RESPONSE OF RESPIRATORY, GASTROINTESTINAL, AND URINARY TRACTS OF BUFFALO CALVES FOLLOWING EXPOSURE TO PASTEURELLA MULTOCIDA B:2

ANNAS BIN SALLEH

FPV 2015 10
RESPONSE OF RESPIRATORY, GASTROINTESTINAL, AND URINARY TRACTS OF BUFFALO CALVES FOLLOWING EXPOSURE TO PASTEURELLA MULTOCIDA B:2

By

ANNAS BIN SALLEH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

May 2015
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

RESPONSE OF RESPIRATORY, GASTROINTESTINAL, AND URINARY TRACTS OF BUFFALO CALVES FOLLOWING EXPOSURE TO PASTEURELLA MULTOCIDA B:2

By

ANNAS BIN SALLEH

May 2015

Chairman : Mohd Zamri Bin Saad, PhD
Faculty : Veterinary Medicine

Haemorrhagic septicaemia (HS) is an acute, fatal, septicaemic disease of ruminants, particularly in buffalo. HS is caused by a Gram-negative bacterium, Pasteurella multocida of specific serotypes; B:2 (Asian serotype) or E:2 (African serotype). Infection results in outbreaks and death of animals, which in turn leads to economic losses to the farmers. Animals surviving the outbreaks usually gain immunity and become life-long carriers. These carrier animals are believed to shed P. multocida B:2 via the respiratory tract, transmitting the organism to the surrounding naive animals, resulting in yet another outbreak and formation of new carrier animals. It has been long proven that the respiratory tract plays an important role in the transmission of HS among animals. However, since HS is a septicaemic disease, the aetiological agent could be isolated from all organs at necropsy and recent study revealed a new theory of the involvement of gastrointestinal and urinary tracts in development or transmission of HS. Therefore, this study was conducted to determine the involvement of gastrointestinal and urinary tracts in development of acute HS as well as its transmission especially among carrier animals.

Six buffalo calves were selected and divided into two groups. Group 1 was inoculated subcutaneously with 0.02 ml/kg of 1x10^9 cfu/ml of P. multocida B:2, while Group 2 was subcutaneously inoculated with 0.02 ml/kg of sterile phosphate buffer saline (PBS) and served as the negative control group. The buffalo calves were observed for clinical signs of HS. All buffalo calves of Group 1 were euthanised due to advanced clinical signs, while all buffalo calves of Group 2 survived and were euthanised at 72 h p.i.. At necropsy, the organs of the respiratory, gastrointestinal, and urinary tracts were collected and subjected to P. multocida B:2 isolation
and concentration determination, as well as immunoperoxidase. The present study observed that the distribution of \textit{P. multocida} B:2 based on the bacterial concentration and immunoperoxidase staining differs between the respiratory, gastrointestinal, and urinary tracts. In general, the distribution of \textit{P. multocida} B:2 was observed to be significantly ($p<0.05$) high in the respiratory organs. However, the distribution and concentration of \textit{P. multocida} B:2 in the gastrointestinal and urinary tracts, particularly in the liver, the small intestinal segments, and the kidneys were observed to be high. Severity of the pathological changes in these tracts was also compared. As expected, the lesions were most severe among the organs of the respiratory tract following gross, histopathological, and ultrastructural evaluations.

The involvement of respiratory, gastrointestinal, and urinary tracts in transmission of HS from carriers was determined in this study. 12 buffalo calves were selected and equally divided into three groups; Group 1 served as acute infection group, Group 2 as commingling group, and Group 3 as negative control group. Buffalo calves of Group 1 were inoculated subcutaneously with 0.02 ml/kg of 1×10^5 cfu/ml of \textit{P. multocida} B:2. Buffalo calves of Group 2 were not inoculated, but were allowed to commingle with buffalo calves of Group 1. Buffalo calves of Group 3 were inoculated subcutaneously with 0.02 ml/kg of sterile PBS. All buffalo calves were observed for clinical signs of HS, and all buffalo calves of Group 1 were euthanised at 24 to 48 h p.i., and transmitted the disease to the buffalo calves of Group 2, resulting in 3 buffalo calves to become carriers, while another had to be euthanised due to acute HS. The carrier animals of Group 2 and the negative control buffalo calves of Group 3 were subsequently subjected to three cycles of stress and immunosuppression by intramuscular injection of dexamethasone. At the end of the three cycles of immunosuppression, the carrier buffalo calves of Group 2, and the negative control buffalo calves of Group 3 were euthanised. At necropsy, samples of the respiratory, gastrointestinal, and urinary tracts were collected, and subjected to isolation and identification of \textit{P. multocida} B:2, detection of \textit{P. multocida} B:2 DNA by polymerase chain reaction (PCR), and immunoperoxidase for localisation of \textit{P. multocida} B:2. Under the first cycle of immunosuppression, the carrier animals were observed to shed \textit{P. multocida} B:2 via the respiratory, gastrointestinal, and urinary tracts following isolations of the organism from the nasal, rectal, and vaginal swabs. The immunoperoxidase technique was used to aid in localisation of \textit{P. multocida} B:2 in respiratory, gastrointestinal, and urinary tracts of carrier animals. \textit{Pasteurella multocida} B:2 was observed to localised in various organs of the respiratory, gastrointestinal, and urinary tracts. On the other hand, \textit{P. multocida} B:2 DNA was detected in the tonsil, lungs, reticulum, ileum, and ureter of the carrier animals of Group 2.
Nine buffalo calves and nine cattle calves were selected to compare the susceptibility between buffalo and cattle calves upon exposure to *P. multocida* B:2. The animals were divided into six groups. Group 1 and Group 2 consist of three buffalo calves, and three cattle calves, respectively. These groups were inoculated subcutaneously with 0.02 ml/kg of sterile PBS and served as the negative control groups. Group 3 and Group 4 consisted of three buffalo calves, and three cattle calves, respectively. These groups were inoculated subcutaneously with 0.02 ml/kg of 1x10^5 cfu/ml of *P. multocida* B:2. Group 5 and Group 6 consisted of three buffalo calves, and three cattle calves, respectively. These groups were inoculated intranasally with 0.02 ml/kg of 1x10^5 cfu/ml of *P. multocida* B:2. Subsequently, samples of observation and recording of clinical signs severity, whole blood for quantitation of bacteraemia, and blood plasma for quantitation of endotoxaemia were collected. Animals with advanced clinical signs were euthanised. It was found that all buffalo and cattle calves of Group 3 and 4 and 2 buffalo calves of Group 5 had to be euthanised due to severe clinical signs of HS, pathological changes, and septicaemia. On the other hand, all cattle calves of Group 6 survived, and were euthanised at 72 h p.i.. Blood endotoxin and *P. multocida* B:2 concentrations throughout the experiment revealed that endotoxaemia preceded bacteraemia prior to the development of septicaemia. Thus, it was postulated that the respiratory immunophysiology of cattle might contribute to its resistance to HS.

