OCCURRENCE OF EXTENDED SPECTRUM BETA-LACTAMASE PRODUCING Escherichia coli IN DAIRY CATTLE, FARM ENVIRONMENT AND MILK

EMELIA AINI KAMARUZZAMAN

FPV 2015 14
OCCURRENCE OF EXTENDED SPECTRUM BETA-LACTAMASE PRODUCING *Escherichia coli* IN DAIRY CATTLE, FARM ENVIRONMENT AND MILK

By

EMELIA AINI KAMARUZZAMAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Veterinary Science

May 2015
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATIONS

This work is dedicated especially to

My beloved Parents

and

My beloved Husband and Children
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Veterinary Science

OCCURRENCE OF EXTENDED SPECTRUM BETA-LACTAMASE PRODUCING Escherichia coli IN DAIRY CATTLE, FARM ENVIRONMENT AND MILK

By

EMELIA AINI KAMARUZZAMAN

May, 2015

Chair: Professor Saleha Abdul Aziz, PhD
Faculty: Veterinary Medicine

Emerging of newer groups of antibiotic resistant bacteria is widely reported as a result of the persistent use of antibiotic either for therapeutic or prophylactic purposes. Extended-Spectrum Beta Lactamase (ESBL) is an enzyme produced by gram-negative bacteria which developed resistance to beta lactam antibiotics ranging from penicillin to third and fourth generation cephalosporin; however its activity is inhibited by clavulanic acid. Due to less therapeutic options, human infections caused by ESBL-producing organisms are associated with treatment failure, increased morbidity, increase in length of hospital stay and therapeutic cost, and mortality. Three objectives in the study were first, to determine the occurrence of Extended Spectrum Beta-Lactamase producing E. coli (ESBL-producing E. coli) in dairy cattle, farm environment and milk; secondly to determine the risk factors associated with the occurrence, and thirdly to determine the antibiotic resistance patterns of the ESBL-producing E. coli. Samples collected comprised fecal samples (n=229), farm environment (n=77) including stall floors, feed and water trough, house flies (Musca domestica), feed, drinking water and source of drinking water; and milk (n=71) from 10 dairy farms located within Selangor and Negeri Sembilan. Phenotypic detection of ESBL-producing E. coli was carried out. The overall occurrence of ESBL-producing E. coli was 4.8%. There was a significant difference in the occurrence of ESBL-producing E. coli (p=0.00) in all three sample groups. The highest occurrence of ESBL-producing E. coli was in milk (66.7%) followed by farm environment (27.8%) and cattle (5.5%). Molecular detection of four ESBL genes namely TEM, SHV, CTX-M and OXA was done using multiplex
Polymerase Chain Reaction (m-PCR) method. The CTX-M gene was predominantly detected in 12 out of 18 isolates (66.7%).

The risk factors associated with the occurrence of ESBL-producing \textit{E. coli} in dairy cattle, farm environment and milk were investigated through questionnaires seeking information related to farm management and husbandry practices, records on animal health including antibiotic usage by the farm owners. Two factors found to be statistically significant \((p<0.05)\) were “presence of other animal in the farm compound” \((\chi^2 = 5.173, \ p=0.023)\) and “previous history of disease outbreak” \((\chi^2 = 3.869, \ p=0.049)\). Beef cattle, goats, poultry species including native chickens, duck and geese as well as companion animals such as cats and dogs have been reported to be possible sources of ESBL-producing \textit{E. coli} in the farms.

Antibiotic susceptibility test was conducted using disk diffusion method against 12 antibiotics belonging to six classes which included beta-lactams, chloramphenicol, macrolides, aminoglycoside, quinolones and sulfonamides. Sixteen (88.9\%) of 18 ESBL-producing \textit{E. coli} isolates showed resistance to all six beta-lactam antibiotics, with only one isolate (5.6\%) from the drinking water was found to be resistant to all 12 antibiotics. All isolates (100\%) were found to be resistant against cefotaxime, ceftriaxone and aztreonam. ESBL-producing \textit{E. coli} showed highest susceptibility to trimethoprim-sulphamethoxazole (88.9\%) followed by gentamicin and ciprofloxacin (83.3\% each). Ten isolates (55.6\%) were found to be multi-drug resistant, that is, resistant to three or more antibiotic classes. It is crucial to determine the resistance patterns of ESBL-producing \textit{E. coli} isolates for the purpose of antibiotic selection for treatment options.

