UNIVERSITI PUTRA MALAYSIA

PHYSICO-CHEMICAL AND MICROBIOLOGICAL QUALITIES OF RAW GOAT MILK AND ANTIBACTERIAL CHARACTERISTICS OF ISOLATED LACTIC ACID BACTERIA

LAI CHIA YEE

FSTM 2014 26
PHYSICO-CHEMICAL AND MICROBIOLOGICAL QUALITIES OF RAW GOAT MILK AND ANTIBACTERIAL CHARACTERISTICS OF ISOLATED LACTIC ACID BACTERIA

By

LAI CHIA YEE

Thesis is submitted to the School of Graduate Studies, University Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

November 2014
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of University Putra Malaysia in fulfillment of the requirement for Degree of Master of Science

PHYSICO-CHEMICAL AND MICROBIOLOGICAL QUALITIES OF RAW GOAT MILK AND ANTIBACTERIAL CHARACTERISTICS OF ISOLATED LACTIC ACID BACTERIA

By

LAI CHIA YEE

November 2014

Chairman : Professor Fatimah Abu Bakar, PhD
Faculty : Food Science and Technology

Raw goat milk is recognized as a nutritious food owed to its originality and medicinal values. In recent years, people consumed goat milk more frequently for its natural health promoting components. However, data for quality and safety of the locally produced raw goat milk are scarcely available. There is no official quality and safety standard to describe on raw goat milk. Only the total bacterial count is used as the main quality or safety measure. This is not adequate as there are numbers of food-borne related facts. The contamination of the milk proper storage temperature and duration should be accounted for public notifications due to food safety concerned. This study aimed to evaluate the microbiological quality and safety of stored raw goat milk prior to further processing steps. In platform tests, milk samples passed organoleptic test and Clot On Boiling test but were mostly (88.89%) failed in alcohol test. The proximate composition, the water content of milk samples were relatively high while the remained contents of protein, fat, carbohydrates and ash are much lower than the reference values. In general, results obtained from physico-chemical analysis showed contents of local milk samples were partially in lined with reported literature due to subjective factors of breeds, geographical areas and feeds. There was no significant difference observed in pH values of milk samples in comparison to the reported data. Initial total plate count, coliform count and proteolytic count determined were 3.44 log cfu/ml, 1.87 log cfu/ml and 1.97 log cfu/ml respectively. Storage time showed significant effect on the bacterial counts (p<0.05) of milk samples. Milk samples were kept and observed up to 12 hours under ambient temperature (3.95 log cfu/ml) had not exceeded guidelines limit of total aerobic count for food. The shelf-life of the milk samples were extended up to 10 days storage under refrigerated temperature of 4°C. A total of 150 Lactic Acid Bacteria (LAB) isolates were determined to a presumptive genus level and numbers were selected for species identification using the BIOLOG System. Among the isolated LAB species from goat milk samples, identified were Lactobacillus buchneri, Lactobacillus brevis, Enterococcus casseliflavus, Enterococcus faecium and Weissella viridescen. Bacteriocin Like Inhibitory Substance (BLIS) were obtained from the
identified LAB species and further verified on their antibacterial activity. There was at least one level of variables have significantly affect the antibacterial activity towards selected Gram-positive test bacteria, ATCC 19155 *Listeria monocytogenes*, *Staphylococcus aureus* and *Streptococcus spp*. Besides, BLIS goat milk LAB species had shown significant effect (p-value<0.05) on antibacterial activity against selected Gram-negative test bacteria such as *Escherichia coli* (E. coli), *Pseudomonas spp.*, *Klebsiella spp.*, ATCC 14028 *Salmonella typhimurium* and *Serratia marcescens*. BLIS produced by *Lactobacillus brevis* and *Lactobacillus buchneri* isolated from the goat milk spoilage bacteria has shown potent inhibition against *Listeria monocytogenes*, *Staphylococcus aureus*, *Escherichia coli* and *Salmonella typhimurium*. These findings emphasized the importance of microbiological quality study of locally produced raw goat milk and screening of more novel LAB species with their antibacterial activities.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KUALITI FIZIKO-KIMIA DAN MIKROBIOLOGI SUSU KAMBING ASLI DAN CIRI-CIRI ANTIBAKTERIA PENCILAN BAKTERIA ASIK LAKTIK

