UNIVERSITI PUTRA MALAYSIA

MOLECULAR PREVALENCE AND CLINICOPATHOLOGICAL ASSOCIATION OF BARTONELLA INFECTION IN CATS PRESENTED TO THE UNIVERSITY VETERINARY HOSPITAL, UNIVERSITI PUTRA MALAYSIA

UMMUKULTHUM LAWAL HASSAN

FPV 2015 8
MOLECULAR PREVALENCE AND CLINICOPATHOLOGICAL ASSOCIATION OF BARTONELLA INFECTION IN CATS PRESENTED TO THE UNIVERSITY VETERINARY HOSPITAL, UNIVERSITI PUTRA MALAYSIA

By

UMMUKULTHUM LAWAL HASSAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in fulfillment of the Requirements for the Degree of Master of Science

June 2015
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATION

Dedicated to my husband Dr. Yusuf Yakubu and kids; Ilham and Ayman
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the Master of Science

MOLECULAR PREVALENCE AND CLINICOPATHOLOGICAL ASSOCIATION OF BARTONELLA INFECTION IN CATS PRESENTED TO THE UNIVERSITY VETERINARY HOSPITAL, UNIVERSITI PUTRA MALAYSIA

By

UMMUKULTHUM LAWAL HASSAN

June 2015

Chairperson: Assoc. Prof. Gurmeet Kaur Dhaliwal, PhD
Faculty: Veterinary Medicine

Feline bartonellosis is a bacterial infection caused by Bartonella species transmitted by the cat flea (Ctenocephalides felis). The disease is asymptomatic in a majority of cats but can be transmitted from infected cats to humans via inoculation or ingestion of flea excrement through scratches or bites. Human Bartonella infection has a variety of clinical manifestations such as bacillary angiomatosis, endocarditis, neuroretinitis and cat scratch fever. Cat owners and veterinarians who are in direct contact with cats are at risk of infection. However, despite the zoonotic potential of the disease, there is paucity of information on feline and human bartonellosis in Peninsular Malaysia. Hence, this study was conducted to determine the molecular prevalence of Bartonella and if the presence of this bacteria is associated with any clinicopathological findings in cats presented to the University Veterinary Hospital (UVH), University Putra Malaysia (UPM).

Of 284 blood samples collected from healthy and ill cats with the median age of 2 years 10 months, presented to the UVH, 48 were PCR positive for the internal transcribed spacer region (ITS) in Bartonella species with an overall prevalence of 16.9% (n=48) (95% CI: 12.8-21.9). Univariate analysis of demographic data showed the detection rate to be significantly associated with younger cats, below 2 years of age [OR= 1.690 (95% CI: 0.989-2.889), p-value = 0.051]. Ocular discharge was the only clinical sign observed to be associated with the presence of Bartonella [OR= 3.211 (95% CI: 1.422-7.248), p-value= 0.003], while laboratory results revealed significant association of bartonellosis with neutrophilia [OR: 2.24 (95% CI: 1.131-4.452, p-value = 0.019] and monocytosis [OR: 2.476 (95% CI: 1.154-5.312), p-value = 0.017]. While these findings are statistically associated, a causal relationship cannot be implied as other concurrent diseases could not be ruled out. Other hematological findings such as anemia, reticulocytosis, lymphocytosis, eosinophilia and azotemia, were not significant.
This study reveals a significant presence of *Bartonella* infection in pet cats with various medical conditions presented to the University Veterinary Hospital, Faculty of Veterinary Medicine, UPM. In view of the potential public health risk of feline bartonellosis especially amongst children, the elderly and immunosuppressed individuals, there is the need to educate cat owners on the latent infection of *Bartonella* and its zoonotic risk and the importance of flea control in their pet cats.
PENGESANAN MOLEKULAR, PREVALENS DAN PENEMUAN KLINIKOPATOLOGI BARTONELLA PADA KUCING DI HOSPITAL UNIVERSITI VETERINAR, UNIVERSITI PUTRA MALAYSIA

