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AN OPTIMIZED ENSEMBLEFOR PREDICTING RESERVOIR ROCK 

PROPERTIES IN PETROLEUM INDUSTRY 

By 

SEYED ALI JAFARI KENARI 

 

October 2013 

 

Chairman:     SyamsiahMashohor, PhD 

Faculty:          Engineering 

 

The estimation of initial hydrocarbon in place before investing in development and 

production is the main objective in petroleum industry. Porosity, permeability and 

water saturation are the most important key variables to quantitatively describe 

petroleum reservoir. However, identification of these parameters which relies on core 

data analyses is expensive and time consuming. A lot of researches have been done 

to predict the reservoir parameters using well log data through applying various 

methods. 

 

To predict theaforementioned parameters, we need a method with high accuracy, 

good generalization, fast and low in cost. In the present thesis, we proposed a new 

method named optimized ensembleto improve the prediction of these reservoirs 

parameters from well log data with the aid of available core data. 

Ensemble is a learning algorithm that combines some experts instead of considering 

a single best expert for the predictions.The thesis proposed anoptimizing method 

leading to small structure of assemble GA. 

  

After constructing suitable ensemble members, we need to combine them with a 

propermethod to improve the accuracy.So, we proposed two combining methods to 

improve the prediction accuracy while maintaining the generalization. The first 

method isbased on fuzzy genetic algorithm to overcome the premature convergence. 

The second method is based on two other functions instead of traditional fitness 

function in genetic algorithmnamely MSE to determine the individual's weight in an 

ensemble.This approach is based on Huber and Bisquare functions which are meant 

to avoid the influence of outliers that can be found in many real data such as 

geosciences data.  

 

In the present thesis, we implemented our method for predicting these three most 

important reservoir parameters namely porosity, permeability and water 
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saturation.The real field data is obtained from Iranian offshore and onshore oil fields. 

A total of 3695 data points from the 5 wells having conventional well log data and 

core data were used. Threeperformance measurements for analysing and comparing 

the predicted results and target values including correlation coefficient (R),Root 

Mean Squared Error (RMSE) and related RMSE were selected.  

 

The results on pruning method show that the memory requirements for porosity, 

permeability and water saturation decreased to 68.75, 68.75 and 81.25 percent 

respectively.The results on pruned ensemble with FGA based weighted averaging 

also show that triple performance measure (RMSE, RRMSE, R/R
2
) improved (9.95, 

12.50, 1.16) percentfor porosity, (6.6, 16.21, 1.17) percentfor permeability and 

(37.56, 28.08, 1.52) percentfor water saturation in comparison to the whole 

ensemble.A comparison results between the Huber and MSE based GA show that 

that triple performance measure (RMSE, RRMSE, R
2
) improved (17.3, 25.2, 1.0) 

percent for the permeability data set. 
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ABSTRAK 

Abstraktesis yang dikemukakankepadaSenatUniversiti Putra Malaysia 

sebagaimemenuhikeperluanuntukijazah Master Sains 

 

 

SATU KESATUAN YANG DIOPTIMUMKAN UNTUK MERAMAL SIFAT 

BATUAN TAKUNGAN DALAM INDUSTRI PETROLEUM 

 

Oleh 

SEYED ALI JAFARI KENARI 

Oktober2013 

 

Pengerusi:     SyamsiahMashohor, PhD 

Fakulti:          Kejuruteraan 

 

Anggaran awal hidrokarbon pada peringkat sebelum melabur dalam pembangunan 

dan pengeluaran merupakan objektif utama dalam industri petroleum. Keliangan, 

kebolehtelapan dan ketepuan air merupakan pembolehubah utama paling penting 

dalam menerangkan takungan petroleum secara kuantitatif. Walau bagaimanapun, 

mengenal pasti parameter ini yang bergantung kepada analisis data teras adalah 

mahal dan memakan masa. Banyak kajian telah dijalankan  untuk menganggar 

parameter takungan dengan menggunakan log data telaga minyak menerusi pelbagai 

kaedah. 

 

Untuk meramal parameter tersebut, kami memerlukan kaedah yang kukuh dengan 

ketepatan yang tinggi, generalisasi yang baik, cepat dan dengan kos yang rendah. Di 

dalam tesis ini, kami mencadangkan kaedah baru yang dinamakan optimized 

ensemble bagi menganggar parameter takungan ini daripada log data telaga minyak 

dengan bantuan data teras yang sedia ada. 