Oleh

LAI CHIA YEE

November 2014

Pengerusi : Profesor Fatimah Abu Bakar, PhD

Fakulti : Sains dan Teknologi Makanan

Susu kambing mentah diiktiraf sebagai makanan berkhasiat yang terhutang kepada keaslian dan nilai-nilai perubatan. Dalam tahun-tahun kebelakangan ini, orang minum susu kambing lebih kerap demi kesihatan komponennya yang semula jadi. Walau bagaimanapun, data tentang kualiti dan keselamatan susu kambing mentah yang dalam negara adalah jarang. Standard yang rasmi untuk kualiti dan keselamatan susu kambing mentah tidak wujud. Terdapat hanya jumlah kiraan bakteria yang umum digunakan sebagai kualiti atau keselamatan ukuran utama. Namun, ini adalah tidak mencukupi disebabkan fakta-fakta yang berkaitan dengan bawaan makanan. Pencemaran dengan suhu dan tempoh penyimpanan susu adalah penting untuk makluman awam disebabkan oleh keselamatan makanan yang berkenaan. Kajian ini bertujuan untuk menilai kualiti mikrobiologi dan keselamatan susu kambing mentah yang disimpan sebelum lanjutkan proses yang selanjutnya. Dalam ujian platform, sampel susu lulus ujian organoleptik dan Clot pada tetapi tetapi kebanyakannya (88.89 %) tetapi gagal dalam ujian alkohol. Komposisi anggaran, kandungan air sampel susu agak tinggi manakala manakala kandungan lain seperti protein, lemak, karbohidrat dan Abu adalah jauh lebih rendah daripada nilai rujukan. Secara umum, keputusan yang diperolehi daripada analisis fiziko-kimia adalah sebahagiannya setara dengan kajian-kajian rujukan kerana faktor-faktor subjektif baka, kawasan geografi dan suapan yang berlainan. Tidak terdapat perbezaan yang ketara diperhatikan pada nilai pH sampel susu berbanding dengan data yang dilaporkan. Jumlah kiraan plat awal, kiraan koliform dan kiraan proteolitik yang ditentukan adalah 3.44 log cfu/ml, 1.87 log cfu/ml dan 1.97 log cfu/ml masing-masing. Masa penyimpanan menunjukkan kesan yang ketara ke atas kiraan bakteria (p < 0.05) daripada sampel susu. Sampel susu telah disimpan dan diperhatikan sehingga 12 jam pada suhu ambien (3.95 log cfu/ml) adalah tidak melebihi had garis panduan daripada jumlah kiraan aerobik untuk makanan. Jangka hayat sampel susu telah dilanjutkan sehingga 10 hari penyimpanan di bawah suhu sejuk dari 4°C. Sebanyak 150 Asid Laktik Bakteria (LAB) pencilan telah ditentukan untuk tahap genus yang berdasarkan sangkaan dan nombor telah dipilih untuk mengenal pasti spesies menggunakan Sistem BIOLOG. Antara spesies LAB terpencil daripada sampel susu
kambing, yang dikenal pasti ialah Lactobacillus buchneri, Lactobacillus brevis, Enterococcus casseliflavus, Enterococcus faecium dan Weisella viridescen. Bakteriosin Seperti Bahan yang melarang (BLIS) telah diperolehi daripada spesies LAB dan seterusnya disahkan pada aktiviti antibakteria mereka. Terdapat tahap sekurang-kurangnya satu pembolehubah telah ketara memberi kesan kepada aktiviti antibakteria terhadap bakteria ujian Gram-positif dipilih, ATCC 19155 Listeria monocytogenes, Staphylococcus aureus dan Streptococcus spp. Selain itu, BLIS susu kambing spesies LAB telah menunjukkan kesan yang penting (p-nilai < 0.05) pada aktiviti antibakteria terhadap dipilih kerosakan Gram-negatif bakteria ujian seperti Escherichia coli (E. coli), Pseudomonas spp., Klebsiella spp., ATCC 14028 Salmonella typhimurium dan Serratia marcescens. BLIS dihasilkan oleh Lactobacillus brevis dan Lactobacillus buchneri yang didapati daripada bakteria kerosakan susu kambing telah menunjukkan perencatan yang kuat terhadap Listeria monocytogenes, Staphylococcus aureus, Escherichia coli dan Salmonella typhimurium. Penemuan ini menekankan kepentingan kajian kualiti mikrobiologi susu kambing mentah yang dihasilkan dalam negara dan mendapatkan spesies LAB yang novel dengan aktiviti antibakteria mereka.
ACKNOWLEDGEMENT

In the name of ultimate God, most Gracious, most Merciful. All praise and gratitude be to God for His blessing and love that allow me to complete this piece of work.