Based on high concentration of *P. multocida* B:2 in the lungs, liver, duodenum, jejunum, ileum, and kidney; high severity in scores in the lungs, abomasum, duodenum, jejunum, ileum, and kidney; isolation of *P. multocida* B:2 from the nasal, rectal and vaginal swabs of carrier animals; immunoreaction and *P. multocida* B:2 DNA detection from various organs of the respiratory, gastrointestinal, and urinary tracts of carrier animals; it was concluded that the respiratory, gastrointestinal, and urinary tracts play roles in the development and transmission of HS, although the respiratory tract remained as the most important system in HS transmission and development.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

TINDAK-BALAS SALURAN PERNAFASAN, GASTROUSUS DAN URINARI ANAK KERBAU AKIBAT PENDEDahan KEPADA PASTEURELLA MULTOCIDA B:2

Oleh

ANNAS BIN SALLEH

Mei 2015

Pengerusi : Mohd Zamri Bin Saad, PhD
Fakulti : Perubatan Veterinar

Hawar berdarah (HS) ialah satu penyakit yang akut dan boleh membunuh haiwan ruminan, terutamanya kerbau melalui septisemia. HS disebabkan oleh bakteria Gram-negatif, Pasteurella multocida iaitu yang berserotip khusus, B:2 (serotip Asia) atau E:2 (serotip Afrika). Jangkitan menyebabkan letusan wabak dan kematian haiwan yang seterusnya menyebabkan kerugian ekonomi kepada peladang. Haiwan yang terselamat daripada letusan wabak berkenaan selalunya akan memperoleh imuniti dan menjadi haiwan pembawa sepanjang hayat. Haiwan-haiwan pembawa dipercayai akan mebebaskan P. multocida B:2 melalui saluran pernafasan, lalu akan merebakkan organisma ini kepada haiwan-haiwan yang naïf di sekelilingnya, akan menyebabkan wabak berlaku dan pembentukan haiwan pembawa yang baru. Dipercayai bahawa saluran pernafasan memainkan peranan yang penting dalam jangkitan penyakit HS. Bagaimanapun, oleh kerana HS merupakan penyakit septisemia, jadi, agen penyebab penyakit ini boleh dipencillkan dari semua organ semasa nekropsi dan daripada hasil kajian baru-baru ini mendedahkan teori baharu di mana terdapat kemungkinan penglibatan saluran gastrousus dan urinari dalam pembentukan dan penyebaran penyakit HS. Maka, kajian ini dijalankan bagi menentukan penglibatan saluran gastrousus dan urinari dalam pembentukan penyakit HS yang akut serta jangkitan terutamanya dalam haiwan pembawa.

Enam ekor anak kerbau telah dipilih, dan dibahagikan kepada dua kumpulan. Kumpulan 1 diinokulatkan secara subkutaneus dengan 0.02 ml/kg 1x10^9 unit pembentukan koloni (cfu)/ml P. multocida B:2, sementara Kumpulan 2 telah diinokulat dengan 0.02 ml/kg salina penimbal fosfat (PBS) yang steril dan dijadikan sebagai kumpulan kawalan negatif.
Kesemua anak kerbau ini diperhatikan bagi mengesan tanda-tanda klinikal HS. Semua anak kerbau dari Kumpulan 1 telah dieutanasia disebabkan tanda klinikal yang teruk, sementara anak kerbau yang hidup dari Kumpulan 2 hidup dan telah dieutanasia pada 72 jam pi. Semasa nekropsi, organ-organ saluran pernafasan, gastrousus, dan urinari telah disampel, dan menjalani pemencilan *P. multocida* B:2 dan penentuan kepekatan, dan juga imunoperoksidase. Kajian ini mendapati bahwa taburan *P. multocida* B:2 melalui penentuan kepekatan bakteria dan imunoperoksidase berbeza di antara saluran pernafasan, gastrousus, dan urinari. Secara umumnya, taburan *P. multocida* B:2 didapati tertinggi dengan sangat berbeza (*p*<0.05) dalam organ-organ pernafasan. Walau bagaimanapun, taburan dan kepekatan *P. multocida* B:2 dalam saluran gastrousus dan urinari, terutamanya hati, dan usus kecil, serta buah pinggang didapati tinggi. Keparahan dalam perubahan patologi organ-organ dalam semua saluran tersebut telah dibandingkan. Seperti yang dijangkakan, keparahan lesi telah didapati paling tinggi di dalam organ-organ saluran pernafasan selepas penilaian secara kasar, histopatologi, dan ultrastruktur.