Oleh
UMMUKULTHUM LAWAL HASSAN

Jun 2015

Pengerusi: Prof. Madya. Gurmeet Kaur Dhaliwal, PhD
Fakulti: Perubatan Veterinar

Daripada 284 sampel darah yang diambil daripada kucing yang sihat dan sakit, berusia di antara 1 bulan hingga 20 tahun (median 2 tahun 10 bulan), di UVH, terdapat 48 sampel yang positif terhadap internal transcribed spacer region (ITS) dalam spesies Bartonella dengan menggunakan PCR, dan terdapat prevalens sebanyak 16.9 % (n = 48) (95 % sela keyakinan: 12.8-21.9). Analisis univariat data demografi menunjukkan kadar pengesanan yang ketara dengan kucing yang muda, berumur bawah 2 tahun [nisbah kemungkinan = 1.690 (95 % sela keyakinan: 0.989-2.889), nilai-p = 0.051]. Hanya petanda klinik lelehan okular diperhatikan berkaitan dengan kewujudan Bartonella [nisbah kemungkinan = 3.211 (sela keyakinan 95%: 1.422-7.248), nilai-p = 0.003], manakala keputusan maklumat hubungan yang signifikan di antara bartonellosis dengan neutrofilia [nisbah kemungkinan = 2.24 (sela keyakinan 95%: 1.131-4.45, nilai-p = 0.019] dan monositosis [nisbah kemungkinan: 2.476 (sela keyakinan 95%: 1.154-5.312), nilai-p =0.017]. Walaupun penemuan ini adalah signifikan secara statistik, perhubungan penyebab tidak boleh disangka kerana penyakit serentak tidak boleh disingkirkan. Penemuan hematologi yang
lain seperti anemia, retikulositos, limfositosis, eosinofilia dan azotemia, didapati tidak signifikan.

Kajian ini menunjukkan jangkitan *Bartonella* yang ketara pada kucing kesayangan yang mengalami pelbagai masalah perubatan di Hospital Veterinar Universiti, Fakulti Perubatan Veterinar, UPM. Memandangkan potensi risiko bartonellosis kucing terhadap kesihatan awam, terutamanya di kalangan kanak-kanak, warga tua dan individu yang mengalami imunosupres, maka terdapat keperluan untuk mendidik pemilik kucing terhadap jangkitan terpendam *Bartonella*, risiko zoonotik dan kepentingan kawalan pinjal pada kucing peliharaan mereka.
ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and the Most Merciful

Alhamdulillah, all praises and gratitude due to Allah (SWT) for His blessings and strength in completing this thesis. I would like to express my special appreciation and deepest gratitude to my supervisor, Assoc. Prof. Dr. Gurmeet Kaur Dhaliwali, for her support, constructive comments, encouragement, and guidance. I will always remember her advice that took me to where I needed to go, and her words that made me stronger. I would like to gratefully thank Prof. Dr. Ong Bee Lee for her valuable guidance, advice, and support. Her contribution in the design of this thesis would is priceless. My special appreciation goes to Assoc. Prof. Tay Sun Tee for her guidance, suggestions and providing me with an excellent research atmosphere. I am deeply grateful to Assoc. Prof. Dr. Malaika Watanabe for her support, kind suggestions and constructive comments.

I would like to thank staff of Hematology Laboratory, Faculty of Veterinary Medicine, UPM and Department of Medical Microbiology, Faculty of Medicine, University Malaya especially Kai Ling and Fui Xian for their technical assistance and advice.

A special thanks to my mother and father for their unique spiritual support and encouragement. My deepest appreciation goes to my beloved husband (Yusuf) and wonderful kids (Ilham and Ayman) for their prayers and patience. Words cannot express how grateful I am.

Finally, special thanks to all my sisters and friends especially Zahriya, Zulaiha, Asma’u, Muhammad, Salamatu, Aisha, and Fatin Izzati for their kindness and moral support. Thanks for the friendship memories.
I certify that a Thesis Examination Committee has met on 11 June 2015 to conduct the final examination of Ummukulthum Lawal Hassan on her thesis entitled "Molecular Prevalence and Clinicopathological Association of Bartonella Infection in Cats Presented to the University Veterinary Hospital, Universiti Putra Malaysia" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Saleha binti Abdul Aziz, PhD
Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Reuben Sunil Kumar Sharma, PhD
Senior Lecturer
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Internal Examiner)

Hisashi Inokuma, PhD
Professor
Obihiro University of Agriculture and Veterinary
Japan
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 22 September 2015
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory committee were as follows:

Gurmeet Kaur Dhaliwal, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairperson)

Malaika Watanabe, PhD
Associate Professor
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Ong Bee Lee, PhD
Professor
Faculty of Veterinary Medicine
Universiti Malaysia Kelantan
(Member)