I would like to express my very great appreciation to my supervisor, Professor Dr. Fatimah Abu Bakar, for her valuable and constructive suggestions during the planning and development of this research work. Her willingness to share her invaluable knowledge and giving a proper guidance has been very much appreciated. Thank you very much for your generous, encouragement and for being patient and understanding throughout my study.

I would like to express my deep gratitude to my research co-supervisors, Professor Dr. Nazamid Saari and Dr. Nor Ainy Mahyudin for their patient guidance, enthusiastic encouragement and useful critiques of this research work. I would also like to thank Dr. Muhammad Zukhrufuz Zaman for his teaching and assistance in keeping my progress on schedule. I would also like to extend my thanks to the technicians of the Food Laboratory of the Food Safety department for their help in offering me the resources in running the program.

Sincere heartfelt thanks expressed to my beloved parents. Thank you for their unconditionally support and encouragement throughout my study life. In particular, the patience, accompaniment and understanding shown by my parents, brother and sisters during the years are greatly appreciated. Words cannot express how grateful I am to my family for all of the sacrifices that you've made on my behalf.

I would also like to thank all of my lab mates and dearest friends in the Laboratory of Food Safety and Quality for their friendship, sharing and helping hand during my study. I am thankful to University of Putra Malaysia for their financial support granted through Research Grant Allocation (RUGS 6). Acknowledgement also goes to Ministry of Science, Technology and Innovation (MOSTI) of Malaysia for the financial support through the University Putra Malaysia Graduate Research Fellowship (GRF).

My deepest and warmest appreciation goes to my boyfriend Ng Tze Fun for his encouragement and precious helps during my study. Thank you for your caring and accompaniment in these years.

Last but not least, a special appreciation and gratitude to anyone else whose name is not mentioned here for their invaluable help and supports. Thank you for the contributions of many different people, in their different ways, has made this piece of work possible.
This thesis was submitted to the Senate of University Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Fatinah Abu Bakar, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Nor Ainy Mahyudin, PhD
Associate Professor Doctor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

Nazamid Saari, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:
• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice- Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ________________________ Date: __________________
Name and Matric No.: Lai Chia Yee GS30394
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: __________________________
Name of Chairman of Supervisory Committee: __________________________

Signature: __________________________
Name of Member of Supervisory Committee: __________________________

Signature: __________________________
Name of Member of Supervisory Committee: __________________________
TABLE OF CONTENTS

ABSTRACT i
ABSTRAK ii
ACKNOWLEDGEMENT iii
APPROVAL iv
DECLARATION v
LIST OF TABLES x
LIST OF FIGURES xi
LIST OF ABBREVIATIONS xii

CHAPTER

1 INTRODUCTION 1

2 LITERATURE REVIEW 3
 2.1 Background of goat milk 3
 2.2 Basic compositions of goat milk 4
 2.2.1 The proteins of goat milk 4
 2.2.2 The lipids of goat milk 4
 2.2.3 The carbohydrates of goat milk 5
 2.2.4 Mineral and vitamin of goat milk 5
 2.3 Antibacterial activity of goat milk 5
 2.4 A general microbial assessments of goat milk 7
 2.5 Pathogenic bacteria in milk 8
 2.6 The Lactic Acid Bacteria 9
 2.6.1 Background 9
 2.6.2 Antibacterial characteristics of LAB 11
 2.6.3 Antibacterial activity of LAB bacteriocins 12

3 PROXIMATE COMPOSITION AND STORAGE STUDY OF RAW GOAT MILK 15
 3.1 Introduction 15
 3.2 Materials and Methods 15
 3.2.1 Raw goat milk samples 15
 3.2.2 Platform test 16
 3.2.3 Proximate analysis 16
 3.2.3.1 Moisture content 16
 3.2.3.2 Ash content 16
 3.2.3.3 Protein content 17
 3.2.3.4 Fat content 17
 3.2.3.5 Carbohydrate content 18
 3.2.3.6 Determination of pH and titratable acidity 18
 3.2.4 Microbiological analysis 18
 3.2.4.1 Samples preparation 18
 3.2.4.2 Total plate count 19
 3.2.4.3 Proteolytic count 19
 3.2.4.4 Coliform count 19
 3.2.4.5 Psychrotrophic total plate count 19

ix
3.2.5 Statistical analysis
3.3 Results and Discussion
 3.3.1 Platform tests
 3.3.2 Proximate composition and physico-chemical properties of goat milk
 3.3.3 Microbiological analysis of stored goat milk
3.4 Conclusion

