UNIVERSITI PUTRA MALAYSIA

OCCURRENCE OF MULTIDRUG RESISTANT E.coli AND Campylobacter IN CHICKEN AND CHICKEN MEAT AND THEIR ASSOCIATED RISK FACTORS

IBRAHIM JALO MUHAMMAD

FPV 2015 9
OCCURRENCE OF MULTIDRUG RESISTANT *E. coli* AND *Campylobacter*
IN CHICKEN AND CHICKEN MEAT AND THEIR ASSOCIATED
RISK FACTORS

By

IBRAHIM, JALO MUHAMMAD

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfillment of the Requirements for the Degree of Master of Science

May 2015
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

This thesis is specially dedicated to:

My beloved parents,

ALHAJI IBRAHIM JALO MUHAMMAD

and

HAJIYA FATSUMA IBRAHIM JALO

My beloved wife and children,

HUSSAINA ABUBAKAR LAWAN

FATIMA MUHAMMAD JALO (AMNA)

ABUBAKAR MUHAMMAD JALO (AMMAR)

Who always pray, support and encourage me to do the best

And finally,

In memory of my late sister

HAUWA IBRAHIM JALO
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the Degree of Master of Science

OCCURRENCE OF MULTIDRUG RESISTANT *E.coli* AND *Campylobacter* IN CHICKEN AND CHICKEN MEAT AND THEIR ASSOCIATED RISK FACTORS