Tay Sun Tee, PhD
Associate Professor
Faculty of Medicine
Universiti Malaya, Kuala Lumpur Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of graduate studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ____________________ Date: ____________________

Name and Matric No.: Ummukulthum Lawal Hassan GS35427
Declaration by Members of Supervisory Committee

This is to confirm that
• the research conducted and the writing of this thesis was under our supervision;
• supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ________________________________ Signature: ________________________________
Name of Chairman of Supervisory Committee: Gurmeet Kaur Dhaliwal, PhD
Name of Member of Supervisory Committee: Malaika Watanabe, PhD

Signature: ________________________________ Signature: ________________________________
Name of Member of Supervisory Committee: Ong Bee Lee, PhD
Name of Member of Supervisory Committee: Tay Sun Tee, PhD
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xiv</td>
</tr>
</tbody>
</table>

CHAPTER

1 **INTRODUCTION**

1.1 Hypotheses

1.2 Study Objectives

2 **LITERATURE REVIEW**

2.1 FELINE BARTONELLOSIS

2.1.1 Taxonomic history of *Bartonella*

2.1.2 Bacteriology

2.1.3 Epidemiology

2.1.4 Transmission and Pathogenesis

2.1.5 Immunology

2.1.6 Clinical Manifestation

2.1.7 Diagnosis

2.1.8 Treatment

2.1.9 Prevention and control

2.2 Human Bartonellosis

2.2.1 Epidemiology

2.2.2 Clinical Manifestation in Humans

2.2.3 Diagnosis

3 **MATERIALS AND METHODS**

3.1 Animals

3.2 Sampling location

3.3 Sample size

3.4 Ethical considerations

3.5 Sample collection and data collection

3.6 Molecular detection of *Bartonella* species in blood samples

3.6.1 DNA extraction from blood sample

3.6.2 Polymerase chain reaction

3.6.3 Agarose gel electrophoresis and imaging

3.6.4 Sequencing and identification

3.7 Statistical analysis
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESULTS AND DISCUSSION</td>
<td>27</td>
</tr>
<tr>
<td>4.1 RESULTS</td>
<td>27</td>
</tr>
<tr>
<td>4.2 DISCUSSION</td>
<td>40</td>
</tr>
<tr>
<td>SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR</td>
<td>44</td>
</tr>
<tr>
<td>FUTURE RESEARCH</td>
<td></td>
</tr>
<tr>
<td>5.1 SUMMARY</td>
<td>44</td>
</tr>
<tr>
<td>5.2 CONCLUSIONS</td>
<td>44</td>
</tr>
<tr>
<td>5.3 RECOMMENDATIONS</td>
<td>45</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>46</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>67</td>
</tr>
<tr>
<td>BIODATA OF STUDENT</td>
<td>74</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1:</td>
<td>Prevalence studies on Bartonella infection in cats reported in various countries</td>
<td>5</td>
</tr>
<tr>
<td>2.2:</td>
<td>Genes amplified for the detection and identification of Bartonella species</td>
<td>12</td>
</tr>
<tr>
<td>2.3:</td>
<td>Bartonella species identified in humans</td>
<td>17</td>
</tr>
<tr>
<td>3.1:</td>
<td>Expected band size of the ITS region in different Bartonella Species</td>
<td>25</td>
</tr>
<tr>
<td>4.1:</td>
<td>Chi-square analysis of demographic variables with molecular detection of Bartonella in cats</td>
<td>34</td>
</tr>
<tr>
<td>4.2:</td>
<td>Chi-square analysis of clinical signs with molecular detection of Bartonella in cats</td>
<td>35</td>
</tr>
<tr>
<td>4.3:</td>
<td>Chi-square analysis of laboratory findings with molecular detection of Bartonella in cats</td>
<td>36</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1:</td>
<td>Transmission of bartonellosis (CDC, 2012).</td>
<td>8</td>
</tr>
<tr>
<td>4.1:</td>
<td>Age frequency distribution of the 284 cats sampled</td>
<td>28</td>
</tr>
<tr>
<td>4.2:</td>
<td>Representative PCR result for the detection of the internal transcribed spacer (ITS) region in Bartonella species</td>
<td>30</td>
</tr>
<tr>
<td>4.3:</td>
<td>Alignment of the 16S-23S intergenic space region in B. henselae BhM 3 (Accession No.: KT318619) against B. henselae BM1374165 (Accession No.: DQ529247)</td>
<td>32</td>
</tr>
<tr>
<td>4.4:</td>
<td>Phylogenetic analysis for Bartonella intergenic spacer (ITS) region detected in cat blood.</td>