Penglibatan saluran pernafasan, gastrousus, dan urinari dalam penyebaran penyakit HS dari haiwan pembawa telah dikenalpasti di dalam kajian ini. 12 ekor anak kerbau telah dipilih, dan dibahagikan sama rata kepada 3 kumpulan; Kumpulan 1 dijadikan sebagai kumpulan jangkitan akut, Kumpulan 2 sebagai kumpulan campuran, dan Kumpulan 3 sebagai kumpulan kawalan negatif. Anak kerbau dari Kumpulan 1 telah diinokulatkan melalui subkutaneus dengan 0.02 ml/kg 1x10^5 cfu/ml *P. multocida* B:2. Anak kerbau dari Kumpulan 2 tidak diinokulat, tetapi dibiarkan untuk untuk bercampur dengan anak kerbau dari Kumpulan 1. Anak kerbau dari Kumpulan 3 diinokulat melalui subkutaneus dengan 0.02 ml/kg PBS yang steril. Kesemua anak kerbau ini diperhatikan bagi mengesan tanda-tanda klinikal HS, dan kesemua anak kerbau dari Kumpulan 1 telah dieutenasia pada 24 hingga 48 jam p.i., dan telah menjangkitkan anak kerbau Kumpulan 2. Ini menyebabkan 3 anak kerbau dari Kumpulan 2 menjadi haiwan pembawa, manakala seekor terpaksa dieutenasia kerana HS akut. Haiwan pembawa dari Kumpulan 2, dan anak kerbau kawalan negatif dari Kumpulan 3 kemudiannya dihadapkan dengan tiga kitaran stres dan imunotindasan dengan suntikan dexamethasone secara intraotot. Pada akhir kitaran imunotindasan, haiwan pembawa dari Kumpulan 2, dan anak kerbau kawalan negatif dari Kumpulan 3 telah dieutenasia. Semasa nekropsi, sampel-sampel dari saluran pernafasan, gastrousus, dan urinari telah dipungut, dan menjalani pemencilan *P. multocida* B:2, pengesanan DNA *P. multocida* B:2 menggunakan reaksi rantai polymerase (PCR), dan imunoperoksidase untuk penempatan *P. multocida* B:2. Semasa kitar imunotindasan yang pertama, haiwan-haiwan pembawa didapati telah membebaskan *P. multocida* B:2 melalui kesemua saluran pernafasan, gastrousus, dan urinari, di mana organisma ini berjaya dipencilkan melalui calitan hidung,
rektum, dan vagina. Teknik imunoperoksidase telah digunakan bagi membantu mengesan \textit{P. multocida} B:2 di dalam saluran pernafasan, gastrousus, dan urinari haiwan-haiwan pembawa tersebut. \textit{Pasteurella multocida} B:2 telah diperhatikan untuk menyetempatkan di dalam pelbagai organ saluran pernafasan, gastrousus, dan urinari haiwan-haiwan pembawa dari Kumpulan 2. DNA \textit{P. multocida} B:2 telah dikesan di dalam tonsil, peparu, reticulum, ileum, dan ureter haiwan-haiwan pembawa dari Kumpulan 2.

Sembilan anak kerbau dan Sembilan anak lembu dipilih bagi membandingkan kerentanan di antara anak kerbau dan anak lembu selepas jangkitan oleh \textit{P. multocida} B:2. Haiwan-haiwan ini dibahagikan kepada enam kumpulan. Kumpulan 1 dan Kumpulan 2 terdiri daripada tiga ekor anak kerbau, dan tiga ekor anak lembu, masing-masing. Kumpulan-kumpulan ini telah diinokulat secara subkutaneus dengan 0.02 ml/kg PBS yang steril dan dijadikan sebagai kumpulan kawalan negatif. Kumpulan 3 dan Kumpulan 4 terdiri daripada tiga anak kerbau, dan tiga anak lembu, masing-masing. Kumpulan-kumpulan ini diinokulat secara subkutaneus dengan 0.02 ml/kg 1x10^5 cfu/ml \textit{P. multocida} B:2. Kumpulan 5 dan Kumpulan 6 terdiri daripada tiga anak kerbau, dan tiga anak lembu, masing-masing. Kumpulan-kumpulan ini diinokulat secara intranasal dengan 0.02 ml/kg 1x10^5 cfu/ml \textit{P. multocida} B:2. Kemudian, sampel pemerhatian dan merekod keterukan tanda-tanda klinikal, darah penuh bagi mengkuantitasi bakteremia, dan plasma darah bagi mengkuantitasi endotoksemia telah dipungut. Haiwan-haiwan dengan tanda-tanda klinikal lanjutan telah dieutenasia. Didapati bahawa kesemua anak kerbau dan anak lembu dari Kumpulan 3 dan 4, dan 2 anak kerbau dari Kumpulan 5 terpaksa dieutenasia akibat HS dengan tanda-tanda klinikal, perubahan patologi, serta septisemia yang teruk. Dalam itu, kesemua anak lembu dari Kumpulan 6 yang dijangkiti secara intranasal terselamat, dan dieutenasia pada 72 jam p.i.. Hasil perubahan kepekanan endotoksin dan \textit{P. multocida} B:2 dalam darah sepanjang eksperimen ini menyaksikan bahawa endotoksemia berlaku terlebih dahulu sebelum bakteremia semasa pembentukan septisemia. Dengan itu, telah dipostulatkan bahawa sifat-sifat imunofisiologi pernafasan lembu mungkin menyumbang kepada ketahanannya terhadap HS.