In conclusion, the occurrence of ESBL-producing \textit{E. coli} in dairy cattle, farm environment and milk is of public health significance, although it was low. The presence of antibiotic-resistant bacteria may possibly be due to imprudent use of antibiotic, or acquire from the environment. Such imprudent use of antibiotics in animal production may contribute to the persistence of zoonotic resistant organisms in food producing animals as well as in the environments and food products, hence pose serious risks to human health.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Master Sains Veterinar

KEHADIRAN EXTENDED SPECTRUM BETA-LACTAMASE
Escherichia coli PADA LEMBU TENUSU, PERSEKITARAN LADANG DAN SUSU

Oleh

EMELIA AINI KAMARUZZAMAN

Mei 2015

Pengerusi: Professor Saleha Abdul Aziz, PhD
Fakulti: Perubatan Veterinar

Kemunculan kumpulan baru bakteria rintang antibiotik dilaporkan hasil daripada penggunaan antibiotik yang berterusan samada untuk kegunaan terapi atau profilaksis. Extended-Spectrum Beta Lactamase (ESBL) adalah sejenis enzim yang dihasilkan oleh bakteria gram-negatif yang membentuk kerintangan terhadap antibiotik beta-laktam terdiri daripada penicillin sehingga generasi ketiga dan keempat cephalosporin; walau bagaimanapun aktivitinya direncat oleh asid clavulanik. Berikut kurangnya pilihan antibiotik untuk terapi, jangkitan oleh organisma yang menghasilkan ESBL pada manusia dikaitkan dengan kegagalan rawatan, peningkatan morbiditi, peningkatan tempoh rawatan di hospital dan kos rawatan, dan kematian. Tiga objektif kajian ini adalah pertama, menentukan kehadiran Extended Spectrum Beta-Lactamase E. coli (ESBL E. coli) pada lembu tenusu, persekitaran ladang dan susu; kedua, menentukan faktor risiko yang dikaitkan dengan kehadiran ESBL E. coli, dan ketiga, menentukan corak kerintangan antibiotik ESBL E. coli. Sampel terdiri daripada sampel tinja (n=229), persekitaran ladang (n=77) yang termasuk lantai kandang, palung makanan dan air, lalat rumah (Musca domestica), makanan haiwan, air minuman dan punca air minuman; dan susu (n=71) yang dikumpul daripada 10 ladang tenusu yang terletak di sekitar Selangor dan Negeri Sembilan. Pengesanan fenotip ESBL E. coli telah dilaksanakan. Secara keseluruhan kehadiran ESBL E. coli ialah 4.8%. Terdapat perbezaan yang signifikan ke atas kehadiran ESBL E. coli (p=0.00) dalam tiga kumpulan sampel. Kehadiran tertinggi ESBL E. coli adalah dalam susu (66.7%) diikuti oleh persekitaran ladang (27.8%) dan lembu (5.5%). Pengesanan molekul ke atas empat gen ESBL iaitu TEM, SHV, CTX-M dan OXA telah dilakukan dengan menggunakan kaedah PCR
multipleks (m-PCR). Gen CTX-M adalah yang paling kerap dikesan dalam 12 daripada 18 (66.7%) isolat.

Faktor risiko dikaitkan dengan kehadiran ESBL E. coli pada lembu tenusu, persekitaran ladang dan susu telah disiasat melalui soal selidik bagi mendapatkan maklumat berkaitan pengurusan antibiotik oleh pemilik ladang. Dua faktor didapati signifikan secara statistik \((p<0.05)\) adalah “kehadiran haiwan lain dalam kawasan ladang” \(\chi^2 = 5.173, p=0.023\) dan “sejarah terdahulu wabak penyakit” \(\chi^2 = 3.869, p=0.049\). Lembu daging, kambing, spesis unggas termasuk ayam, itik dan juga haiwan kesayangan seperti kucing dan anjing telah dilaporkan boleh menjadi sumber ESBL E. coli dalam ladang.