By

IBRAHIM JALO MUHAMMAD

May 2015

Chairperson: Professor Saleha Abdul Aziz, PhD
Faculty: Veterinary Medicine

Antibiotic usage is an important factor that have been widely reported to bring about the emergence and spread of antibiotic resistant microorganisms in both animal and human health. Chickens may be infected with antibiotic resistant *Campylobacter* and *E.coli* which may be resistant to one or more antibiotics. There is an alarming increase of multidrug resistance among bacterial pathogens affecting human and animal populations globally. There is limited data on the occurrence of multidrug resistance (MDR) *E. coli* and *Campylobacter* in poultry and poultry meat in Malaysia. This study was aimed at investigating the occurrence of multidrug resistant *E. coli* and *Campylobacter* in chicken and chicken meat and their associated risk factors. The specific objectives were: to determine the occurrence of *E.coli* and *Campylobacter* in chickens and farm environment and chicken meat retailed in the markets and their associated risk factors and to determine the antibiotic resistance and MDR profiles of the isolates from chicken and chicken meat. Two hundred and ten (210) samples were collected from five farms and seventy (70) samples from seven markets. Five (5) farms were visited three (3) times each during the study period. The first visit was to sample chicken at market age (35-42 days) prior to harvesting (considered as first population) and farm environment (which is included water, feed, flies and chicken house floor). The second visit was to sample farm environment at two (2) weeks after the chicken farms were emptied (all chicken were sold), cleaned and disinfected and the third visit was carried out on a new batch of chickens at market age also prior to harvesting (as second population) and the environment. In each farm, thirty (30) cloacal swab samples and twelve (12) environmental samples which consisted of three (3) samples each of water from the drinker, feed from the feeder, chicken house floor and pooled samples of flies each consisting 5-7 per pooled sample were collected (3). Chicken meat which consisted of breast, thigh and wings including the skin were randomly chosen from stalls in each market. The number of stalls visited in seven markets varied from 4 to 10 per market depending on the number of poultry meat retailers in that market. Cutting boards and weighing scales were also sampled. Fifty five point seven percent (60.0% and 51.3%) of the chickens in the first and second population were colonized with *Campylobacter*. The proportion of *Campylobacter* isolated from environmental samples in the first and third visits was 7.5% (1.7% and 13.3%). Only one water
sample (6.7%) was positive (first visit) and two (13.3%) in the third visit. Flies were found positive for *Campylobacter* only in the third visit (33.3%). Among the chicken house floor samples, only one was positive (6.7%). All feed samples were negative (0%). The most frequently isolated species was *C. jejuni* at 74.9% (82.2% and 67.5%), followed by *C. coli* 25.2% (17.8% and 32.5%). At the markets, the occurrence of *Campylobacter* was 20.0% for chicken meat, and 5.7% for weighing scales and cutting boards. The species identified were 78.6%, 17.9% and 3.6% for *C. jejuni, C. coli* and *C. upsaliensis* respectively. The occurrence of *E.coli* in chickens is 53.0% (56.0% and 50.0%). Similarly, the occurrence of *E.coli* in environmental samples at first and third visits were 33.4% (26.7%, 0% and 40.0%). Among the environmental samples, the isolation of *E.coli* in feed was 16.7%, floor 40.0%, water 20.0% and flies 56.7%. The occurrence of *E.coli* in chicken meat at markets was 45.0%. In the farms, the occurrence of the *Campylobacter* and *E.coli* in the first and second population were almost similar; this was probably due to the farm practices were similar and the biosecurity measures practised in the farm may not be sufficient. The presence of flies and birds around the farm and/or the use of contaminated water may transfer these bacteria to the chickens or the workers brought them into the chicken houses from the farm environment. At the markets, cross contamination was a possible factor because during meat handling and cutting, the surfaces of poultry carcasses could become contaminated with *Campylobacter* and *E.coli* from the intestinal content due to accidental rupture of the gut or from contaminated equipment or water. The absence of *Campylobacter* in feed samples may probably be due to poor resistance of *Campylobacter* to atmospheric condition and other environmental pressures during storage that would have converted to viable-but-non-culturable (VBNC) form. It was reported that most flocks were negative until two (2) weeks of age, and once *Campylobacter* colonized a broiler flock, the spread is very rapid and up to 100% of birds within a flock can become colonized within three days. The antibiotic resistance of these *Campylobacter* (n=208) and *E.coli* (n=269) isolates was done using disc diffusion method against 12 different antibiotics. *Campylobacter* isolates from first and second population showed high resistance to penicillins at 75.5% (74.4% and 76.6%) and the least resistance was to amoxicillin-clavulanic acid at 33.7% (32.2% and 35.1%). Sixty two point five percent (62.5%) *Campylobacter* isolated from chicken meat was resistant to ampicillin and the least was to streptomycin, 3.1%. *E.coli* isolated from chicken in first population showed high resistance to penicillin, erythromycin, ampicillin and tetracycline at 98.8%, 96.4%, 94.0% and 92.8% respectively and the least resistance was to amoxicillin-clavulanic at 22.9%. Those isolated from the second population were 100% resistant to erythromycin and tetracycline and the least resistance was to cefotaxime at 20.0%. In chicken meat, the highest resistance was to erythromycin and penicillins at 100% each and the least was to gentamicin at 40%. The high resistance may likely be as a result of imprudent use of these agents for growth promotion and for prophylactic purposes at farm level. Multidrug resistance (MDR) (resistance to 3 or more classes of antibiotics) was high in *Campylobacter* isolated in chicken farms, at 87.5%, chicken meat 71.9%, while in *E.coli* it was 99.5% for chicken, and for chicken meat was 100%. The most common multidrug resistance profile for *Campylobacter* isolates in chicken was to 7 (EPNaCtxSCipAmp) and 10 (EPNaCipTeAmcSxtCnEnrAmp) classes of antibiotics at 13.2% each in the first population. In the second population, the common MDR pattern was to 9 (EPNaCtxSCipAmcEnrAmp) classes at 12.9%. In chicken meat it was to 4 (TeAmcEnrAmp) and 5 (EPTeCtxAmp) classes at 15.6% each. The most
common MDR profile for *E. coli* was to 9 (EPNaSCipTeAmcSxtAmp) and 10 (EPNaSCipTeAmcSxtEnrAmp) antibiotic classes at 16.0% each in the first population and in the second population, the most common profile was to 8 (EPNaSCipTeAmcSxtEnrAmp) classes at 19.2%. It was to 8 (EPNaSCipTeEnrAmp) classes of antibiotics at 21.4% in chicken meat. The findings suggested the possible persistence of the resistant organisms in the farm environment even after cleaning and disinfection of the chicken houses. Flies may have played a role in introducing the resistant bacteria to the chicken farm and environment. Imprudent use of antibiotics as growth promoters or for therapeutic purposes not administered professionally could lead to development of resistance by these bacteria. However, health records were not available in the farms and information on antibiotics used could not be obtained making it impossible to make sound deduction except to make assumptions. Risk factors that were significantly (*p*<0.05) associated with *Campylobacter* contamination in chickens meat included; no working attire (OR 2.7, CI 1.144-6.374, *p*=0.033), fair and poor usage of protective equipment (OR 12.6, CI 1.186-133.899, *p*=0.036) and (OR 38.50, CI 2.915-508.463, *p*=0.006) respectively, poor stall hygiene (OR 44.00, CI 2.193-882.66, *p*=0.013) and use of wood counter surface (OR 6.1, CI 1.198-31.164, *p*=0.029). The relevant but not significant factor was poor working hygiene (OR 5.250, CI 0.988-27.895, *p*=0.05). This study identified five risk factors for *Campylobacter* contamination that, if taken together, might account for most sporadic cases. The presence of high MDR *Campylobacter* and *E.coli* species could compromise treatment in humans and in particular, if the bacteria is resistant to the drugs of choice and alternative drugs for treatment and therefore poses a significant public health risk. Certainly, at farm level, the prevalence of MDR *Campylobacter* and *E.coli* in broiler flocks should be monitored. From this study it was observed that there is a need to stress the awareness among farmers to observe good hygienic practices and prudent use of antibiotics to reduce the menace of antibiotic resistance.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Sains Veterinar