4 ISOLATION AND IDENTIFICATION OF LACTIC ACID BACTERIA FROM RAW GOAT MILK SAMPLES
 4.1 Introduction
 4.2 Materials and methods
 4.2.1 Isolation of LAB from raw goat milk samples
 4.2.2 Morphological and biochemical characterization
 4.2.2.1 Gram staining and cell morphology test
 4.2.2.2 Catalase test
 4.2.2.3 Salt tolerance test
 4.2.2.4 Temperature tolerance test
 4.2.2.5 Carbohydrate fermentation test
 4.2.3 Glycerol stock cultures preparation of LAB isolates
 4.2.4 Species identification of LAB using BIOLOG System
 4.3 Results and Discussion
 4.3.1 Morphological and biochemical characterization
 4.3.2 BIOLOG bacterial identification system
 4.4 Conclusion

5 SCREENING, EXTRACTION AND PURIFICATION OF ANTIBACTERIAL SUBSTANCES OF ISOLATED LACTIC ACID BACTERIA FROM RAW GOAT MILK
 5.1 Introduction
 5.2 Materials and methodology
 5.2.1 Bacterial strains and culture media
 5.2.2 Test bacterial cultures
 5.2.3 Preparation of BLIS from LAB broth cultures
 5.2.4 Detection of antibacterial activity by agar well diffusion method
 5.2.5 Partial purification of bacteriocin
 5.2.5.1 Ammonium sulfate saturation method
 5.2.5.2 Methanol/chloroform lipid removal and washing method
 5.3 Results and discussion
 5.3.1 Antibacterial activity of BLIS against Gram-positive test bacteria
 5.3.2 Antibacterial activity of BLIS against Gram-negative test bacteria
 5.3.3 Partial purification of BLIS
 5.4 Conclusion

6 SUMMARY, GENERAL CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Comparison of average composition of basic nutrients in goat and cow milk</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>General of bacteriocins classification and features</td>
<td>13</td>
</tr>
<tr>
<td>3.1</td>
<td>Platform tests observations in raw goat milk samples</td>
<td>20</td>
</tr>
<tr>
<td>3.2</td>
<td>Proximate compositions and physico-chemical characteristics of raw goat milk</td>
<td>21</td>
</tr>
<tr>
<td>3.3</td>
<td>Total aerobic, coliform and proteolytic bacteria concentration (log CFU/ml) storage for 24 hours at ambient temperature of 27±1°C</td>
<td>23</td>
</tr>
<tr>
<td>3.4</td>
<td>Amount of aerobic, coliform, proteolytic and psychrotrophic bacteria (log CFU/ml) obtained from raw goat milk which storage for 16 days at cold temperature of 4±1°C</td>
<td>24</td>
</tr>
<tr>
<td>4.1</td>
<td>Biochemical and physiological characteristics of LAB isolates from goat milk with presumptive genera for initial identification</td>
<td>31</td>
</tr>
<tr>
<td>4.2</td>
<td>Identification of selected isolates by using BIOLOG GEN III system</td>
<td>43</td>
</tr>
<tr>
<td>5.1</td>
<td>Inhibitory activity of BLIS produced from different species against selected Gram-positive test bacteria</td>
<td>48</td>
</tr>
<tr>
<td>5.2</td>
<td>Inhibitory activity of BLIS produced from different species against selected Gram-negative test bacteria</td>
<td>52</td>
</tr>
<tr>
<td>5.3</td>
<td>Inhibitory activity of partial purified BLIS produced from different species against selected Gram positive and Gram negative test bacteria</td>
<td>56</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Bacterial colonies of LAB Isolates N120 with colony morphology of creamy, smooth round colonies and small colony diameter of 2 to 3 mm.</td>
<td>38</td>
</tr>
<tr>
<td>4.2</td>
<td>Bacterial colonies of LAB Isolates N140 with colony morphology of creamy, smooth round colonies and small colony diameter of 2 to 3 mm.</td>
<td>38</td>
</tr>
<tr>
<td>4.3</td>
<td>Gram staining result of long rod shaped of LAB isolate S2F with magnification of 100 times oil immersion under light microscope.</td>
<td>39</td>
</tr>
<tr>
<td>4.4</td>
<td>Gram staining result of irregular rod shaped of LAB isolate S1D with magnification of 100 times oil immersion under light microscope.</td>
<td>39</td>
</tr>
<tr>
<td>4.5</td>
<td>Gram staining result of pair cocci shaped of LAB isolate N82 with magnification of 100 times oil immersion under light microscope.</td>
<td>40</td>
</tr>
<tr>
<td>4.6</td>
<td>Results observed from glucose fermentation test using phenol red broth showed positive result of C93, positive result with bubble trapped of N152, control with no bacterial suspension and negative result of turbid phenol red broth.</td>
<td>40</td>
</tr>
<tr>
<td>4.7</td>
<td>Results observed from catalase test of non-LAB isolate showed catalase negative and bubbles formed.</td>
<td>41</td>
</tr>
<tr>
<td>5.1</td>
<td>Observation of positive inhibition of concentrated cell free supernatant of LAB isolate C171 against Staphylococcus aureus with recorded inhibition zone diameter of 11 mm.</td>
<td>50</td>
</tr>
<tr>
<td>5.2</td>
<td>Observation of positive inhibition of concentrated cell free supernatant of LAB isolate N152 against Gram positive indicator bacteria Listeria monocytogenes with recorded inhibition zone diameter of 17 mm.</td>
<td>50</td>
</tr>
<tr>
<td>5.3</td>
<td>Observation of positive inhibition of concentrated cell free supernatant of LAB isolate N140 against Gram positive indicator bacteria Listeria monocytogenes with recorded inhibition zone diameter of 18 mm.</td>
<td>51</td>
</tr>
<tr>
<td>5.4</td>
<td>Observation of positive inhibition of concentrated cell free supernatant of LAB isolate N140 against Gram negative indicator bacteria Salmonella typhimurium with recorded inhibition zone</td>
<td>54</td>
</tr>
</tbody>
</table>
diameter of 10 mm.