Ujian kerintangan antibiotik telah dijalankan menggunakan kaedah disk diffusion terhadap 12 antibiotik daripada enam kelas antibiotik termasuk beta-lactams, chloramphenicol, macrolides, aminoglycoside, quinolones dan sulfonamides. Antibiotik iaitu ceftazidime (30 µg), cefotaxime (30 µg), cefpodoxime (10 µg), ceftriaxone (10 µg), ampicillin (10 µg), aztreonam (30 µg), chloramphenicol (30 µg), tetracycline (30 µg), gentamicin (10 µg), nalidixic acids (30 µg), ciprofloxacin (5 µg) dan trimethoprim-sulphamethoxazole (25 µg) telah digunakan. Enambelas daripada 18 (88.9%) isolat ESBL E. coli menunjukkan kerintangan kepada kesemua enam antibiotik beta-laktam, dengan satu isolat (5.6%) daripada air minuman didapati rintang kepada kesemua 12 antibiotik. Kesemua isolat (100%) didapati rintang terhadap cefotaxime, ceftriaxone dan aztreonam. ESBL E. coli menunjukkan kerintangan tertinggi pada trimethoprim-sulphamethoxazole (88.9%) diikuti oleh gentamicin dan ciprofloxacin (83.3% setiap satu). Sepuluh isolat (55.6%) didapati rintang multi-drug, iaitu, rintang terhadap tiga atau lebih kelas antibiotik.

Kesimpulannya, kehadiran ESBL E. coli pada lembu tenusu, persekitaran ladang dan susu mempunyai kepentingan kesihatan awam, walaupun ianya rendah. Kehadiran bakteria rintang antibiotik ber kemungkinan berikutkan penggunaan antibiotik yang tidak berhemah, menyebabkan peningkatan insiden kerintangan antibiotik. Penggunaan antibiotik yang tidak berhemah ini boleh menyumbang kepada organisma zoonotik yang rintang yang hadir secara berterusan pada haiwan ternakan dan juga pada persekitaran dan produk haiwan dan oleh itu menimbulkan risiko yang serius terhadap kesihatan manusia.
ACKNOWLEDGEMENTS

First and foremost I would like to express my gratitude to Allah Almighty for giving me the strength and patience to complete this task successfully. Alhamdulillah.

My deepest and heartfelt appreciation and gratitude goes to Professor Dr. Saleha Abdul Aziz, the chairman of Supervisory Committee for her kind guidance, motivation and full support throughout my study journey. Without her guidance and persistent help this study would not have been possible.

My sincere appreciation and gratitude also goes to the members of Supervisory Committee, Associate Professor Dr. Zunita Zakaria and Associate Professor Dr. Latiffah Hassan for their comments and support.

I would like to thank the Government of Malaysia and Public Service Department for sponsoring my study. My utmost appreciation also goes to Dato’ Dr. Mohamad Azmie Zakaria, Datuk Dr. Abd. Aziz Jamaluddin, Dato’ Dr. Ibrahim Che Embong, Dr. Abu Hassan Muhammad Ali and Dr. Rosini Alias, Department of Veterinary Services for giving me the golden opportunity to pursue my study. Special thanks to Dr. Hj. Idris b. Kadir for the valuable advices and motivations in completing my study. My sincere thanks also go to the officers and staff of Dairy Section, Division of Livestock Commodity Development, Department of Veterinary Services and also to all dairy farmers for their cooperation extended during the sampling process.

Sincere gratitude to Mrs. Fauziah Nordin, Ms Krishnammah and Mr. Azri for the kind assistance in completing my work. To my labmates, Rasheed, Wint Wint, Mohamed Abdul Rahman, Dauda Goni, Teguh, Yousif and Jalo, thanks for the kind assistance, laughter and jokes that relieved me during the tough time throughout the study journey.

Finally, but most importantly, to my beloved parents, Hj Kamaruzzaman Abdul Samad and Hjh Sapiah Abu Samah who always believed in me and stood beside me, thank you for the prayers, love and continuous support. To my siblings, Norsilawati, Hisyam and Ummi, thank you for the support. My heartfelt appreciation and gratitude to my dear husband Muhamad Sharaf Ibrahim and to my wonderful children, Nurin Khadeja, Muhamad Irfan Raziq and Muhamad Hadif Raziq for their love and inspiration throughout my study. Without their understanding, I would not have been able to complete this course.

EMELIA AINI KAMARUZZAMAN
I certify that a Thesis Examination Committee has met on (date of viva voce) to conduct the final examination of Emelia Aini Kamaruzzaman on her thesis entitled “Occurrence Of Extended Spectrum Beta-Lactamase (ESBL) Producing Escherichia coli, Farm Environment and Milk in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Veterinary Science.