Berdasarkan kepekanan \textit{P. multocida} B:2 yang tinggi di dalam peparu, duodenum, jejenum, ileum, dan buah pinggang; skor keterukan yang tinggi di dalam peparu, abomasum, duodenum, jejenum, ileum, dan buah pinggang; pemencilan \textit{P. multocida} B:2 dari calitan nasal, rectum dan vagina dari haiwan-haiwan pembawa; tindak balas imun dan pengesanan DNA \textit{P. multocida} B:2 dari pelbagai organ saluran pernafasan, gastrousus, dan urinari dari haiwan-haiwan pembawa; disimpulkan bahawa kesemua saluran pernafasan, gastrousus, dan kencing memainkan peranan dalam pembentukan dan penyebaran HS,
walaubagaimanapun, saluran pernafasan kekal sebagai sistem utama dalam penyakit HS.
ACKNOWLEDGEMENTS

In the name of Allah, the most gracious, the most merciful. I’m deeply thankful for the gift of perseverance in completing yet another training programme.

Foremost, I would like to express my deepest, sincere gratitude to the chairman of my supervisory committee, Prof. Dr. Mohd Zamri Bin Saad, for his enthusiasm and unique style of teaching, guidance and immense knowledge-sharing. The training was a mixture of excitement, struggle, ups and downs; a short adventure of research.

To the rest of the supervisory committee members, Dr. Faez Firdaus Jesse Ariasamy Bin Abdullah and Associate Prof. Dr. Zunita Binti Zakaria, I would like to thank them for the support and faith in me throughout the completion of this programme.

I would also like to extend my appreciation to the followings:

- Dr. Abubakar MS for his patience and guidance, sharing the knowledge of haemorrhagic septicaemia, *P. multocida*, pathology and research in general.
- Post-graduate colleagues: Mr. Firdaus Nawi, Dr. Amal Azmai, thanks for the warm welcome back in 2011, and all the help. To Dr. Shaqinah Nasrudin, Dr. Adzarina Nordi, Mrs. Illazuwa, Ms. Hazwani Oslan, Dr. Mazlina Mazlan, Dr. Benjamin Emikpo, Dr. Tanko Polycarp, Dr. Oppe Onilude and Dr. Fufa Gimba for helping and making the training exciting.
- Staffs of Histopathology Laboratory: Mrs. Jamilah Jahari and Mrs. Latiffah Hannan for the technical assistance.
- Staffs of Post Mortem Unit: Dr. Muhd Taqiyudin Zainal Ulum, Dr. Shahirudin Shamsudin, Mr. Ghazali Md. Yusoff, Mr. Mohd Najib Yahya, and Mr. Apparau Somanai.
- Staffs in Ruminant Research Unit: Mr. Arif, Mr. Faizu, Mr. Jefri Norsidin, Mr. Mokhtar, Mr. Hafizi and Mr. Noraziman; thanks for lending some good helping hands throughout the study.
- To the contractors: Dr. Ong Kang Woei, Ms. Nur Atikah Ibrahim, Dr. Mazrul Fahmi Mahadzir, Dr. Ahmad Afifi, Dr. Syafiq Shahudin, Dr. Nor Adilah, and Dr. Sandy Ling Choo.
- To Prof. Dr. Mohamed Ariff Omar for his assistance in experimental designs and statistical analysis.
- To Dr. Tan Chui Zhein, along with my friends, especially to Ms. Nur Hafizah Hashim and Mr. Khalil Nawi, thanks for being my strongest support system. I’m deeply grateful to have you guys around.
• To O, thanks for coming into my life, becoming the best company in my life.
• And to my parents, and my sisters, brother in law, for all the necessary support.

I acknowledge Universiti Putra Malaysia for the Graduate Research Fellowship & Tenaga Akademik Muda, and the Ministry of Education Malaysia for MyBrain15 & SLAB/SLAI as well as for the ERGF Grant.
This Thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment for the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follow:

Mohd Zamri Bin Saad, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Zunita Binti Zakaria, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Faez Firdaus Jesse Ariasamy Bin Abdullah, PhD
Senior Lecturer
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Bujang Kim Huat, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia
Date:
Declaration by graduate student

I hereby confirm that:
• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ___________________________ Date: ____________________

Name and Matric No.: ___
Declaration by Members of Supervisory Committee

This is to confirm that:
- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: __
Name of Chairman of Supervisory Committee:

Signature: __
Name of Member of Supervisory Committee:

Signature: __
Name of Member of Supervisory Committee:

xiii
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
</tr>
<tr>
<td>ABSTRACT</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
</tr>
<tr>
<td>APPROVAL</td>
</tr>
<tr>
<td>DECLARATIONS</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
</tr>
</tbody>
</table>