KEHADIRAN E.coli DAN Campylobacter RINTANG PELBAGAI DRUG PADA AYAM DAN DAGING AYAM SERTA FAKTOR RISIKO YANG BERKAITAN

Oleh

IBRAHIM JALO MUHAMMAD

Mei 2015

Pengerusi: Professor Saleha Abdul Aziz, PhD
Fakulti: Perubatan Veterinar

Penggunaan antibiotik adalah faktor penting yang membawa kepada kemunculan dan penyebaran mikroorganisma rintang antibiotik pada kesihatan veterinar dan manusia. Ayam boleh dijangkiti Campylobacter dan E. coli yang rintang terhadap satu atau lebih antibiotik. Terdapat peningkatan yang membimbangkan terhadap kerintangan antibiotik pada patogen bakteria manusia dan haiwan secara global. Terdapat data yang terkaitkan kejadian E.coli dan Campylobacter rintang pelbagai drug (MDR) pada ayam dan daging ayam di Malaysia. Kajian ini dijalankan untuk mengkaji E.coli dan Campylobacter yang rintang pelbagai drug pada ayam dan daging ayam dan faktor risiko yang berkaitan. Objektif khusus adalah: untuk menentukan kehadiran E.coli dan Campylobacter pada ayam dan persekitaran ladang dan daging ayam yang dijual di pasar dan faktor risiko yang berkaitan dan untuk menentukan profil rintangan antibiotik bakteria yang diasingkan daripada ayam dan daging ayam. Dua ratus sepuluh (210) ayam daging disampel di lima ladang dan 70 daging ayam di gerai jualan ayam di tujuh pasar. Lima (5) ladang tersebut telah dilawati sebanyak tiga kali dalam tempoh kajian. Lawatan pertama adalah untuk mengambil sampel daripada ayam pada umur pasaran (35-42 hari) sebelum dijual (populasi pertama) dan persekitaran ladang, lawatan kedua adalah untuk mengambil sampel persekitaran ladang dua (2) minggu selepas ladang ayam dikosongkan (semua ayam telah dijual), dibersihkan dan dibasmi kuman dan lawatan ketiga telah dijalankan dengan mengambil sampel ke atas kumpulan baru ayam pada umur pasaran juga sebelum dijual (populasi kedua) dan kawasan sekitarnya. Dalam setiap ladang, tiga puluh (30) sampel swab kloaka ayam dan dua belas (12) sampel kawasan sekitar, terdiri daripada tiga (3) sampel setiap jenis sampel iaitu air dari bekas minuman (3), sampel makanan daripada bekas makanan (3) sampel lantai rumah ayam (3) dan sampel lalat (disatukan 5-7 lalat dalam satu botol sebagai satu sampel) (3) dikumpulkan. Daging ayam telah dipilih secara rawak yang mengandungi bahagian dada, paha dan sayap, yang disaliti kulit. Bilangan sampel daripada setiap pasar adalah berbeza iaitu daripada 4 hingga 10 gerai jualan ayam yang ada di setiap pasar bergantung kepada jumlah gerai di pasar tersebut. Papan pemotong dan alat timbang juga disampel. Lima puluh lima populasi tujuh (60.0% and 51.3%) ayam pada populasi satu dan dua dijangkiti Campylobacter. Campylobacter yang diasingkan daripada persekitaran ladang adalah 7.5% (1.7% dan 13.3%). Hanya satu sampel air yang positif Campylobacter (6.7%) pada lawatan pertama dan dua
(13.3%) positif pada lawatan ketiga. Lalat yang positif *Campylobacter* hanya pada lawatan ketiga (33.3%) dan hanya satu sampel lantai (6.7%) yang positif. Semua sampel makanan adalah negatif *Campylobacter*. Spesies yang paling kerap dipencilkkan pada populasi pertama dan kedua adalah *C. jejuni* (74.9%), diikuti oleh *C. coli* (25.2%). Di pasar, kehadiran *Campylobacter* adalah 20.0% pada daging ayam, dan 5.7% daripada alat timbang dan papan pemotong dan spesies *Campylobacter* yang dikenalpasti adalah *C. jejuni* dan *C. upsaliensis* masing-masing 78.6%, 17.9% dan 3.6%. Kehadiran *E. coli* pada ayam adalah 53.0%. Begitu juga, kehadiran *E.coli* pada sampel persekitaran pada lawatan pertama dan ketiga masing-masing 26.7% dan 40.0%, dan semua sampel adalah negatif pada lawatan kedua. Di antara sampel persekitaran, kadar pencilan pada makanan 13.3%, lantai 60.0%, air 13.3% dan lalat 73.3%. Kehadiran *E.coli* pada daging di pasar adalah 45.0%. Di ladang, kehadiran *Campylobacter* dan *E. coli* pada lawatan populasi pertama dan kedua adalah hampir sama; ini mungkin kerana langkah-langkah amalan ladang adalah sama, biosekuriti yang diamalkan di ladang mungkin tidak mencukupi. Kehadiran lalat dan burung di sekitar ladang atau penggunaan air yang tercemar boleh memindahkan bakteria ini kepada ayam atau pekerja membawa bakteria tersebut ke dalam rumah ayam daripada persekitaran ladang. Di gerai jualan ayam di pasar, kontaminasi silang mungkin menjadi faktor semasa pengendalian dan memotong daging dan permukaan daging ayam boleh terceram dengan *Campylobacter* dan *E.coli* daripada kandungan usus kerana usus terpecah atau daripada peralatan yang tercemar atau daripada air. Ketiadaan *Campylobacter* dalam sampel makanan mungkin kerana ketahanan *Campylobacter* yang lemah kepada keadaan dan tekanan persekitaran yang lain semasa penyimpanan sehingga mereka bertukar kepada bentuk *viable-but-not culturable*. Kebanyakan kelompok ayam adalah negatif sehingga berumur dua (2) minggu, dan apabila *Campylobacter* menjangkiti kelompok ayam