Members of the Thesis Examination Committee were as follows:

Abdul Aziz Saharee, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Siti Khairani Bejo, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Sharifah Aminah Syed Mohamad, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia
Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Veterinary Science. The members of the Supervisory Committee were as follows:

Saleha Abdul Aziz, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Zunita Zakaria, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Latifah Hassan, PhD
Associate Professor
Faculty of Veterinary Medicine
University Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: __________________

Name and Matric No.: Emelia Aini Kamaruzzaman GS32987
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ____________________________ Signature: ____________________________

Name of Chairman of Supervisory Committee: ____________________________
Name of Member of Supervisory Committee: ____________________________

Signature: ____________________________ Signature: ____________________________

Name of Member of Supervisory Committee: ____________________________
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPYRIGHTS</td>
<td></td>
</tr>
<tr>
<td>DEDICATIONS</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION**

2. **LITERATURE REVIEW**

 2.1 Beta-lactam antibiotics and beta-lactamase production
 2.2 Extended Spectrum Betalactamase and its classification and types
 2.2.1 Classification of Extended Spectrum Betalactamase
 2.2.2 Types of Extended Spectrum Betalactamase
 2.3 Extended Spectrum Beta-lactamase-producing *E. coli* (ESBL-producing *E. coli*)
 2.3.1 The Organism
 2.4 Isolation and identification of ESBL-producing *E. coli*
 2.4.1 Phenotypic detection method
 2.4.2 Molecular detection method
 2.5 Public health significance of Extended Spectrum Betalactamase
 2.6 Risk factors associated with Extended Spectrum Betalactamase occurrence
 2.7 Antibiotic susceptibility patterns of ESBL-producing *E. coli*
 2.8 Prevalence of ESBL in food-producing animals and animal products
 2.8.1 Cattle
 2.8.2 Poultry
 2.8.3 Pigs
 2.8.4 Birds
 2.8.5 Animal products
 2.8.6 Companion animals
 2.9 ESBL in Malaysia
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFERENCES</td>
<td>61</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>75</td>
</tr>
<tr>
<td>BIODATA OF STUDENT</td>
<td>81</td>
</tr>
<tr>
<td>PUBLICATIONS</td>
<td>82</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Tables</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Screening and Confirmatory Tests for ESBLs in Escherichia coli adapted from CLSI (2010)</td>
<td>11</td>
</tr>
<tr>
<td>2.2 ESBL-producers in food animals among some countries worldwide for the past five years</td>
<td>17</td>
</tr>
<tr>
<td>3.1 Primer used in multiplex PCR amplification</td>
<td>25</td>
</tr>
<tr>
<td>3.2 Characteristics of dairy farms investigated and numbers of samples collected</td>
<td>29</td>
</tr>
<tr>
<td>3.3 Occurrence of ESBL-producing E. coli in feces, farm environment and milk</td>
<td>32</td>
</tr>
<tr>
<td>3.4 Occurrence of ESBL-producing E. coli in farm environment</td>
<td>33</td>
</tr>
<tr>
<td>3.5 Types of ESBL genes detected in ESBL-producing E. coli</td>
<td>34</td>
</tr>
<tr>
<td>4.1 Summary of dairy farm information related to important risk factors (based on questionnaires given)</td>
<td>45</td>
</tr>
<tr>
<td>4.2 Association between occurrence of ESBL-producing E. coli in dairy cattle, farm environment and milk</td>
<td>47</td>
</tr>
<tr>
<td>5.1 Antibiotic susceptibility patterns of each ESBL-producing E. coli isolated from dairy cattle, farm environment and milk</td>