CHAPTER

1 **INTRODUCTION**

1.1 Research hypotheses
1.2 Objectives of the study

2 **LITERATURE REVIEW**

2.1 *Pasteurella multocida*

2.1.1 *Pasteurella multocida* Infection
2.1.2 *Pasteurella multocida* Serological Classification

2.2 *Pasteurella multocida* Virulence Factors

2.2.1 Lipopolysaccharide Endotoxin
2.2.2 Capsule
2.2.3 Fimbriae
2.2.4 Outer Membrane Proteins (OMP)

2.3 Haemorrhagic Septicaemia

2.3.1 Aetiological Agent of Haemorrhagic Septicaemia
2.3.2 History of Haemorrhagic Septicaemia and Nomenclature of *Pasteurella multocida*
2.3.3 Epidemiology of Haemorrhagic Septicaemia
2.3.4 Species Susceptibility Towards Haemorrhagic Septicaemia
2.3.5 Pathology of Haemorrhagic Septicaemia
2.3.6 Pathogenesis of Haemorrhagic Septicaemia
2.3.7 Transmission of Haemorrhagic Septicaemia

2.4 Respiratory Tract
2.5 Gastrointestinal Tract
2.6 Urinary Tract

3 **DISTRIBUTION OF *PASTEURELLA MULTOCIDA* B:2 IN THE RESPIRATORY, GASTROINTESTINAL, AND URINARY**
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>NEW SITES OF LOCALISATION OF PASTEURELLA MULTOCIDA B:2 IN BUFFALO CALVES SURVIVING EXPERIMENTAL HAEMORRHAGIC SEPTICAEMIA</td>
<td>87</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>87</td>
</tr>
<tr>
<td>5.2</td>
<td>Materials and Methods</td>
<td>88</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Animals</td>
<td>88</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Preparation of Pasteurella multocida B:2 Inoculum</td>
<td>88</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Experimental Design</td>
<td>89</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Isolation and Identification of Pasteurella multocida B:2</td>
<td>90</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Localisation of Pasteurella multocida B:2</td>
<td>90</td>
</tr>
<tr>
<td>5.2.6</td>
<td>Statistical Analysis</td>
<td>91</td>
</tr>
<tr>
<td>5.3</td>
<td>Results</td>
<td>91</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Clinical Response to Pasteurella multocida B:2 Infection</td>
<td>91</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Gross Pathology</td>
<td>93</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Isolation and Identification of Pasteurella multocida B:2</td>
<td>95</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Immunoperoxidase Examination</td>
<td>95</td>
</tr>
<tr>
<td>5.4</td>
<td>Discussion</td>
<td>107</td>
</tr>
<tr>
<td>5.5</td>
<td>Conclusions</td>
<td>108</td>
</tr>
<tr>
<td>6</td>
<td>COMPARATIVE CLINICOPATHOLOGICAL CHANGES IN BUFFALO AND CATTLE CALVES FOLLOWING EXPERIMENTAL HAEMORRHAGIC SEPTICAEMIA</td>
<td>109</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>109</td>
</tr>
<tr>
<td>6.2</td>
<td>Materials and Methods</td>
<td>109</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Animals</td>
<td>109</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Preparation of Pasteurella multocida B:2 Inoculum</td>
<td>110</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Experimental Design</td>
<td>110</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Clinical Response Evaluation</td>
<td>111</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Severity of Gross Lesion</td>
<td>112</td>
</tr>
<tr>
<td>6.2.6</td>
<td>Severity of Histopathological Lesion</td>
<td>112</td>
</tr>
<tr>
<td>6.2.7</td>
<td>Pasteurella multocida B:2 Concentration in Blood</td>
<td>112</td>
</tr>
<tr>
<td>6.2.8</td>
<td>Concentration of Endotoxin in Blood</td>
<td>112</td>
</tr>
<tr>
<td>6.2.9</td>
<td>Concentration of Pasteurella multocida B:2 in Organs</td>
<td>113</td>
</tr>
<tr>
<td>6.2.10</td>
<td>Data Analysis</td>
<td>113</td>
</tr>
<tr>
<td>6.3</td>
<td>Results</td>
<td>113</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Clinical Response to Pasteurella multocida B:2 Infection</td>
<td>113</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Rectal Temperature</td>
<td>121</td>
</tr>
</tbody>
</table>
6.3.3 Gross Lesion Examination and Evaluation 123
 6.3.3.1 Description of lesions 123
 6.3.3.2 Analysis of Lesion Score 132
6.3.4 Histopathological Examination and Evaluation 134
6.3.5 Concentration of *Pasteurella multocida* B:2 in Organs 145
6.3.6 Concentration of *Pasteurella multocida* B:2 in Blood 149
6.3.7 Concentration of Endotoxin in Blood 149
6.4 Discussion 152
6.5 Conclusions 154

7 GENERAL DISCUSSION, CONCLUSIONS, AND RECOMMENDATIONS FOR FUTURE RESEARCH 155
 7.1 General discussion 155
 7.2 Conclusion 159
 7.3 Recommendations for future research 160