daging, penyebaran bakteria adalah sangat cepat dan sehingga 100% daripada ayam dalam kelompok boleh dijangkiti dalam tempoh tiga (3) hari. Ujian kerintangan antibiotik telah dijalankan untuk menentukan corak rintangan antibiotik ke atas pencilan *Campylobacter* (n = 208) dan *E.coli* (n = 269) dengan menggunakan kaedah "disc diffusion" dan diuji terhadap 12 antibiotik yang berbeza. Pencilan *Campylobacter* menunjukkan rintangan yang tinggi terhadap *penicillin* adalah 75.5% (74.4% dan 76.6%) dan rintangan yang paling rendah adalah terhadap *amoxicillin-clavulanic acid* 33.7% (32.2% dan 35.1%). Pada daging ayam, *Campylobacter* menunjukkan rintangan yang tinggi terhadap *ampicillin* (62.5%) dan yang paling rendah adalah kepada *streptomycin* 3.1%. Didapati *E.coli* yang dipencil di daging ayam pada populasi pertama rintang terhadap *penicillin*, *erythromycin*, *ampicillin* dan *tetracycline* yang masing-masing pada 98.8%, 96.4%, 94.0% dan 92.8% dan rintangan yang paling rendah adalah terhadap *amoxicillin-clavulanic acid* 22.9% pada lawatan pertama. Manakala pada populasi kedua, rintangan yang paling tinggi adalah terhadap *erythromycin* dan tetracycline iaitu 100%, dan rintangan yang paling rendah adalah terhadap *cefotaxime* 20.0%. Bagi pencilan daripada daging ayam, rintangan yang paling tinggi adalah kepada *erythromycin* dan *penicillin* iaitu masing-masing 100% dan rintangan yang paling rendah adalah kepada *gentamicin* pada 40%. Rintangan yang tinggi mungkin terjadi hasil daripada penggunaan antibiotik yang kurang bijak untuk menggalakkan pertumbuhan dan untuk tujuan profilaksis di ladang dan dengan itu bakteria akan terbawa daripada ayam kepada daging ayam. Rintangan pelbagai drug (MDR) (rintangan kepada 3 atau lebih kelas antibiotik) adalah tinggi pada *Campylobacter* yang di pencilkkan daripada ladang ayam iaitu 87.5% dan daging ayam 71.9%, manakala bagi *E.coli* adalah 99.5% dan
untuk daging ayam 100%. Rintangan pelbagai drug paling kerap diperolehi untuk *Campylobacter* yang diasingkan dari ayam adalah kepada 7 (EPNaCtxSCipAmp) dan 10 (EPNaCipTeAmcSxtCnEnrAmp) kelas antibiotik. 13.2% setiap satu pada populasi pertama dan pada populasi kedua corak MDR yang kerap adalah kepada 9 (EPNaCtxSCipAmcEnrAmp) kelas iaitu 12.9%. Pada daging ayam, MDR ialah kepada 4 (TeAmcEnrAmp) dan 5 (EPTeCtxAmp) kelas iaitu pada 15.6% setiap satu. *E.coli* pada ayam, menunjukkan MDR paling kerap kepada 9 (EPNaCipTeAmcSxtAmp) dan 10 (EPNaSCipTeAmcSxtEnrAmp) kelas antibiotik iaitu 16.0% setiap satu dalam populasi pertama dan populasi kedua. Corak yang paling kerap adalah kepada 8 (EPNaScipTeAmcSxtEnrAmp) kelas antibiotik iaitu pada 19.2%. Pada daging ayam MDR adalah terhadap 8 (EPNaScipTeEnrAmp) kelas antibiotik pada 21.4%. Hasil kajian memperlihatkan kehadiran organisma rintang antibiotik dalam persekitaran yang berpanjangan walaupun selepas pembersihan ladang. Lalat juga boleh memainkan peranan dalam membawa masuk bakteria rintang antibiotik ke ladang. Penggunaan antibiotik yang tidak bijak sebagai penggalak pertumbuhan atau untuk tujuan terapeutik yang digunakan secara tidak profesional boleh membawa kepada pembentukan rintangan oleh bakteria ini. Rekod kesihatan tidak terdapat di ladang-ladang dan maklumat tentang antibiotik yang digunakan tidak dapat diperolehi menyukarkan untuk membuat sesuatu kesimpulan dan hanya dapat membuat andaian sahaja. Faktor risiko ketara (p <0.05) yang berkaitan dengan pencemaran *Campylobacter* pada ayam daging termasuklah: tiada pakaian kerja (OR 2.7, CI 1.144-6.374, p = 0.033), kekurangan penggunaan peralatan perlindungan yang baik (OR 12.6, CI 1.186-133.899, p = 0.036) dan (OR 38.50, CI 2.915-508.463, p = 0.006), kandang yang kurang basih (OR 44.00, CI 2.193-882.66, p = 0.013) dan penggunaan permukaan pemotong daripada kayu (OR 6.1, CI 1.198-31,164, p = 0.029). Faktor yang berkaitan tetapi tidak ketara adalah kerja yang kurang bersih (OR 5.250, CI 0,988-27.895, p = 0.05). Kajian ini mengenal pasti lima (5) faktor risiko pencemaran oleh *Campylobacter* dan jika diambil kira semuanya, mungkin boleh menerangkan sebagi bagian dari kes-kes sporadik. Kehadiran MDR *Campylobacter* dan *E.coli* yang tinggi boleh menjejaskan rawatan pada manusia terutamanya jika antibiotik diperlukan dan jika organisma tersebut rintang kepada ubat dan ubat alternatif untuk rawatan dan dengan itu boleh menimbulkan risiko kesihatan yang ketara. Sudah tentu, di peringkat ladang, kehadiran *Campylobacter* dan *E.coli* pada ayam daging perlu dipantau untuk memastikan pelaksanaan langkah-langkah amalan penternakan, veterinar dan biosekuriti yang baik. Daripada kajian ini juga didapati bahawa terdapat keperluan untuk mewujudkan kesedaran dalam kalangan penternak untuk mematuhi amalan kebersihan yang baik dan penggunaan antibiotik secara berhemah untuk mengurangkan ancaman rintangan antibiotik.
ACKNOWLEDGEMENTS