 

Ensemblemerupakan algoritma pembelajaran yang menggabungkan banyak 

kepakaran berbandinghanya mempertimbangkan satukepakaran tunggal yang terbaik 

untuk ramalan. Tesis ini mencadangkan kaedah paling optimum berdasarkan genetic 

algorithm yang dapat mengurangkan keperluan memori dan masa ramalanyang 

biasanya berlaku di dalam ensemble yang biasa. 

 

Setelah mendapatkan ahli ensembleyang sesuai, kami perlu menggabungkannya 

dengan kaedah yang betul bagi meningkatkan ketepatan. Oleh itu, kami 

mencadangkan dua kaedah penggabungan untuk meningkatkan ketepatan ramalan 

disamping mengekalkan generalisasi. Kaedah yang pertama adalah berdasarkan fuzzy 

genetic algorithm untuk mengatasi penumpuan pramatang. Kaedah kedua ialah 

berdasarkan dua fungsi kukuh dan bukannya fungsi kecergasan tradisional dalam 

genetic algorithm untuk mengenalpasti berat individu dalam sesuatu ensemble. 
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Pendekatan adalah berdasarkan fungsi Huber dan Bisquare yang mana untuk 

mengelak pengaruh unsur luaran yang boleh didapati di pelbagai data sebenar seperti 

data geosains. 

 

Di dalam tesis ini, kami mengaplikasikan kaedah kami untuk meramal tiga parameter 

takungan yang paling penting ini. Data sebenar diperoleh daripada medan minyak di 

luar pesisir dan di pantai Iran. Sebanyak 3695 titik data daripada 5 telaga minyak 

yang mempunyai log data telaga yang konvensional dan data teras telah digunakan. 

Tiga kaedah pengukuran untuk menganalisis dan membandingkan hasil ramalan dan 

data sasaran termasuk pekalikorelasi (R),  Min Ralat Kuasa Dua (RMSE) dan RMSE 

yang berkaitan telah dipilih.  

 

Hasil menunjukkan bahawa kaedah yang kami cadangkan ini memberikan pekali 

korelasi yang tertinggi dan RMSE dan RMSE berkaitan yang paling rendah 

berbanding dengan pakar tunggal dan menghasilkan ketepatan yang signifikan bagi 

ramalan-ramalan ini. Keputusan pada kaedah mencantas menunjukkan bahawa 

keperluan memori untuk keliangan, kebolehtelapan dan air tepu menurun kepada 

(68.75, 68.75 dan 81.25) peratus. Keputusan pada kaedah mencantas menunjukkan 

bahawa keperluan memori untuk keliangan, kebolehtelapan dan air tepu menurun 

kepada (68.75, 68.75 dan 81.25) peratus. Satu perbandingan keputusan antara Huber 

dan MSE berasaskan GA menunjukkan  bahawa tiga ukuran prestasi (RMSE, 

RRMSE, R
2
) bertambah baik  kepada (17.3, 25.2, 1.0) peratus bagi kebolehtelapan 

set data. 
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CHAPTER 1 

1. INTRODUCTION 

1.1 Background 

Reliable predictions of reservoir rock properties such as porosity, permeability and 

water saturation are very important in the evaluation of hydrocarbon accumulations 

in a petroleum reservoir. Porosity is described as the ratio (usually expressed as a 

percentage) of the aggregate volume of all pores or interstices in a rock over its total 

volume. Porosity can be split into two sections named connected and unconnected 

porosity. The connected porosity means that the fluids can flow into the rock, 

whereas in unconnected porosity the fluids cannot flow. Permeability is another most 

important parameter for the petroleum reservoirs evaluation. It is defined as the 

capacity of a rock or other porous media for transmission of the fluid. The standard 

unit for permeability is Darcy (D). Depending on the available data, permeability can 

be determined by three methods including: well test and core analysis in laboratory, 

and well logging data. Fluid saturation is defined as the fraction of pore space which 

is filled with fluid (oil, water or gas). Therefore, water saturation means the fraction 

of this space filled by water which is between 0 and 1. 

