UNIVERSITI PUTRA MALAYSIA

MODULATION OF C5A RECEPTOR IN MAMMARY GLAND TUMOUR BY EP54 AND PMX205 PEPTIDES

NURNEQMAN NASHREQ BIN KOSNI

FPV 2015 13
MODULATION OF C5A RECEPTOR IN MAMMARY GLAND TUMOUR BY EP54 AND PMX205 PEPTIDES

By

NURNEQMAN NASHREQ BIN KOSNI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

June 2015
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

MODULATION OF C5A RECEPTOR IN MAMMARY GLAND TUMOUR BY EP54 AND PMX205 PEPTIDES

By

NURNEQMAN NASHREQ BIN KOSNI

June 2015

Chairman: Mohd Hezmee Mohd Noor, PhD
Institute: Veterinary Medicine

Drug resistance has become the main issue in cancer therapy field. This situation causes the increasing number of cancer related disease in the world. The usage of complement 5a has become a new method of therapy against cancer by following agonist-antagonist treatment. This project was mainly about the agonist (EP54) and antagonist (PMX205) modulate the expression of C5aR causing the regression of mouse mammary gland tumour. The objectives of this project were to determine the expression of C5a receptor on 4T1 cell line, to determine the mechanism of mouse mammary gland tumour cell death after treatment with respective peptides, determine the effect of the peptides on mouse mammary gland tumour cell, and to determine the effect of EP54 and PMX205 on the liver and kidneys of mice with 4T1-induced mammary gland tumour. Several methods were conducted such as immunofluorescence staining, PCR, ELISA (TNF-α, VEGF, Caspase 3 and C5a), acridine orange and propidium iodide double staining and serum biochemical analysis. The results showed that the presence of C5a receptor on 4T1 cell line was based on the immunofluorescence staining and PCR. The presence of the receptor showed that the 4T1 cell was suitable to be used with those peptides. The mechanism was determined by using ELISA. Based on ELISA results, it showed that the apoptosis becomes the underlying pathway that is used in mammary gland tumour regression for both environments in vitro and in vivo. These findings showed that the apoptosis is an important process involved in most organisms for survival. In order to validate the findings, acridine orange/propidium iodide staining (AO/PI) and cell viability assay were conducted. Besides, tumour measurements also were used as to validate the mechanism proposed. Both peptides showed capability to present apoptosis based on the AO/PI result. While in the cell viability assay (Alamar Blue & MTT) in which it represents data in vitro, it showed that PMX205 showed greater potential in treating the cancer compared to EP54 group. In Alamar Blue assay, the result showed that the absorbance PMX205 was lower compared to EP54 group. Similar trend could also be found from the MTT assay. Tumour measurement recorded from the in vivo experiment, shows that the size of tumour decreased in EP54 group whereas the PMX205 group, the tumour maintain its own size. In the serum biochemical analysis, no significant effects were obtained on the liver and kidney of the animal. Based on these results, it showed that EP54 and PMX205 could modulate the expression of
C5aR causing the regression of mouse mammary gland tumour. Apoptosis was the underlying mechanism involved during the treatment and the treatment did not produce significant effects on the organ of the animal.
analisis biokimia serum, tiada kesan yang penting telah diperolehi pada hati dan buah pinggang haiwan. Berdasarkan keputusan ini, ia menunjukkan bahawa EP54 dan PMX205 boleh memodulasi ungkapan C5aR menyebabkan regresi tumour kelenjar mama tikus. Apoptosis adalah mekanisme asas yang terlibat dalam rawatan dan daripada rawatan tersebut ia tidak menghasilkan kesan yang besar ke atas organ haiwan.
ACKNOWLEDGEMENTS

“In the name of Allah, Most Gracious, Most Merciful”
All sincere praises and thanks are due to ALLAH S.W.T for His limitless blessings on us and may Allah bestow His peace and blessings upon His Prophet Muhammad S.A.W and His family.

I would like to express my gratitude to my supervisor, Dr. Mohd Hezmee bin Mohd Noor, for opening his doors to me both day and night towards the successful completion of my thesis. I would also like to thank for his brilliant supervision, encouragement and guidance right from the conceptual stage to the completion of this thesis.