REFERENCES 162
APPENDICES 182
BIODATA OF STUDENT 193
LIST OF PUBLICATIONS 191
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Descriptive statistics of P. multocida B:2 concentration in overall organs, and in all organs of the respiratory, gastrointestinal, and urinary tracts of the infected buffalo calves of Group 1</td>
<td>33</td>
</tr>
<tr>
<td>3.2</td>
<td>Mean (±SEM) concentration of Pasteurella multocida B:2 in different parts of the respiratory, gastrointestinal, and urinary tracts of buffalo calves following experimental exposure</td>
<td>34</td>
</tr>
<tr>
<td>3.3</td>
<td>Comparative mean (±SEM) concentrations of Pasteurella multocida B:2 in different parts of the luminal gastrointestinal tract of buffalo calves following experimental exposure</td>
<td>35</td>
</tr>
<tr>
<td>3.4</td>
<td>Mean (±SEM) immunoperoxidase scorings that indicate the distribution and intensity in different parts of the respiratory, gastrointestinal, and urinary tracts of infected buffalo calves</td>
<td>46</td>
</tr>
<tr>
<td>3.5</td>
<td>Correlation between the concentrations of Pasteurella multocida B:2 and the immunoperoxidase scorings at different parts of the respiratory, gastrointestinal, and urinary tracts of infected buffalo calves</td>
<td>47</td>
</tr>
<tr>
<td>4.1</td>
<td>Scoring and severity of scoring criteria for ultrastructural changes following acute cellular injury caused by Pasteurella multocida B.</td>
<td>53</td>
</tr>
<tr>
<td>4.2</td>
<td>Mean gross lesion scoring for the respiratory, gastrointestinal, and urinary tracts following subcutaneous inoculation of Pasteurella multocida B:2</td>
<td>59</td>
</tr>
<tr>
<td>4.3</td>
<td>Mean histopathology scoring for the respiratory, gastrointestinal, and urinary tracts organs of buffalo calves following subcutaneous inoculation of Pasteurella multocida B:2</td>
<td>69</td>
</tr>
<tr>
<td>4.4</td>
<td>Mean ultrastructural scoring for the respiratory, gastrointestinal, and urinary tracts organs of buffalo calves following subcutaneous infection of</td>
<td></td>
</tr>
</tbody>
</table>
Pasteurella multocida B:2

5.1 Pasteurella multocida B:2 isolation, DNA detection, localisation in all samples collected from commingling buffalo calves 2A, 2B, and 2C of Group 2. Note that P. multocida B:2 isolation at post-mortem were negative for all samples.

6.1 Summary of animal groupings and treatments

6.2 Summary of clinical signs scoring criteria

6.3 Mean ± SEM clinical score scoring of buffalo and cattle calves post infection by Pasteurella multocida B:2.
<table>
<thead>
<tr>
<th>Figure</th>
<th>LIST OF FIGURES</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Diseases of importance caused by Pasteurella multocida</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Schematic drawing of the cell wall of Gram-negative bacteria</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Outbreak of haemorrhagic septicaemia in Kelantan (May 2008) resulting in acute death of many buffaloes and huge economic losses</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>Basic appearances of Pasteurella multocida B:2</td>
<td>12</td>
</tr>
<tr>
<td>2.5</td>
<td>Bovine upper respiratory tract</td>
<td>21</td>
</tr>
<tr>
<td>2.6</td>
<td>A diagram of bovine lungs, consisting of 8 lung lobes</td>
<td>21</td>
</tr>
<tr>
<td>2.7</td>
<td>A diagram of gastrointestinal tract of buffalo and cattle</td>
<td>23</td>
</tr>
<tr>
<td>3.1</td>
<td>Clinical response of buffalo calves to Pasteurella multocida B:2 infection</td>
<td>30</td>
</tr>
<tr>
<td>3.2</td>
<td>Detection of P. multocida B:2 using result obtained from PCR and gel electrophoresis from some of the samples from buffalo calves of Group 1</td>
<td>32</td>
</tr>
<tr>
<td>3.3</td>
<td>Immunolocalisation of Pasteurella multocida B:2 in the lungs of infected buffalo calves</td>
<td>38</td>
</tr>
<tr>
<td>3.4</td>
<td>Immunolocalisation of Pasteurella multocida B:2 in the stomach of infected buffalo calves</td>
<td>40</td>
</tr>
<tr>
<td>3.5</td>
<td>Immunolocalisation of Pasteurella multocida B:2 in the small intestines of infected buffalo calves</td>
<td>42</td>
</tr>
<tr>
<td>3.6</td>
<td>Immunolocalisation of Pasteurella multocida B:2 in the large intestines of infected buffalo calves</td>
<td>43</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>3.7</td>
<td>Immunolocalisation of Pasteurella multocida B:2 in the urinary tract of infected buffalo calves</td>
<td>45</td>
</tr>
<tr>
<td>4.1</td>
<td>Gross pathology of buffalo calves infected with Pasteurella multocida B:2</td>
<td>55</td>
</tr>
<tr>
<td>4.2</td>
<td>Histopathological changes in the respiratory, gastrointestinal, and urinary tracts of buffalo calves with acute HS</td>
<td>62</td>
</tr>
<tr>
<td>4.3</td>
<td>Ultrastructural changes in the lungs of buffalo calves infected with Pasteurella multocida B:2</td>
<td>72</td>
</tr>
<tr>
<td>4.4</td>
<td>Ultrastructural changes in the liver and stomach of buffalo calves infected with Pasteurella multocida B:2</td>
<td>75</td>
</tr>
<tr>
<td>4.5</td>
<td>Ultrastructural changes in the small intestines of buffalo calves infected with Pasteurella multocida B:2</td>
<td>78</td>
</tr>
<tr>
<td>4.6</td>
<td>Ultrastructural changes in the large intestine of infected buffalo calves</td>
<td>80</td>
</tr>
<tr>
<td>4.7</td>
<td>Ultrastructural changes in the kidney of infected buffalo calves</td>
<td>83</td>
</tr>
<tr>
<td>5.1</td>
<td>Timeline and mean rectal temperature: comparison between carrier animals and negative control animals</td>
<td>92</td>
</tr>
<tr>
<td>5.2</td>
<td>Gross lesions in the carrier buffalo calves of Group 2</td>
<td>94</td>
</tr>
<tr>
<td>5.3</td>
<td>Immunolocalisation of Pasteurella multocida B:2 in the respiratory tract of carrier buffalo calves of Group 2</td>
<td>98</td>
</tr>
<tr>
<td>5.4</td>
<td>Immunolocalisation of Pasteurella multocida B:2 in the gastrointestinal tract of carrier buffalo calves of Group</td>
<td>101</td>
</tr>
<tr>
<td>5.5</td>
<td>Immunolocalisation of Pasteurella multocida B:2 in the urinary tract of carrier buffalo calves of Group 2</td>
<td>103</td>
</tr>
<tr>
<td>5.6</td>
<td>Negative control samples from buffalo calves of</td>
<td></td>
</tr>
</tbody>
</table>
Group 3