<td>33</td>
</tr>
<tr>
<td>4.5:</td>
<td>Percentage of cats positive and negative for Bartonella by demographic variables</td>
<td>37</td>
</tr>
<tr>
<td>4.6:</td>
<td>Percentage of cats positive and negative for Bartonella by clinical manifestation</td>
<td>38</td>
</tr>
<tr>
<td>4.7:</td>
<td>Percentage of cats positive and negative for Bartonella by laboratory findings</td>
<td>39</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg</td>
<td>Micro gram(s)</td>
</tr>
<tr>
<td>µl</td>
<td>Micro liter(s)</td>
</tr>
<tr>
<td>µm</td>
<td>Micrometer</td>
</tr>
<tr>
<td>°C</td>
<td>Degree(s) Celsius</td>
</tr>
<tr>
<td>AAFP</td>
<td>American Association of Feline Practitioners</td>
</tr>
<tr>
<td>AIDS</td>
<td>Acquired Immuno Deficiency Syndrome</td>
</tr>
<tr>
<td>B</td>
<td>Bacteremia</td>
</tr>
<tr>
<td>B. spp</td>
<td>Bartonella species</td>
</tr>
<tr>
<td>b.p</td>
<td>Base pair(s)</td>
</tr>
<tr>
<td>BLAST</td>
<td>Basic Local Alignment Search Tool</td>
</tr>
<tr>
<td>C02</td>
<td>Carbon (IV) Oxide</td>
</tr>
<tr>
<td>CD4</td>
<td>Cluster of Differentiation 4</td>
</tr>
<tr>
<td>CD8</td>
<td>Cluster of Differentiation 8</td>
</tr>
<tr>
<td>CDC</td>
<td>Centre for Disease Control</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence Interval</td>
</tr>
<tr>
<td>CSD</td>
<td>Cat Scratch Disease</td>
</tr>
<tr>
<td>d</td>
<td>desired absolute precision (P value)</td>
</tr>
<tr>
<td>DLH</td>
<td>Domestic Long Hair</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>Deoxynucleotide triphosphate</td>
</tr>
<tr>
<td>DSH</td>
<td>Domestic Short Hair</td>
</tr>
<tr>
<td>EDT</td>
<td>Ethylenediamine tetra acetic acid</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme- Linked Immunosorbent Assay</td>
</tr>
</tbody>
</table>
FUO Fever of Unknown Origin

g Gram(s)

HIV Human Immunodeficiency Virus

IACUC Institutional Animal Care and Use Committee

IFA Immuno fluorescent Assay

Ig G Immunoglobulin G

Ig M Immunoglobulin M

ITS Internal Transcribe Spacer

Kg Kilogram(s)

L Liter(s)

m Meter(s)

MCHC Mean Corpuscular Hemoglobin Concentration

MCV Mean Corpuscular Volume

mg Milligram

min Minutes(s)

ml Milliliter(s)

mm Millimeter(s)

ng Nano gram(s)

nm Nanometer(s)

OR Odd Ratio

PCR Polymerase chain reaction

PCV Packed Cell Volume

\(P^{exp} \) expected prevalence

RBC Red Blood Cells

Rpm Round(s) per minutes
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>rRNA</td>
<td>ribosomal Ribonucleic acid</td>
</tr>
<tr>
<td>S</td>
<td>Serology</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>TBE</td>
<td>Tris-Borate-EDTA</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>UPM</td>
<td>Universiti Putra Malaysia</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>UVH</td>
<td>University Veterinary Hospital</td>
</tr>
<tr>
<td>VO</td>
<td>Veterinary Officer</td>
</tr>
<tr>
<td>WBC</td>
<td>White Blood Cells</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Feline bartonellosis is a disease of cats caused by the bacteria *Bartonella*. It was first reported in 1992 following the isolation of the organism in clinical samples of cats (Regnery et al., 1992). The disease is transmitted by blood-feeding arthropods such as the cat flea (*Ctenocephalides felis*), sand flies (*Lutzomyia verrucarum*), human lice (*Pediculus humanus corporis*) and rodent fleas (*Ctenophthalmus nobilis*) (Bown et al., 2004; Chomel et al., 1996). The disease is often asymptomatic with infected cats appearing apparently healthy. However clinical signs such as uveitis, lymphadenomegaly, gingivitis, stomatitis, urinary tract infection and fever have been reported to be associated with severe infection (Breitschwerdt and Kordick, 2000). In experimental studies, cats infected with *Bartonella* developed relapsing bacteremia, granulomatous inflammation of the lymph nodes, liver or spleen, endocarditis and chronic intra-erythrocytic and vascular endothelial infections. Hematological anomalies such as thrombocytopenia, lymphocytosis, neutropenia, and eosinophilia have also been reported (Breitschwerdt, 2008).