I am also thankful to my co-supervisors, Prof. Dr. Abdul Rahman Omar and Dr. Intan Shameha binti Abdul Razak and also Pre-clinical science lecturers, Dr. Mohd Hafandi bin Ahmad and Dr. Mokrish bin Md. Ajat for their help, constructive criticism and guidance, which have greatly benefited to me.

My sincere thanks to assistant science officer of Pharmacology and Biologic laboratory, Mr. Johari bin Ripin and Mdm. Siti Khatijah for their assistance and allowing me to use of their facilities. Also to my colleagues, Norhaifa Ganti, Noor Farhana Bachek and Nurul Hazwani Kamarudin for enjoyable time working together.
I certify that a Thesis Examination Committee has met on (date of viva voce) to conduct the final examination of (student’s name) on his (her) thesis entitled (“Title of Thesis”) in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the (insert the name of relevant degree).

Members of the Thesis Examination Committee were as follows:

Name of Chairperson, PhD
Title (e.g., Professor/Associate Professor/Ir; omit if irrelevant)
Name of Faculty
Universiti Putra Malaysia
(Chairman)

Name of Examiner 1, PhD
Title (e.g., Professor/Associate Professor/Ir; omit if irrelevant)
Name of Faculty
Universiti Putra Malaysia
(Internal Examiner)

Name of Examiner 2, PhD
Title (e.g., Professor/Associate Professor/Ir; omit if irrelevant)
Name of Faculty
Universiti Putra Malaysia
(Internal Examiner)

Name of External Examiner, PhD
Title (e.g., Professor/Associate Professor/Ir; omit if irrelevant)
Name of Department and/or Faculty
Name of Organisation (University/Institute)
Country
(External Examiner)

(Insert name of current Deputy Dean)
(E.g. XXXXX XXXX, PhD)
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Mohd Hezmee bin Mohd Noor, PhD
Senior Lecturer
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Intan Shameha binti Abdul Razak, PhD
Senior Lecturer
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Abdul Rahman bin Omar, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HuAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ________________________ Date: __________________

Name and Matric No.: ___
Declaration by Members of Supervisory Committee

This is to confirm that:
- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: __________________________
Name of Chairman of Supervisory Committee:

Signature: __________________________
Name of Member of Supervisory Committee:

Signature: __________________________
Name of Member of Supervisory Committee:
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xiv</td>
</tr>
</tbody>
</table>

CHAPTER

1.0 **GENERAL INTRODUCTION**

2.0 **LITERATURE REVIEW**

2.1 Cancer

2.1.1 Breast Cancer

2.2 Complement System

2.2.1 Complement C5a

2.3 Prospective Drugs used in Mammary Tumour

2.3.1 EP54

2.3.2 PMX205

2.3.3 Tamoxifen

2.4 Prospective Mechanisms of Mammary Tumour Regression

2.4.1 Tumour Necrosis Factor-Alpha (TNF-α)

2.4.1.1 TNF-α and its receptors

2.4.1.2 Function of TNF-alpha

2.4.1.3 Pathological activity of TNF-α

2.4.2 Apoptosis

2.4.2.1 Biology of Apoptosis

2.4.2.2 Genes involved with the regulation of apoptosis

2.4.2.3 Apoptosis in cancer

2.4.3 Caspase

2.4.3.1 Initiator Caspase

2.4.3.2 Executioner Caspase

2.5 Angiogenesis

2.5.1 Proangiogenesis

2.5.2 Antitumour/antiangiogenesis

2.6 Drugs Metabolism in Liver

2.7 Rationality of using liver as sample in ELISA

3.0 **GENERAL MATERIALS AND METHODS**

3.1 Cell Culture

3.2 Inoculation of 4T1 cells into animals and treatments

3.3 Treatment groups

3.4 Statistical Analysis

Page
4.0 EXPRESSION OF COMPLEMENT 5a RECEPTOR ON 4T1 CELL LINE
4.1 Introduction 19
4.2 Materials and Methods
 4.2.1 Cell culture 20
 4.2.2 Immunofluorescence staining 20
 4.2.3 Polymerase chain reaction (RT-PCR and qPCR) 20
4.3 Results and Discussion 21
4.4 Conclusion 24