All praises be to Allah (SWT), the creator, nourisher, cherisher, sustainer and provider of one and all who bestowed the ability in me making my dreams a reality. I would like to express my sincere appreciation and profound gratitude to the Chairman of my supervisory committee Prof. Dr. Saleha Abdul Aziz for her unwavering support, scholarly criticisms throughout the research and the program as a whole. Her thorough scrutiny and suggestions made this reality. I am grateful and indebted to supervisory committee members, Assoc. Prof. Dr. Jalila Abu and Assoc. Prof. Dr. Siti Khairani-Bejo for their valuable suggestions throughout this study. I also thank Hj. Abd Razak bin Jaafar for his valuable assistance during my sampling.

Many thanks to Puan Fauziah Nordin of Veterinary Public Health Lab, Krishnama and all staff of Bacteriology Lab of the Faculty of Veterinary Medicine for their kind support, assistance and cooperation throughout my laboratory work. I am indeed very grateful to my lab mates Dauda Goni, Rasheed, Téguh, Yousif, Wint Wint, Emelia, Abdelrahman, Yusuf Yaqoub and Shah for their friendly support and cooperation which I cherish a lot. I am very thankful to my friends and house mates Alhassan, MD Usman, Abdulaziz Ibrahim, Sadiq Nesta, Dr. Konto, Sani, Abdullahi Adamu, Mohammed Ngab, Syafiqah, Zubaida, Abdullahi Adamu and many others whom space would not permit me to mention. All are good friends especially Lawan Lawu, Butali, Ibrahim Ayya, Samba, Daddy, La’ari and supportive brothers and sisters such as Idi, Dr.Idiris, Nura, Sadiq, Usman and Ummi, Mami, Hadiza, Larabiyyo. My special gratitude and thanks go to rest of my family, relatives and all well wishers for their prayers and support.
I certify that a Thesis Examination Committee has met on 11 May 2015 to conduct the final examination of Ibrahim Jalo Muhammad on his thesis entitled "Occurrence of Multidrug Resistant E. coli and Campylobacter in Chicken and Chicken Meat and their Associated Risk Factors" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Abdul Aziz Saharee, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Zunita Zakaria, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Sharifah Syed Hassan, PhD
Associate Professor
Monash University Malaysia
Malaysia
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 22 September 2015
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory committee were as follows:

Saleha Abdul Aziz, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Jalila Abu, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Siti Khairani-Bejo, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of graduate studies
Universiti Putra Malaysia
Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work
- quotations, illustrations and citations have been duly referenced
- the thesis has not been submitted previously or concurrently for any other degree at any institutions
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be owned from supervisor and deputy vice – chancellor (Research and innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature: _______________________ Date: _________________

Name and Matric No.: Ibrahim, Jalo Muhammad GS35558
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature: ________________________ Signature: ________________________
Name of Chairman of Supervisory Committee: ________________________
Name of Member of Supervisory Committee: ________________________

Signature: ________________________
Name of Member of Supervisory Committee: ________________________
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

2 LITERATURE REVIEW

 2.1 The genus Campylobacter
 2.1.1 History, taxonomy and microbiological overview of
 Campylobacter 3
 2.1.2 Epidemiology of Campylobacter 5
 2.1.3 Physical and Biochemical Properties of Campylobacter 6
 2.1.4 Sources of infection and mode of transmission of
 Campylobacter in human. 6
 2.1.5 Campylobacter in poultry and other animals 8
 2.1.6 Risk factors associated with colonization of
 Campylobacter in chicken 9
 2.1.7 Occurrence of Campylobacter species in Malaysia 11

 2.2 The genus Escherichia coli
 2.2.1 History, taxonomy and microbiology of E.coli 11
 2.2.2 Commensal E.coli 12
 2.2.3 Pathogenic E.coli 12
 2.2.4 Public health significance of E.coli 13
 2.2.5 Occurrence of E.coli in Malaysia 13

 2.3 Antibiotic Resistance
 2.3.1 Public Health significance of antibiotic resistance 15
 2.3.2 Antibiotic resistance in Campylobacter 16
 2.3.3 Antibiotic resistance in E.coli 17
 2.3.4 Multidrug Resistance (MDR) 18
 2.3.5 Surveillance and monitoring of antibiotic resistance 18

3 OCCURRENCE OF CAMPYLOBACTER IN CHICKEN, FARM
 ENVIRONMENTS AND CHICKEN MEAT AT WET MARKETS

 3.1 Introduction 20
 3.2 Materials and Methods 21
 3.2.1 Collection of samples 25
 3.2.2 Isolation of Campylobacter species 26
 3.2.3 Phenotypic identification of Campylobacter 27
 3.2.4 Confirmation of Campylobacter isolates by Multiplex
 Polymerase Chain Reaction (m-PCR) assay 28
 3.2.5 Agarose Gel Electrophoresis 29
 3.3 Statistical Analysis 30
 3.4 Results 30
3.5 Discussion
3.6 Conclusion