6.1 Mean (± SEM) rectal temperature changes over time following inoculation with *Pasteurella multocida* B:2 in cattle and buffalo calves

6.2 Gross lesions in the subcutaneously infected buffalo calves of Group 3

6.3 Gross lesions in the subcutaneously infected cattle of Group 4

6.4 Gross lesions of intranasally infected buffalo calves of Group 5 that were euthanised at 68.0 h p.i.

6.5 Gross lesions in the intranasally infected cattle of Group 6 euthanised at 72.0 h p.i.

6.6 Mean (± SEM) gross lesion scoring for the organs of all cattle and buffalo calves groups following experimental exposure to *Pasteurella multocida* B:2

6.7 (± SEM) histopathology scoring for the respiratory organs of all groups following experimental exposure to *Pasteurella multocida* B:2.

6.8 Histopathological evaluation revealed similar lesions in all groups infected with *Pasteurella multocida* B:2, but with different degree of severities. These are some of the lesions observed in the respiratory tract

6.9 Mean (± SEM) histopathology scoring for the organs of gastrointestinal tract of all groups following experimental exposure to *Pasteurella multocida* B:2

6.10 Histopathological evaluation revealed similar lesions in all groups infected with *Pasteurella multocida* B:2, but with different degree of severities. These are some of the lesions observed in the gastrointestinal tract

6.11 Mean (± SEM) histopathology scoring for the
organ of urinary tract of all groups following experimental exposure to Pasteurella multocida B:2

6.12 Histopathological evaluation revealed similar lesions in all groups infected with Pasteurella multocida B:2, but with different degree of severities. These are some of the lesions observed in the urinary tract

6.13 Mean (± SEM) concentrations of Pasteurella multocida B:2 (x10^6 cfu/g) in the respiratory organs following inoculation with Pasteurella multocida B:2

6.14 Mean (± SEM) concentrations of Pasteurella multocida B:2 (x 10^6 cfu/g) in the gastrointestinal organs following inoculation with Pasteurella multocida B:2

6.15 Mean (± SEM) concentrations of Pasteurella multocida B:2 (x 10^6 cfu/g) in the urinary organs following inoculation with Pasteurella multocida B:2

6.16 Mean (± SEM) blood endotoxin concentration and blood Pasteurella multocida B:2 over time following inoculation of all groups with Pasteurella multocida B:2
LIST OF ABBREVIATIONS

- µl: microliter
- µm: micrometer
- °C: degree Celsius
- ANOVA: analysis of variance
- BALT: bronchus-associated lymphoid tissue
- BHI: brain-heart infusion
- BSA: bovine serum albumin
- cfu: colony forming unit
- DAB: 3,3’-Diaminobenzidine
- df: degree of freedom
- DNA: deoxyribonucleic acid
- EDTA: ethylenediaminetetraacetic acid
- ELISA: enzyme-linked immunosorbent assay
- EU: endotoxin unit
- G: gravity
- g: gram
- h: hour
- HE: haematoxylin and eosin
- HS: haemorrhagic septicaemia
- IACUC: Institutional Animal Care and Use Committee
- IgG: immunoglobulin G
- IL: interleukin
- IP: immunoperoxidase
- LAL: limulus amebocyte lysate
- LPS: lipopolysaccharide
- LRT: lower respiratory tract
- M: molar
- min: minute
- ml: milliliter
- n: sample size
- ng: nanogram
- nm: nanometer
- OMP: outer membrane protein
- p.i.: post-inoculation
- PBS: phosphate-buffered saline
- PBST: phosphate-buffered saline with tween 20
- PCR: polymerase chain reaction
- PPP: platelet poor plasma
- r²: coefficient of determination
- RBC: red blood cell
- rpm: revolution per minute
- SD: standard deviation
- SEM: standard error of the mean
SPSS Statistical Packages for the Social Sciences
TBE tris-boric acid-EDTA
TEM transmission electron microscopy
TNF-α tumour necrosis factor-α
URT upper respiratory tract
V volt
CHAPTER 1

INTRODUCTION

Haemorrhagic Septicaemia (HS) is an acute, fatal, septicaemic disease of cattle and buffaloes, causing devastating epidemics with high morbidity and mortality especially in the South and South-East Asia, Africa, and some South European and Middle Eastern countries (De Alwis, 1992; Verma and Jaiswal, 1998; Benkirane and De Alwis, 2002). In South-East Asia, HS occurs in Malaysia, Indonesia, Phillipines and Thailand (De Alwis, 1992). In Japan, HS was recognised in 1923 but has not been reported since 1954 (De Alwis, 1999). The disease has been reported in the USA among American Bison in 1912, 1922 and 1967, and among dairy cattle in 1969 and beef calves in 1993 (De Alwis, 1992; Verma and Jaiswal, 1998; De Alwis, 1999).