 

Core analysis data, may not be possible for all boreholes, and in many soft and 

friable rocks is only feasible in a few intervals of the borehole. The well testing also 

provides some information to determine average permeability, thickness, initial 

pressure and etc. However, both well test and core analysis methods are expensive to 

obtain and takea lot of time to be implemented. The estimation of some reservoir 

characterizations can be done by using well log data anda limited number of core 

data. During all phases of a well development, well logging has been done for almost 

all wells. Many investigations have been conducted to predict reservoir parameters 

such as porosity, permeability and water saturation using well log dataand a limited 

core data. Nowadays, there are various types of logging tools to serve the variety of 

information that we need. Some of the most important well logging tools are 

Spontaneous Potential (SP), Resistivity Log (HLLD, HLLS), Sonic Logs (DT), 

Gamma Ray Log (GR), Neutron Log (NPHI), Density Log (RHO), Caliper log(Cali 

x) and Nuclear Magnetic Resonance (NMR) Logging.Several techniques have been 

used to infer reservoir properties from well logging data including empiricalformula, 

proper cross plot, and a wide range of Artificial Intelligence (AI) techniques. 

 

1.2 Problem Statement 

One of the most important objectives in the petroleum industry is to obtain an 

accurate estimation of the hydrocarbon in place before the exploration or production 

stages. Accurate determination of reservoir characterizations such as 

porosity,permeability and saturation are very helpful for evaluating and designing 

any development plan for production of the field. However, despite its importance, 

estimating such parameters through the reservoir is not a trivial task and is normally 

obtained by core analysis and well test methods, which are costly and time-

consuming tasks. Almost all of the methods utilized for predicting reservoir rock 
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properties are still not sufficiently reliable when working with the real noisy data 

from petroleum industry. Therefore,it is significantand beneficial to propose an 

accurate method for predicting reservoir properties based on well log data (which are 

available in all of the wells) in petroleum industry.Hence, a study to utilize 

acollection of different machine learning techniquesso that the method is capable to 

predict reservoir parameters with an improved accuracy rather than the single expert 

alone should be made.  

 

The firstlimitation of the existing methods that estimate the petrophysical properties 

based on ensemblemethod is that the individual members are selected only based on 

their accuracy level.It means theydidn't pay any attention to diversity that is 

important issue in ensemble. The academic and experimental study in ensemble 

methods significantly shows that this machine learning technique will be effective if 

their members are both diverse and accurate.The second drawback is that genetic 

algorithm is often used combining method to determine the weights of each 

individualmember in reservoir prediction research. Premature convergence is one of 

the main limitations of Genetic Algorithm (GA)which means the sampling process 

converges on a local optimum rather than the global. 

 

Ensemble pruning is a very important additional stage in designing an ensemble 

because of its capability to overcome the disadvantages of this machine learning 

technique. The related limitations are:occupying extra memory, necessitating 

computational overhead and sometimes decreasing effectiveness. The overall 

performance of anensemble may also create negative effects due to the existence of 

some experts with low predictive performance.Therefore, the purpose of this stage is 

finding an optimum subset of individual members that performs as well as, or better 

than, the original ensemble.In an ensemble, it is expected that differentmembers 

converge to differentlocal minima on the error surface with the aim of improving 

performance. Hence, further research on finding an optimal subset of individuals 

byensemble pruning to achieve accuracy and diversity has to be made.  

 

Many researches have been conducted to find combining methods to combine the 

output of the experts and produce the final outputs. Some of them are: simple 

averaging, weighted averaging and majority voting. The most significant method for 

calculating the weight of each expert in regression or approximation function is based 

on GA.  

 

Another problem todetermine the weight of each individual member is utilizing 

Mean Square Error (MSE) or Least Square Error (LS) as fitness function in genetic 

algorithm. Unfortunately, this popular objective function can perform badly when the 

error distribution is not normal. Therefore, a study toovercome this limitation has to 

be made. 

 

1.3 Research Aim and Objectives 

This thesis intends to propose anoptimized ensemble method to improve the 

prediction accuracy of the reservoir rock parameters such as porosity, permeability 

and water saturation by utilizing the well log data which are available from most 

wells in the field and a limited core data. Thedetailed objectives are as follows:   



© C
OPYRIG

HT U
PM

3 

 

 

a) To propose a genetic algorithm method for ensemble pruning based on semi 

definite programming problem to improve the generalization, fast and low in 

cost in comparison to the whole ensemble. 

 

b) To propose a combining method based on fuzzy genetic algorithm to overcome 

the premature convergence and implement it for improving the prediction of 

reservoir parameters. 