4 OCCURRENCE OF E.COLI IN CHICKEN, FARM ENVIRONMENT AND CHICKEN MEAT IN WET MARKETS
4.1 Introduction
4.2 Materials and Methods
 4.2.1 Collection of samples
 4.2.2 Isolation of E.coli species
 4.2.3 Phenotypic identification of E.coli
 4.2.4 Confirmation of E.coli isolates by Polymerase Chain Reaction (PCR) assay
 4.2.5 Agarose Gel Electrophoresis
 4.2.6 Statistical Analysis
4.3 Results
4.4 Discussion
4.5 Conclusion

5 ANTIBIOTIC RESISTANT PROFILES OF CAMPYLOBACTER AND E.COLI ISOLATES
5.1 Introduction
5.2 Materials and Methods
 5.2.1 Bacterial isolates and growth condition
 5.2.2 Antibiotic Susceptibility Testing
 5.2.3 Data Analysis
5.3 Results
 5.3.1 Multidrug resistance (MDR)
 5.3.2 Antibiotic resistance pattern of Campylobacter and E.coli
5.4 Discussion
5.5 Conclusion

6 RISK FACTORS ASSOCIATED WITH THE OCCURRENCE OF CAMPYLOBACTER IN CHICKEN AND CHICKEN MEAT
6.1 Introduction
6.2 Materials and Method
 6.2.1 Data Analysis
6.3 Results
6.4 Discussion
6.5 Conclusion

7 SUMMARY, GENERAL CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH
7.1 Summary and general conclusion
7.2 Recommendations for future research