Bartonella has a worldwide distribution with high prevalence being reported in environments with conditions favorable for the arthropod vectors to thrive (wet and humid). The disease in animals and humans has been reported in the United States (Nutter et al., 2004), France (Gurfield et al., 2001), Switzerland (Glaus et al., 1997), Netherlands (Bergmans et al., 1997), Denmark (Chomel et al., 2001), Australia (Flexman et al., 1995), Singapore (Nasirudeen and Thong, 1999), Japan (Ueno et al., 1995), Thailand (Assarasakorn et al., 2012), Indonesia (Marston et al., 1999) and the Philippines (Chomel et al., 1999).

Feline bartonellosis is a disease of public health concern, particularly so as infected cats are asymptomatic. Humans in close contact with infected cats are at risk of infection following scratches or bites. Furthermore, immunocompromised individuals such as HIV/AIDS victims, geriatrics, children and pregnant women are at higher risk of infection and could develop an array of clinical conditions such as bacillary angiomatosis, parenchymal bacillary peliosis, relapsing fever with bacteremia, endocarditis, optic neuritis, pulmonary, hepatic, or splenic granulomas, and osteomyelitis (De La Rosa et al., 2001; Fournier et al., 2001; Wong et al., 1995; Relman et al., 1990; Slater et al., 1990). However, the most common *Bartonella* infection in humans is known as cat scratch disease (CSD) which, in immunocompetent individuals, causes localized nodular lesions at the bite or scratch site. The disease is more severe in children with CSD, as encephalopathy and associated neurological signs in addition to rheumatic manifestations have been reported (Al-Matar et al., 2002).

To date, there are fourteen (14) *Bartonella* species that are considered zoonotic, of which few have been reported to be transmitted to humans from companion animals, particularly cats (Guptill, 2010). The zoonotic species
which are reported to be harbored by domestic cats include *B. henselae*, *B. clarridgeiae*, *B. koehlerae*, and *B. bovis (weissii)*. However, *B. henselae* is the most commonly isolated species from cats and has two genotypes - *B. henselae* I and *B. henselae* II, previously known as *B. henselae* Houston I strain and *B. henselae* Marseilles strain respectively (La Scola et al., 2002; Breitschwerdt and Kordick, 2000). Despite worldwide distribution of human bartonellosis, the disease has always been under reported due to misdiagnosis for other ailments. Antibodies against the pathogen in humans have been reported in western Europe, Sweden (Holmberg et al., 1999), Greece (Karpathios et al., 1998), India (Jacob et al., 2006), Japan (Yoshida et al., 1996) and Australia (Flexman et al., 1995).

In Peninsular Malaysia, cats are popular pets and in many households, have very close attachment with their owners. The cats often live indoors, but also have outdoor access, thus increasing their risk of exposure to the stray cat population, which may be potential carriers of feline bartonellosis. Despite the risk of *Bartonella* infection in pet cats and its public health significance, there is a paucity of information on feline bartonellosis and cat scratch fever in Peninsular Malaysia. Hence, this study was conducted to determine the prevalence, risk factors and clinicopathological findings associated with bartonella infection in cats presented to the University Veterinary Hospital, UPM.

1.1 Hypotheses

The hypotheses of this study are:

i. Cats presented to the UVH-UPM with various disease conditions are infected with *Bartonella* species

ii. Feline bartonellosis is associated with some clinical pathology and hematological anomalies.

1.2 Study Objectives

The objectives of this study were:

i. To determine the prevalence of *Bartonella species* in cats using molecular techniques.

ii. To determine if a statistical association exists between the presence of *Bartonella* spp and clinicopathological findings in cats.
REFERENCES

CDC(2012). Transmission of *Bartonella*. Atlanta, USA.

Kosoy, M., Morway, C., Sheff, K.W., Bai, Y., Colborn, J., Chalcraft, L., Dowell,