 

c) To propose a genetic algorithm based combining method by using Huber and 

Bisquare as the fitness function instead of MSE to overcome the effect of 

outliers. 

 

1.4 Scope of Study 

The data samples includingthe training and test data are collected from Iranian Oil 

Company located at Iranianoffshore and onshore fields.The inputs data were the 

conventional well log data and the target data was core data.. 

Only three of the most significant parameters in reservoir rock properties namely 

porosity, permeability and water saturation are considered in this work due to their 

important rules to evaluate the hydrocarbon production potential.Thismethodalso can 

be employedto estimatesome other reservoir parameters in petroleum industry. 

The implementation is done by using the Matlab’s software for analyzing the data. 

 

1.5 Contribution of Thesis 

In this thesis we introduced few frequently used AI techniques to predict reservoir 

rock properties. In addition, we proposed a novel structure in machine learning 

techniques that can handle many real data in petroleum industry, based on regression 

and function approximation problems. 

 

There are some reasons to distribute learning task among a number of individual 

nets. The main reason is for improving the generalization ability, because the 

generalization of individual networks is not unique. There are many methods to 

create individual members for ensemble or committee machine in literature. Some of 

them are Bootstrap aggregation resampling (Bagging), Cross-Validation, Stacking, 

boosting by filtering, AdaBoost, Artificial Neural Network (ANN), Fuzzy Logic (FL) 

and Neural Fuzzy (NF). The ensembles made by existing methods are sometimes 

needlessly large and have some drawbacks such as: occupying extra memory, 

necessitating computational overhead and sometimes decreasing effectiveness. In 

anensemble, there are also some members with low predictive performance that 

create negative effect on overall performance. Pruning ensemble members, while 

preserving a high diversity among the individuals is an efficient technique for 

increasing the predictive performance. In fact,the ensemble pruning is similar to an 
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optimization problem, in which the objective is to find the optimal subset of the 

whole individual members belonging to the initial ensemble.  

 

After building ensemble members, their generated results will be combined by some 

methods. In anensemble, the expectation is that distinct experts converge to 

differentlocal minima on the error surface, and the overall output will improve the 

performance. Many investigations have been performed to find more suitable fusion 

methods to combine the output of the experts and produce the final outputs. Some of 

the fusion methods in regression problems are simple averaging, weighted averaging 

and majority voting. 

 

Thecontribution of this research is to propose a novel structure named optimized 

ensemble based on different learning algorithms.In the first step, accurate and diverse 

experts are selected based on proposed ensemble pruning method. In second step, 

two combining methods based on FGA and also GA with two other fitness functions 

instead of MSE are proposed to obtain the optimum weight of each individual 

members. 

 

1.6 Outline of Thesis 

The organization of the remaining chapters of this thesis is as follows:Chapter 2 is 

divided in three parts. First part gives an introduction to ensemble methods and 

describes why these machine learning paradigms are useful. The second part is a 

brief description of petroleum reservoir, the tools and methods for calculating well 

log and core data. This part continues with a review of related works that have been 

carried outto estimate reservoir rock properties based on well logging data 

throughapplying various AI methods. Finally a few more useful performances metric 

for regression problem will be described. 

 

Chapter 3 is concerned with the methodology used for this study. In this chapter, 

firstthe ensembleconstruction using artificial neural network, fuzzy logic, and neural 

fuzzy are explained. Then,the proposed ensemble pruning method based on genetic 

algorithmwith pay attention to both accuracy and diversity to obtain an optimal 

subset of individualsintroduced. Finally, the chapter ended with introducing two 

proposed combining methods that are based on fuzzy genetic algorithm and two 

fitness functions (e.g. Huber and Bisquare). 

 

Chapter 4 presentsand discusses the results obtained through utilizing individual 

members,ensemble with the whole and pruned individual members. In the next stage, 

the results obtained by pruned ensemble based on genetic algorithm and fuzzy 

genetic algorithm will be compared. Finally, the performances of pruned 

ensemblewith genetic algorithm based weighted averaging through applying 

proposed and usual fitness function are compared. 

 

Finally, chapter 5 summarizes and discusses the implementation and performance of 

the proposed approach to predict three selected parameters in petroleum reservoir; 

and recommendssome measures to be taken for improvementof the future work in 

this field. 
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