REFERENCES
APPENDICES
BIODATA OF STUDENT
LIST OF PUBLICATIONS AND CONFERENCES
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Location of broiler chicken farms and number of samples collected</td>
</tr>
<tr>
<td>3.2</td>
<td>Location of wet markets and number of samples collected</td>
</tr>
<tr>
<td>3.3</td>
<td>Number of samples taken and the period of farm visits</td>
</tr>
<tr>
<td>3.4</td>
<td>Biochemical tests for identification of Campylobacter species (Lastovica & Allos, 2008)</td>
</tr>
<tr>
<td>3.5</td>
<td>Primers for the amplification of Campylobacter genes (Yamazaki-Matsune et al (2007)</td>
</tr>
<tr>
<td>3.6</td>
<td>Description and management system of the farms</td>
</tr>
<tr>
<td>3.7</td>
<td>Occurrence of Campylobacter in broiler chickens in five (5) farms</td>
</tr>
<tr>
<td>3.8</td>
<td>Occurrence of Campylobacter species in five (5) broiler chicken farms</td>
</tr>
<tr>
<td>3.9</td>
<td>Occurrence of Campylobacter in chicken house environment in five different farms</td>
</tr>
<tr>
<td>3.10</td>
<td>Occurrence of Campylobacter isolated from chicken meat in wet markets</td>
</tr>
<tr>
<td>3.11</td>
<td>Occurrence of Campylobacter isolates from cutting boards and weighing scales</td>
</tr>
<tr>
<td>4.1</td>
<td>Primers for E.coli confirmation (Wang et al., 2002)</td>
</tr>
<tr>
<td>4.2</td>
<td>Occurrence of E.coli isolates from broiler chicken in five (5) farms</td>
</tr>
<tr>
<td>4.3</td>
<td>Proportion of E.coli isolated from chicken house environment in five farms</td>
</tr>
<tr>
<td>4.4</td>
<td>Proportion of E.coli isolated from chicken meat, cutting board and weighing scales in wet markets</td>
</tr>
<tr>
<td>5.1</td>
<td>Breakpoint of the disc diffusion method to determine antimicrobial susceptibility of Campylobacter and E.coli isolates</td>
</tr>
<tr>
<td>5.2</td>
<td>Antibiogram of Campylobacter isolates from broiler chicken and farm environment</td>
</tr>
<tr>
<td>5.3</td>
<td>Antibiogram of Campylobacter isolates from chicken meat, weighing scales and cutting boards</td>
</tr>
<tr>
<td>5.4</td>
<td>Antibiogram of E.coli isolates from broiler chicken and farm environment</td>
</tr>
<tr>
<td>5.5</td>
<td>Antibiogram of E.coli isolates from broiler chicken meat, cutting boards and weighing scales</td>
</tr>
<tr>
<td>6.1</td>
<td>Definition and description scores of exposure variables of meat handling practices associated with Campylobacter in selected markets</td>
</tr>
<tr>
<td>6.2</td>
<td>Univariate logistic regression for risk factors associated with Campylobacter isolates in markets</td>
</tr>
<tr>
<td>6.3</td>
<td>Fisher’s exact tests for risk factors associated with the occurrence of Campylobacter isolated from chicken and farm environments</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Location of broiler farms sampled</td>
</tr>
<tr>
<td>3.2</td>
<td>Farm environment two (2) weeks after the chicken houses were emptied (all chickens were sold), cleaned and disinfected</td>
</tr>
<tr>
<td>3.3</td>
<td>Chickens at market age (35-42 days) prior to harvesting and were raised under closed house intensive management system. Chicken feed and water are given automatically</td>
</tr>
<tr>
<td>3.4</td>
<td>Location of wet markets sampled</td>
</tr>
<tr>
<td>3.5</td>
<td>Colonies of Campylobacter on mCCDA</td>
</tr>
<tr>
<td>3.6</td>
<td>Cellular morphology of Campylobacter species are gram negative, spiral, curve or rod shaped</td>
</tr>
<tr>
<td>3.7</td>
<td>Colonies of Campylobacter on CBA</td>
</tr>
<tr>
<td>3.8</td>
<td>Representative m-PCR assay to confirm Campylobacter isolates from chicken and farm environment</td>
</tr>
<tr>
<td>3.9</td>
<td>Representative mPCR assay for confirmation of Campylobacter species isolated from chicken meat, weighing scales and cutting boards</td>
</tr>
<tr>
<td>4.1</td>
<td>E.coli colonies on Chromocult Chromogenic agar plates</td>
</tr>
<tr>
<td>4.2</td>
<td>Colonies of E.coli on EMB agar plates</td>
</tr>
<tr>
<td>4.3</td>
<td>Representative PCR assay for confirmation of E.coli species isolated from chicken and farm environments.</td>
</tr>
<tr>
<td>4.4</td>
<td>Representative PCR assay for confirmation of E.coli species isolated from chicken meat, weighing scales and cutting boards</td>
</tr>
<tr>
<td>5.1</td>
<td>Percentage of Campylobacter isolates in chicken</td>
</tr>
<tr>
<td>5.2</td>
<td>Percentage of Campylobacter isolates from water</td>
</tr>
<tr>
<td>5.3</td>
<td>Percentage of Campylobacter isolates from flies</td>
</tr>
<tr>
<td>5.4</td>
<td>Percentage of Campylobacter isolates from chicken meat, weighing scales and cutting board</td>
</tr>
<tr>
<td>5.5</td>
<td>Prevalence of E.coli isolates from chicken</td>
</tr>
<tr>
<td>5.6</td>
<td>Prevalence of E.coli isolates from water</td>
</tr>
<tr>
<td>5.7</td>
<td>Occurrence of E.coli isolates from flies</td>
</tr>
<tr>
<td>5.8</td>
<td>Percentage of E.coli isolated from feed</td>
</tr>
<tr>
<td>5.9</td>
<td>Prevalence of E.coli isolates from chicken house floor</td>
</tr>
<tr>
<td>5.10</td>
<td>Percentage of E.coli isolates from meat, weighing scale and cutting board</td>
</tr>
<tr>
<td>5.11</td>
<td>Percentage of MDR Campylobacter in chicken (first population) and farm environment (first visits)</td>
</tr>
<tr>
<td>5.12</td>
<td>Percentage of MDR Campylobacter in chicken (second population) and farm environment (third visits)</td>
</tr>
<tr>
<td>5.13</td>
<td>Percentage of MDR Campylobacter in chicken meat, weighing scales and cutting boards</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>bp</td>
<td>Base pairs</td>
</tr>
<tr>
<td>CCUG</td>
<td>Culture Collection of the University of Goteborg</td>
</tr>
<tr>
<td>cueE</td>
<td>Siderophoreenterochelin</td>
</tr>
<tr>
<td>CLSI</td>
<td>Clinical Laboratory Standard Institute</td>
</tr>
<tr>
<td>°C</td>
<td>Degree celcius</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic</td>
</tr>
<tr>
<td>flaA</td>
<td>Flagellin A gene</td>
</tr>
<tr>
<td>glyA</td>
<td>Serine hydroxyl methyl transferase gene</td>
</tr>
<tr>
<td>g</td>
<td>Gram(s)</td>
</tr>
<tr>
<td>h</td>
<td>Hour(s)</td>
</tr>
<tr>
<td>hip</td>
<td>Hippuricase gene</td>
</tr>
<tr>
<td>Kb</td>
<td>Kilobase</td>
</tr>
<tr>
<td>ml</td>
<td>Mililitre</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram(s)</td>
</tr>
<tr>
<td>min</td>
<td>Minute(s)</td>
</tr>
<tr>
<td>MDR</td>
<td>Multidrug resistance</td>
</tr>
<tr>
<td>mPCR</td>
<td>Multiplex Polymerase Chain Reaction</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sodium chloride</td>
</tr>
<tr>
<td>NCCLS</td>
<td>National Committee for Clinical Laboratory Standards</td>
</tr>
<tr>
<td>PFGE</td>
<td>Pulsed Field Gel Electrophoresis</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

In livestock production, the use of antibiotics for disease treatment and prevention is important. It is recognised that the use of these agents in food animals creates the development of antibiotic resistant bacteria, which disseminate via the food chain. Globally, the increase and spread of antibiotic resistance especially to foodborne zoonotic bacteria with its reservoirs in healthy food animals such as poultry, pigs and cattle has become public health concern (EFSA, 2008a). In developed countries, there is increasing scientific reports regarding the widespread of antibiotic usage in food animal production that leads to the development of resistant pathogenic organisms in the food chain (Marshall & Levy, 2011; Philips et al., 2004).

The resistance elements reduce the efficiency of antibiotic therapy, which results in an increased morbidity and mortality associated with disease outbreaks (Da Costa et al., 2009). It has been reported by Schwarz and Chaslus-Dancla (2001) that an antibiotic therapy with a specific agent has been either accompanied or followed shortly by the occurrence of resistant bacteria, and for the past ten years the effect of antibiotics on the development of resistance have gained much attention (Smith et al., 2007). In developed and developing countries, Campylobacter species are among the leading causes of zoonotic infections (EFSA, 2013; Anonymous, 2008) that the prevalence rate is increasing. In Europe, campylobacteriosis is the most reported zoonotic enteric disease surpassing salmonellosis (EFSA 2012; Fosse et al., 2007).