<td>54</td>
</tr>
<tr>
<td>5.2 Antibiotypes and antibiogroups of ESBL-producing E. coli isolated from dairy cattle, farm environment and milk</td>
<td>55</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figures</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Sterile membrane filters with pore size 0.45 mm were used for culture of E. coli from each drinking water and water source samples</td>
</tr>
<tr>
<td>3.2</td>
<td>Phenotypic confirmatory of ESBL-producing E. coli on Mueller-Hinton agar. Cefotaxime/Clavulanic acid 30µg/10µg (A1) and Cefotaxime 30µg (A2). Ceftazidime/Clavulanic acid 30µg/10µg (B1) and Ceftazidime 30µg (B2). The single and combination disks were placed at a distance of 30 mm apart.</td>
</tr>
<tr>
<td>3.3</td>
<td>Farm location for sampling in Selangor (above) and Negeri Sembilan (below)</td>
</tr>
<tr>
<td>3.4</td>
<td>A small scale dairy cattle farm</td>
</tr>
<tr>
<td>3.5</td>
<td>A commercial scale dairy cattle farm</td>
</tr>
<tr>
<td>3.6</td>
<td>Positive E. coli produced dark-blue to violet colonies on a Chromocult® Coliform Agar</td>
</tr>
<tr>
<td>3.7</td>
<td>Positive ESBL-producing E. coli produced dark pink to reddish colonies on a CHROMagar™ ESBL media</td>
</tr>
<tr>
<td>3.8</td>
<td>Phenotypic confirmatory tests on Mueller-Hinton agar. A difference of 5 mm or more (here, 20.8 mm between combination disk (A1) and a single disk (A2) and 12.0 mm between combination disk (B1) and single disk (B2) were confirmed as ESBL positive isolate</td>
</tr>
<tr>
<td>3.9</td>
<td>Genes produced from the multiplex PCR amplification</td>
</tr>
<tr>
<td>3.10</td>
<td>Summary on occurrence of ESBL-producing E. coli in dairy cattle, farm environment and milk</td>
</tr>
<tr>
<td>4.1</td>
<td>Interview conducted with a dairy farmer for collection of information</td>
</tr>
</tbody>
</table>
5.1 Antibiotic susceptibility of ESBL-producing *E. coli* isolated from dairy cattle, farm environment and milk
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AmpC</td>
<td>Class C Cephalosporinase</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>bla</td>
<td>Beta-lactamase</td>
</tr>
<tr>
<td>β-lactam</td>
<td>Beta-lactam</td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>BPW</td>
<td>Buffered Peptone Water</td>
</tr>
<tr>
<td>ºC</td>
<td>degree Celcius</td>
</tr>
<tr>
<td>CLSI</td>
<td>Clinical Laboratory Standard Institute</td>
</tr>
<tr>
<td>DDS</td>
<td>Double disk synergy</td>
</tr>
<tr>
<td>DDT</td>
<td>Disc diffusion test</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DVS</td>
<td>Department of Veterinary Services</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>ESBL</td>
<td>Extended Spectrum Beta-Lactamase</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization</td>
</tr>
<tr>
<td>h</td>
<td>Hour(s)</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>L</td>
<td>Liter</td>
</tr>
<tr>
<td>ml</td>
<td>milliliter</td>
</tr>
<tr>
<td>mg</td>
<td>miligram</td>
</tr>
<tr>
<td>M.I.C.</td>
<td>Minimum inhibitory concentration</td>
</tr>
<tr>
<td>MLST</td>
<td>Multilocus Sequence Typing</td>
</tr>
<tr>
<td>m-PCR</td>
<td>Multiplex polymerase chain reaction</td>
</tr>
<tr>
<td>OIE</td>
<td>World Organization for Animal Health</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>µg</td>
<td>Micro gram</td>
</tr>
<tr>
<td>µl</td>
<td>Micro liter</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>rpm</td>
<td>Round per minute</td>
</tr>
<tr>
<td>TBE</td>
<td>Tris-borate-EDTA (TBE) buffer</td>
</tr>
<tr>
<td>TSB</td>
<td>Tryptone Soy Broth</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
</tbody>
</table>
CHAPTER ONE
INTRODUCTION