5.0 EFFECT OF EP54, PMX205 PEPTIDES AND TAMOXIFEN ON ANGIogenesis AND APOPTOSIS MEDIATORS
5.1 Introduction 25
5.2 Materials and Methods
 5.2.1 Cell culture 25
 5.2.2 Inoculation of 4T1 cells into animals and treatments 25
 5.2.3 Treatment groups 26
 5.2.4 Tissue homogenate 26
 5.2.5 BCA protein assay 26
 5.2.6 Enzyme-Linked Immunosorbent Assay (ELISA) 26
 5.2.7 Statistical analysis 26
5.3 Results and Discussion 27
5.4 Conclusion 32

6.0 EFFECT OF EP54, PMX205 PEPTIDES AND TAMOXIFEN ON THE VIABILITY OF MOUSE MAMMARY GLAND TUMOUR CELL
6.1 Introduction 33
6.2 Materials and Method
 6.2.1 Cell culture 33
 6.2.2 Acridine Orange/Propidium Iodide Staining (AO/PI) 34
 6.2.3 Cell viability assay
 6.2.3.1 Alamar blue assay 34
 6.2.3.2 MTT assay 35
 6.2.4 Measurement of tumour progression/regression during in vivo studies, 35
 6.2.5 Statistical analysis 35
6.3 Results and Discussion 35
6.4 Conclusion 41

7.0 EFFECT OF EP54, PMX205 PEPTIDES AND TAMOXIFEN ON THE LIVER, KIDNEY AND MUSCLE SERUM PARAMETERS OF 4T1 CELL-INDUCED MOUSE MAMMARY GLAND TUMOUR
7.1 Introduction 42
7.2 Materials and Method
 7.2.1 Inoculation of 4T1 cells into animals and treatments 42
 7.2.2 Serum biochemical analysis 43
 7.2.3 Statistical analysis 43
7.3 Results and Discussion 43
8.0 GENERAL DISCUSSION, CONCLUSION AND RECOMMENDATIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 General Discussion</td>
<td>47</td>
</tr>
<tr>
<td>8.2 Conclusion</td>
<td>51</td>
</tr>
<tr>
<td>8.3 Recommendations</td>
<td>51</td>
</tr>
</tbody>
</table>

REFERENCES 53
APPENDICES 74
BIODATA OF STUDENT 82
LIST OF PUBLICATIONS 83
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Several types of complement activation pathways</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Classification of Caspase family</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>The expression of C5a receptors in the 4T1 cell lines</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>Result of electrophoresis in 1.5% TBE-agarose gel</td>
<td>23</td>
</tr>
<tr>
<td>5</td>
<td>Real-time PCR</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>Bar graph represent results of C5a ELISA assay</td>
<td>27</td>
</tr>
<tr>
<td>7</td>
<td>Bar graph represent results of TNF-alpha ELISA assay</td>
<td>28</td>
</tr>
<tr>
<td>8</td>
<td>Bar graph represent results of VEGF ELISA assay</td>
<td>29</td>
</tr>
<tr>
<td>9</td>
<td>Bar graph represent results of Caspase 3 Elisa assay</td>
<td>31</td>
</tr>
<tr>
<td>10</td>
<td>Acridine orange and propidium iodide staining</td>
<td>36</td>
</tr>
<tr>
<td>11</td>
<td>Alamar blue assay at 570 nm, wavelength</td>
<td>37</td>
</tr>
<tr>
<td>12</td>
<td>Percentage Reduction of Alamar Blue</td>
<td>37</td>
</tr>
<tr>
<td>13</td>
<td>MTT assay results at 565 nm, wavelength</td>
<td>38</td>
</tr>
<tr>
<td>14</td>
<td>Tumour measurement for each group</td>
<td>40</td>
</tr>
<tr>
<td>15</td>
<td>Serum Biochemical Analysis</td>
<td>44</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