Poultry meat is regarded as the major source of campylobacteriosis in human, apart from chicken; other animals such as pigs and cattle also serve as reservoir hosts (Stanley & Jones, 2003). Campylobacter species is also found in various other domestic and wild animals, including goats, horses, cats, rodents and dogs (Man, 2011); they are also isolated from marine animals such as shellfish and dolphins. Poultry is considered as the main reservoir of Campylobacter. Among Campylobacter, Campylobacter jejuni and Campylobacter coli are the frequently cause of foodborne diseases in human (Uaboi-Egbenni et al., 2012). The risk to Campylobacter infection in human include consumption of undercooked poultry meat, handling of raw poultry carcasses, drinking untreated water, drinking unpasteurized milk or ingestion of dairy products made from raw unpasteurized milk and international travel (Danis et al., 2009). The majority of the cases occur intermittently. The consumption of poultry meat, contact with infected animals, drinking contaminated water or travel are the highest risk associated with the infection (Everest and Ketley, 2002). In poultry, the occurrence of Campylobacter varies according to age and the type of farm; they are seldom detected in broiler chicken less than 2-3 weeks of age and in those managed under close house system (Sahin et al., 2002).

Campylobacter infection is normally self-limiting, but it may be associated with complications such as Guillain-Barre Syndrome (neurological) and Reiter’s Syndrome (reactive arthritis) (Yan et al., 2005). Once a broiler chicken becomes infected, Campylobacter spread rapidly to other broiler chickens in that flock, and up to slaughter age, or at thinning the chickens remain colonized. Almost all (100%) of
the broiler chickens brought to the slaughter houses were reported to be colonized with *Campylobacter* (Jacobs-Reitsma et al., 2008), and the contaminated chicken meat acts as a probable risk of human campylobacteriosis. Detection of *C. jejuni*, *C. coli* and *E. coli* on the carcasses is mainly due to contamination from the gastrointestinal contents of slaughtered healthy animals during processing as well as at retail (Nonga et al., 2010). *Campylobacter* has reported to develop resistance to a number of antibiotics including ciprofloxacin and other fluoroquinolones, macrolides and licosamides, chloramphenicol, aminoglycosides, tetracyclines, ampicillins and other β-lactams, cotrimoxazole, and tylosin (Moore et al., 2006; Padungton and Kaneene, 2003).

Escherichia coli is part of the normal enteric microbial flora in human, poultry and other animals and the pathogenic *E. coli* causes disease in both (Amin et al., 2012). Pathogenic *E. coli* cause a number of diseases in both poultry such as colibacillosis, aerosacculitis, polyserositis, septicemia and other mainly extraintestinal diseases. In humans diseases caused include hemorrhagic colitis, haemolytic uremic syndrome, acute and chronic endemic and epidemic diarrhoea. They are transmitted from person to person via direct contact with animal carriers, faeces, contaminated soil and water or via ingestion undercooked meat and other animal products as well as contaminated vegetables and fruits. As a result of contamination from faeces, it is often found in soil, water and food. Commensal *E. coli* flora can be regarded as a rich source of emergence and spreading of antibiotic resistance (Da Costa et al., 2013). The chicken may also be infected with antibiotic resistant *E. coli* or may develop resistant to one or more antibiotics in the gut.

There is an alarming increase of antibiotic resistant bacteria in particular on MDR among human and animal population globally (Carlet et al., 2012; Marshal and Levy 2011).

However, limited data exists on the occurrence of multidrug resistant (MDR) *E. coli* and *Campylobacter* in poultry and poultry meat in Malaysia.

The hypothesis of this study was: There is a high occurrence of MDR *E. coli* and *Campylobacter* in broiler chicken (in farms) prior to harvesting and on chicken meat (retailed in markets).

Therefore, the objectives of this study were:

1. to determine the occurrence of *E. coli* and *Campylobacter* in chicken in the farm prior to harvesting and chicken meat retailed in the markets.
2. to determine the multidrug resistance (MDR) and antibiotic resistant profiles among the isolates.
3. to determine the associated risk factors in the occurrence of multidrug resistant (MDR) *Campylobacter* in chickens.
REFERENCES

Clinical and Laboratory Standards Institute, (CLSI) (2010). Performance standards for antimicrobial susceptibility testing: Twentieth information Supplement M100-S20 Wayne, PA. USA.

106

HCV New Drug Research (2011) *Escherichia coli*, detected in 94% of retail chicken meat samples in the Netherlands.

dairy cattle and diarrhoea patients. *Epidemiology and Infection, 137*(08), 1111-1120.

Newell, D. G. (2001). Animal models of *Campylobacter jejuni* colonization and disease and the lessons to be learned from similar *Helicobacter pylori* models. *Journal of Applied Microbiology*, 90(S6), 57S-67S.

Teguh S.S., (2014). Characterisation of emerging *Campylobacter* species from broiler chicken and chicken meat in Selangor and their antibiotic resistance. MVSc Thesis: Faculty of Veterinary Medicine, Universiti Putra Malaysia (Malaysia).

Wang, G., Clark, C. G., & Rodgers, F. G. (2002). Detection in *Escherichia coli* of the genes encoding the major virulence factors, the genes defining the O157: H7 serotype, and components of the type 2 Shiga toxin family by multiplex PCR. *Journal of Clinical Microbiology, 40*(10), 3613-3619.