Pasteurella multocida serotype B:2 (known as the Asian serotype) and E:2 (known as the African serotype) by Carter-Heddleston system which correspond to 6B and 6E by Namioka-Carter system are the specific serotypes of bacteria known to cause HS in ruminants. In North America, an HS outbreak was presumed to be caused by serotype B:2 until a re-examination revealed that it was in fact caused by serotype B:3 and B:4 (Rimler and Wilson, 1994). Kumar *et al.* (1996) also described the presence of other serotypes causing HS-like condition and lesions in cattle and buffaloes, mostly by A:1 and A:3.

Pasteurella multocida B:2 is a Gram-negative bacterium. Being a Gram-negative bacteria, the bacterial cell wall consist of components which act as virulence factors, such as the capsule, lipopolysaccharide (LPS) (endotoxin), fimbriae, adhesins, and outer membrane protein (OMP) (Harper *et al.*, 2006). Endotoxaemia has been recognised as an important process in the development of acute HS (Horadagoda *et al.*, 2001; Horadagoda *et al.*, 2002). Previous study involving the inoculation of lipopolysaccharide (LPS) intravenously resulted in comparable pathological lesions in both field and experimentally-induced HS (Horadagoda *et al.*, 2002).

In general, upon exposure to the aetiological agent, there are two possible outcomes; the animal would succumb to peracute or acute HS or the animal would survive the infection and become carriers harbouring *P. multocida* B:2 (De Alwis *et al.*, 1995). In peracute or acute HS, the disease is characterised by a short clinical course (Biswas *et al.*, 2004; Zamri-Saad and Shafarin, 2007) with clinical signs such as severe
depression, pyrexia, submandibular oedema, dyspnoea, recumbency, and death (Horadagoda et al., 2001; Zamri-Saad and Shafarin, 2007). If the animal survived the initial infection and became carrier, the animal would exhibit minimal clinical signs that are easily overlooked, such as transient pyrexia and mild depression (De Alwis, 1999). The persistence of *P. multocida* B:2 in carriers lead to difficulty in control and prevention of new outbreak (Townsend et al., 2000).

Infections are believed to occur by inhalation and/or ingestion of the aetiological agent (Saharee et al., 1993; Benkirane and De Alwis, 2002) since *P. multocida* B:2 has been isolated in both the nasopharynx and intestine of dead cattle and buffaloes (Khin et al., 2010a; Abubakar et al., 2012). The respiratory tract may not be the only portal of entry, and circumstantial evidence suggest involvement of other routes such as the gastrointestinal tract (Zamri-Saad and Shafarin, 2007; Abubakar and Zamri-Saad, 2011).

Higher incidence of HS is associated with stress conditions such as high moisture environment, humid conditions, high animal stocking density, extensive free grazing system, inclement weather, transportation, and poor husbandry practice (Benkirane and De Alwis, 2002; Zamri-Saad and Shafarin, 2007). These stress factors are believed to contribute to conversion of latent carrier to active carriers, which eventually leads to transmission of the aetiological agent to susceptible in-contact animals, leading to outbreaks (De Alwis et al., 1990; Shafarin et al., 2007).

Among the carrier animals, many studies observed that shedding of *P. multocida* B:2 occur mainly via the respiratory route, where the organism is most frequently isolated in the nasopharynx of active carriers by deep nasal swabbing (Singh, 1948; Mohan et al., 1968; Hiramune and De Alwis, 1982; De Alwis et al., 1990). However, recent findings in acutely infected animals suggested that the shedding of the aetiological agent is via the gastrointestinal and urinary tract (Abubakar and Zamri-Saad, 2010; Abubakar et al., 2012). However, the involvement of the whole respiratory, gastrointestinal, and urinary tracts in transmission of HS involving the carrier animals has never been documented. Therefore, the research hypotheses and objectives are as follows:

1.1 Research hypotheses

1. Distribution of *P. multocida* B:2 and pathological changes in the respiratory, gastrointestinal, and urinary tracts of buffalo calves following exposure to live *P. multocida* B:2 are comparable.

2. The gastrointestinal and urinary tracts play a role in retention of *P. multocida* B:2 and transmission of HS in carrier animals.

3. Clinicopathological changes, development and susceptibility of cattle and buffalo calves to HS are similar.
1.2 **Objectives of the study**

1. To determine the distribution of *P. multocida* B:2 in the respiratory, gastrointestinal, and urinary tracts of buffalo calves, following acute infection.
2. To observe and define the pathological changes of the respiratory, gastrointestinal, and urinary tracts of buffalo calves following acute *P. multocida* B:2 infection.
3. To determine the role of carrier animals in retention of *P. multocida* B:2 within the gastrointestinal and urinary tracts.
4. To compare the clinicopathological changes, development of, and susceptibility to HS in cattle and buffalo calves following experimental exposure to *P. multocida* B:2.
REFERENCES

phagocytosis and is an important virulence factor. *Infection and Immunity*, 67(4): 1750-1756.