5.5 Observation of positive inhibition of concentrated cell free supernatant of LAB isolate C93 against Gram negative indicator bacteria *Escherichia coli* with recorded inhibition zone diameter of 12 mm.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>BLIS</td>
<td>Bacteriocins like inhibitory substance</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony forming unit</td>
</tr>
<tr>
<td>DMRT</td>
<td>Duncan’s multiple range test</td>
</tr>
<tr>
<td>EMB</td>
<td>Eosine methylene blue agar</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and drug administration</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>LAB</td>
<td>Lactic acid bacteria</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>MH</td>
<td>Mueller hinton agar</td>
</tr>
<tr>
<td>MRS</td>
<td>de Man, Rogosa and Sharpe agar</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>mL</td>
<td>Milliliter</td>
</tr>
<tr>
<td>µL</td>
<td>Microliter</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>TCA</td>
<td>Trichloroacetic acid</td>
</tr>
<tr>
<td>TSA</td>
<td>Tryptic soy agar</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume over volume</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight over volume</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Consuming milk and products could be one of the routine practices upholding in Malaysia’s population. In Malaysia, the total milk production of small-scale dairy farms may not fully support the local market needs (Barmaiyi et al., 2014; Alyaqoubi et al., 2014; Lye et al., 2013). The local milk production may lack concern, especially for goat milk and yet it is one of the potential industries to develop. Goat milk production is a growing industry and presents a significant part of the economy in many countries, especially in Asia of India and China (Pal et al., 2011). Goat milk delivers nutrients like cow milk where there are reviews of present data suggesting that it owns even greater benefits over cow milk (Ribeiro and Ribeiro, 2010; Ceballos et al., 2009). Goat milk works as one of the important medicinal food and used as a nutritional source for infants and children as well (Haenlein, 2004). It has been clearly proven that consuming of goat milk improves the state of health and wellness of the human body, reduces the risk of developing disease especially allergies (Park and Haenlein, 2008). Because of the medicinal values and natural nutrient, raw goat milk serves as a healthy food or drink among Malaysian.

The studies about quality and food safety of local raw goat milk are rarely found. There is no available standard of raw goat milk quality and safety for consumption. In the local market, a total plate count (TPC) less than 106 cfu/ml used as a guideline or standard by Milk Collection Centers (MCC) as a Price Incentive Program (Boniface, 2012; Chye et al., 2004). The milk selling price calculated based on the bacterial count in which a high microbial load may pose economic loss to local dairy farmers. Like cow milk, goat milk production is referring the same standard. The general total bacterial count regardless of milk types used as the main quality and safety assessment may not adequate to be a proper guideline. Besides, lack details and knowledge about microbiological quality and safety raw goat milk could lead to an uncomfortable issue of food contamination. Storage time and conditions of raw goat milk after milking are important factors to control the milk quality and safety. Improper storage conditions will lead to a significant change in the raw goat milk quality and safety. People consume raw goat milk in direct after milking and some may store it for some time. They may not have an appropriate idea in the way of keeping raw goat milk, including the appropriate temperature and duration. The common factors responsible for raw milk contamination, include the condition of the udder during lactation, the environment outside the udder and the equipment for handling and storage (Chambers, 2002).