The use of antibiotic in animal production plays a significant role in growth promotion, disease prevention as well as for therapeutic purposes in food animal. It is part of a necessity in food animal practice as the use of this wonder drug has been proven to save animal lives, which is related to animal welfare. However, prolong and inappropriate widespread use of antibiotic compounds has posed the risk for emergence and dissemination of resistant microorganisms. Antibiotic resistant bacteria causing diseases in human and animal has long becoming public and animal health issues of major concern globally. The emergence, selection and dissemination of antibiotic-resistant microorganisms have been associated with antibiotic usage in both veterinary and human medicine (Hawkey, 2008; Marshall & Levy, 2011).

Escherichia coli (*E. coli*), *Campylobacter* and *Salmonella* have emerged as antibiotic resistant bacteria that colonized farm animals and can be transmitted to human in food, handling of animals or through the environment (http://www.ciwf.org.uk/media/3758863/Antibiotics-in-Animal-Farming-Public-Health-and-Animal-Welfare.pdf. The World Organization for Animal Health (OIE) has emphasized the importance of surveillance on antimicrobial resistance and to support one of the objectives in Fifth Strategic Plan: 2011-2015 which is to ensure the scientific excellence of information and advice available to the veterinary field (www.oie.int).

Extended Spectrum Beta-Lactamase (ESBL) is an enzyme capable of conferring bacterial resistance to β-lactam drugs such as penicillins, 1st to 3rd generation of cephalosporins such as cefotaxime, ceftriaxone and aztreonam (except cephapirin or carbapenems); however its activity is inhibited by clavulanic acid (Paterson & Bonomo, 2005). Bush & Fisher (2011) in their review defined ESBL as an enzyme that hydrolyzes oxyimino-cephalosporins and monobactams in addition to penicillins and early cephalosporins, and its activity is inhibited by clavulanic acid or tazobactam.

The gene of ESBL is located on a plasmid (a mobile genetic element) (Carattoli, 2009), which made it easily transmitted horizontally within and between bacterial species (Carattoli, 2011). Also, it has been reported that these resistance genes are disseminated throughout the food chain or via direct contact in human and animals (Oppegaard, 2001). A study by Leverstein-van Hall et al., (2011) indicated the ESBL gene similarity between a patient, food animal and its based products. Human infected with ESBL-producing *E. coli* is often associated with limited choice of antibiotic treatment and delayed therapy which leads to prolonged hospital stay and eventually death.
In comparison to other commodities such as poultry and pig, dairy production is rather a small industry in Malaysia. In year 2011, the total local milk production was 70 million litres with 13% self-sufficient level (www.dvs.gov.my). Currently there is a small number of commercial scale dairy farming consisting of more than 50 lactating cows per farm. The majority of the farmers are practicing at medium scale (30-49) and small scale (less than 29) farm. Dairy farming industry in Peninsular Malaysia is regarded as family farming, and nearly half of the farmers inherited the farm from their fore fathers.

The last decade saw drug resistance in Enterobacteriaceae has risen dramatically around the globe. ESBL, known as plasmid mediated enzymes were reported to confer resistance not only to beta-lactams antibiotics including penicillins, first to fourth generation cephalosporins and monobactams, but also to other classes of antibiotics namely fluoroquinolones and aminoglycosides (Gundogan & Avci, 2013), resulting in limited therapeutic options.

Despite various reported studies of ESBL-producing E. coli occurrence in food animals, there were limited studies on risk factors associated with the ESBL-producing E. coli occurrence. The use of cephalosporins was reported as important risk factor for the spread of the resistance genes, in addition to generic antimicrobial use (Liebana et al., 2013). Farm hygiene management was also reported to be another factor associated with the occurrence of ESBL-producing E. coli on dairy farms in United Kingdom (Snow et al., 2012).

ESBL genes are located on plasmids, therefore it can be transferred between and within bacterial species easily (Overdevest et al., 2011). These genes were homologous in bacteria from humans, food and food animals, and the risk factors for their occurrence in food animals were complicated.

Several studies on ESBL-producing E. coli both in human and livestock have been reported extensively by developed regions in the world mainly from the European and American regions; and Asian region including Japan, China and Hong Kong. However, data on the prevalence of ESBL E. coli in food animals particularly in the South East Asia is scarce. In Malaysia, there were few studies and mainly in humans which reported the occurrence in different patient categories including adult patients with respiratory problems and paediatrics and in urban surface water. To date, there is limited information available on the ESBL occurrence in food producing animal in the country, particularly in dairy cattle. It is believed that this is the first study on ESBL-producing E. coli in dairy cattle to be reported.

It is hypothesized that the occurrence of ESBL-producing E. coli in dairy cattle, farm environment and milk is low due to less use of antibiotics in dairy production.
Therefore, the objectives of this study were:

1. To determine the occurrence of ESBL-producing *E. coli* in dairy cattle;
2. To study the risk factors associated with the ESBL-producing *E. coli* occurrence; and
3. To determine the antibiotic resistance patterns of the isolates.
REFERENCES

Department of Health and Human Service, CDC, FDA and USDA. National Antimicrobial Resistance Monitoring System 2010 Executive Report. USA. 2010

Jones, M., Sweeney, A., Stoeppler, E., Miller, M., and Gilligan, P. Comparison of three selective media for the recovery of Extended Spectrum β-Lactamase (ESBL)-producing Enterobacteriaceae, UNC Hospital, UNC School of Medicine.

Li, S., Qu, Y., Hu, D., and Shi, Y. (2012). Comparison of extended spectrum β-lactamases-producing Escherichia coli with non-
ESBLs-producing *E. coli*: drug-resistance and virulence, 3(3): 208–212.