bp base pair
BCA Bicinchoninic acid
CO2 Carbon dioxide
Caspase cysente-dependent aspartate-directed proteases
dH2O distilled water
DEPC DiethylenePyrocarbonate
DMSO Dimethyl sulfoxide
DNA Deoxyribonucleic acid
FBS Fetal bovine serum
µg/ml microgram per milliliter
g gram
GAPDH Glyceraldehyde 3-phosphate dehydrogenase
h hour
HCL Hydrochloric acid
IBS Institute of Bioscience
IC50 half maximal inhibitory concentration
kDa Kilodalton
L Litre
M molar
min Minute
mins Minutes
ml Mililiter
mM Milimolar
MTT Methylthiazol Tetrazolium
NaCl Sodium Chloride
NaOH Sodium Hydorxide
NCR National Cancer Registry
PBS Phosphate Buffer Saline
PCR Polymerase Chain Reaction
PI Propidium Iodide
RNA ribonucleic acid
rpm rotated per minute
RPMI Roswell Park Memorial Institute
RT-PCR Reverse Transcriptase Polymerase Chain Reaction
Sec Seconds
TNF-α Tumour Necrosis Factor
UPM Universiti Putra Malaysia
µl microliter
mg/ml milligram per milliliter
v/v volume over volume
w/v weight per volume
˚C Degree Celcius
CHAPTER 1

GENERAL INTRODUCTION

Breast cancer is a combination of the most notorious cancers on earth (about 22% of all type of cancers), followed by a malady of the prostate, colon, lung and ovaries, accordingly. According to Parkin et al. (2005), mammary gland disease is also associated with a 14% from cases of all deaths from cancer among women worldwide, and also known as the most common cancer for women in both developing and developed countries. Evidence in 2003 from the National Cancer Registry of Malaysia recorded that about 3738 new cases associated with breast cancer were recorded to the registry on that year, producing an age standardized incidence rate (ASR) of 46.2 per 100,000 women. This mechanism focuses 1 in 20 women in Malaysia purposefulness transport breast cancer in their lifetime (Yip et al., 2006).

There are different types of treatment that can be used to treat breast cancer such as surgery, radiation therapy, hormone therapy, chemotherapy and targeted therapy. Each of these treatments has its own positive or negative effects. For example, in chemotherapy, several kinds of drugs are used during a session. The problem is when certain kind of drugs was introduced to the cancer cell, it will cause some genetic alterations in the cancer cell (Gottesman, 2002), which later causes failure of the respective drugs to work against cancer cells. This situation is known as drug resistance which has also become one of the most common problems that usually occur in cancer therapy.

The study on possible mechanism of tumour regression especially in malignant mammary tumour has gained some focus lately, as it is capable of promoting the development of new drugs or peptides that are useful to be used for cancer therapy as well as yielding a wealth of information about complement therapies in treating cancer diseases. From past to present, it is recorded that the resistance of certain type of tumour towards commercial cancer therapy medicine has become a major problem (Dexter and Leith, 1986). The resistance of tumour towards drugs occurred due to few factors such as host factor and genetic alterations in cancer cells (Gottesman, 2002). Both of these factors contributed towards the failure of cancer therapy.

The complement C5a system has become a potential treatment to be applied in cancer therapy based on its involvement in immune defence mechanism, where it acts as a protector for an organism against the presence of any foreign substances inside an organism. In addition, the expression of complement C5a receptor is not just restricted on myeloid cells such as macrophages (McCarthy and Henson, 1979), basophils and neutrophils (Hook et al., 1975) and eosinophils (Kay et al., 1973), but it is also expressed on non-myeloid cells such as epithelial, endothelial and smooth muscle cells in the human liver and lung (Zwirner et al., 1999). The widespread expression of C5a receptor suggested more of its general and systemic functionality.
The experiment was planned to observe the expression of complement C5a receptor on malignant type of breast cancer model cell that is known as 4T1 cells. Further experiments were constructed to see the effects or interactions between complement peptides, agonist (EP54) and antagonist (PMX205) with 4T1 cell line in vitro and in vivo.

The hypothesis of this study was agonist (EP54) and antagonist (PMX205) modulate expression of C5aR causing regression of mouse mammary gland tumour. The objectives of this study were to determine the:

1) expression of C5a receptor on 4T1 cell line.
2) mechanism of mouse mammary gland tumour cell death after treatment with EP54 and PMX205 peptides.
3) effect of EP54 and PMX205 peptides on mouse mammary gland tumour cell.
4) effect of EP54 and PMX205 on the liver and kidney of mice with 4T1-induced mammary gland tumour.
REFERENCES

Yoshiji, H., Kuriyama, S., Hicklin, D.J. et al. (1999). KDR/Flik-1 is a major regulator of vascular endothelial growth factor-induced tumor development and