Chilling of raw goat milk is a common practice to keep the milk fresh and prevent the growth of non-psychrotrophic bacteria. Yet, prolonged storage of raw goat milk under cold temperature may not safe. According to Yamazi et al., 2013, the total loads of mesophilic bacteria, coliforms bacteria, *Escherichia coli* and psychrotrophic bacteria of milk stored for 48 hours or longer were relatively higher than the storage for 24 hours or less. A potential growth media of milk with low-temperature favors the growth of psychrotrophic bacteria that enter the milk from other sources such as dirty equipment and the environment outside that pose risk of contamination indirectly. An initial low psychrotrophic population of total plate count grows fast in milk and become the dominant bacteria after storage of a couple of days. Proper storage temperature and duration account major food safety concerned for public notifications.
Similar to other milk, raw goat milk is carrying comparable bacteria species but some may vary. There are studies revealed that lactic acid bacteria (LAB) are one of the famous bacteria found in goat milk, including the genera of *Lactobacilli* (5.13 log cfu/ml), *Lactococcus* (6.57 log cfu/ml), *Leuconostoc* (3.51 log cfu/ml), and *Enterococcus* (2.47 log cfu/ml) (Nikolic *et al.*, 2008; Tamagnini *et al.*, 2006; Alonso-Calleja *et al.*, 2002). LAB exert an important relationship between the quality and safety of the milk. Groups of LAB designated as GRAS (Generally Recognized as Safe) since decades ago. LAB do not pose any health risk to man and thus usually considered as “food grade” bacteria to be selected as protective probiotic. Therefore, isolation and screening of LAB from raw goat milk have always been the preferable way to obtain natural biodiversity of useful cultures with commercial values (Asgmaig *et al.*, 2009 and Sun *et al.*, 2010).

People nowadays demand for new flavors, best quality and health concerned food from time to time. There is an obvious need to search for novel ways and new food preservation agents of natural origins. LAB are commonly used as a safe and effective starter culture in fermented foods, especially in fermented dairy products. Marketers aim for new products require the use of microbial strains with novel properties. Screening the novel LAB strains from natural biodiversity or genetic modification of existing strains is important for the innovation to increase the variety of dairy products (Abd El Gawad *et al.*, 2010). Thus, isolation of wild LAB from local raw goat milk, not exposed to any industrial selection is potential to be used in making new food products. The safe, new and active strains of LAB are desired in production of local fermented food products such as fish sauces, shrimp pastes and tempoyak other than dairies (Mohd Adnan and Tan, 2007).

LAB have been comprehensively studied due to their beneficial and functional characteristics. Different strains of LAB isolated in dairy food processing environments based on their acid production rate, proteolytic activity, production of antimicrobial compounds and carbon dioxide (Lindgren and Dobrogosz, 1990). During fermentation, LAB are playing an essential role for organoleptic characteristics, acidification and production of aromatic compounds (El-Ghaish *et al.*, 2011). Local LAB could have considerable potential as starters or other significant roles in various food products. The isolation and selection of local LAB are insufficient and more works in different aspects should be carried out. This study was undertaken to screen the LAB that exhibit antibacterial activity from local raw goat milk samples. Bacteriocins produced by LAB during growth is having a competent antibacterial effect that making themselves dominant in a pool of microflora. Bacteriocins are proteinaceous antibacterial compounds which ribosomally synthesized and are usually active against genetically related species and some Gram-positive bacteria (De Vuyst and Vandamme 1994 and Klaenhammer, 1988). The search for new strain of LAB that having antibacterial ability in current study are crucial for the development of biologically safe local dairy products. In addition, the finding was thought to significantly contribute to the increasing demand for goat dairy product. An updated database of quality and safety of locally produced goat milk, isolation of LAB strains with antibacterial ability are fundamental for the food product development in Malaysia.

The objectives of this study are:

1. To determine the physico-chemical properties and microbiological quality or safety of locally produced raw goat milk.
2. To isolate and identify lactic acid bacteria strain from locally produced raw goat milk samples.

3. To screen and evaluate the potency of antibacterial activity among isolated and identified lactic acid bacteria strains.
BIBLIOGRAPHY

