offer promising findings.

![Various forms of kenaf fibre](image)

Figure 1.1: Various forms of kenaf fibre (Dan-mallam et al., 2014)

1.2 Problem statements

Composite fabrication using pultrusion technique needs a proper preparation to produce a high quality product. The defected or uncured pultruded composite profiles occurred during the pultrusion process can be eliminated through proper temperature setting and correct pulling speed. However, it is a challenging task to determine the optimal parameter levels due to different types of fibres and matrices that have been used in the fabrication of composites using the pultrusion process.

The success in the pultrusion process requires a knowledge of the polymerization of the matrix (Sarrionandia et al., 2002). Hence, the optimum level of parameters in pultrusion process need to be defined and investigated in order to produce quality products. The analysis of the variance is a tool used to predict the optimum level of parameters and to determine the best combination of the parameters in pultruded composites. The parameters that have been spotted to be very important during the pultrusion process are filler loading, fibre loading, gelation and curing temperatures, and pulling speed. Earlier research works on the determination of optimum level of parameters in pultruded composite process had been carried out by Chen and Ma et al., (1994); Liu and Hillier, (1999); Liu et al., (2000); Coelho and Calado, (2002); Lam et al., (2003). The results of the optimization show there are correlation between the parameter and properties of the pultruded composites. The most of the contribution
parameter is the thermal behaviour which is effect the gelation and curing temperatures. The pulling speed also been studied to analysis the effect of the pulling rate on the pressure behaviour of the pultruded composites.

Since the previous works were still lacking in one aspect or another, the current work is proposed this research focusing mainly on the optimization of parameters, the effect of various parameters such as filler loading, gelation and curing temperatures and pulling speed of the pultruded kenaf reinforced vinyl ester composites. The effect of exposure to outdoor on mechanical properties of pultruded kenaf fibre reinforced vinyl ester composites also been propose to determine the degradation behavior of the pultruded kenaf composites.

1.3 Research aim and objectives

The aim of this research is to determine the effect of various parameters on the mechanical performance of pultruded kenaf reinforced vinyl ester composites. The specific objectives of this research are:

1. To determine the optimal parameter level of pultruded kenaf fibre reinforced vinyl ester composites.
2. To investigate the effect of filler loading on mechanical properties of pultruded kenaf fibre reinforced vinyl ester composites.
3. To investigate the effect of gelation and curing temperatures on mechanical properties of pultruded kenaf reinforced vinyl ester composites.
4. To investigate the effect of pulling speed on mechanical properties of pultruded kenaf fibre reinforced vinyl ester composites.

1.4 Structure of the thesis

A literature reviews of research work in various areas relevant to this research is presented in Chapter 2. The review started with polymer composites used in engineering products. The reviews also cover the natural fibre and kenaf, their composites and past research on pultruded natural fibre composites. The method of the composite fabrication using the pultrusion process is presented along with review of level of parameters during processing. Mechanical properties of pultruded composites have also been presented. The methodology of the research is presented in Chapter 3. The optimization of pultruded kenaf fibre reinforced vinyl ester composites is described in Chapter 4. The effect of filler loading on mechanical properties of pultruded kenaf reinforced vinyl ester composites is described in Chapter 5. The effect of gelation and curing temperatures on mechanical properties of pultruded kenaf reinforced vinyl ester composites is described in Chapter 6. The effect of pulling speed on mechanical properties of pultruded kenaf reinforced vinyl ester composites is described in Chapter 7. The discussion related to objective paper are presented in Chapter 8. Conclusions and recommendations for future work are presented in Chapter 9.
REFERENCES

Science and Technology 2014 & 4th Postgraduate Seminar on Natural Fibre Composites 2014, 28th January, Putrajaya, Malaysia, pp 116-120

Star TF, Pultrusion for Engineers. CRC Press; Boca Raton, 2000.

