UNIVERSITI PUTRA MALAYSIA

IMMUNOSENSOR-BASED DETECTION OF TUNGRO DISEASE IN RICE PLANT

MUHAMMAD NUR AIMAN BIN UDA

FK 2015 49
IMMUNOSENSOR-BASED DETECTION OF TUNGRO DISEASE IN RICE PLANT

By

MUHAMMAD NUR AIMAN BIN UDA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

December 2015
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Rice tungro disease is the major constraint, caused by a combination of rice tungro spherical virus (RTSV) and rice tungro bacilliform virus (RTBV). Major outbreaks of tungro have been occurred in countries of South and Southeast Asia, mediated by a viral carrier green leafhopper. To prevent serious outbreaks, detection of Tungro disease requires a fast, simple and sensitive method. The current study was initiated by transferring viruses from the green leafhopper to susceptible plant host varieties (Y1286 and MR81 for RTSV and RTBV, respectively). After inoculation process, both viruses were purified and spectrophotometrically measured as 1.363 and 1.6075 mg mL\(^{-1}\) for RTBV, 1.227 and 1.6075 mg mL\(^{-1}\) for RTSV. Viral particles were observed by transmission electron microscopy, where RTBV was observed as 168 mm in length with a bacilliform, whereas RTSV appeared with 35 mm in diameter, showed rod-shaped rounded ends. Next, pure viruses were immunized in White New Zealand rabbits and antibody was analyzed on enzyme-linked immunoassay (ELISA) surface. Analysis with RTBV showed that the second bleed has the highest titer, whereas for RTSV bleed 1 has the highest titer (1.6960 mg mL\(^{-1}\) and 2.3251 mg mL\(^{-1}\)). Analysis on screen-printed carbon electrode (SPCE) was incorporated with 0.075 M pyrolle monomer where electro-polymerization process occurred at 0.9 V amperometrically for 20 min. Chronoamperometry measurements showed the best potential to be used is located at 0.2 V, for both RTBV and RTSV. In addition, the antibody immobilized surfaces of SPCE were analyzed by scanning electron microscope. A linear standard curve for each virus obtained based on current measurement (µA), where \(R^2\) values were 0.9755 and 0.967, indicates a higher sensitivity of immunosensor developed. Cross reactivity studies, showed the specificity of the antibodies with a low cross-reactivity, although RTBV and RTSV it-self manifested strongest serological cross-reactivity.
Penyakit merah virus (PMV) adalah kekangan utama, yang disebabkan oleh gubungan dua virus iaitu virus berbentuk sfera (RTSV) dan virus berbentuk basiliform (RTBV). Wabak utama PMV telah berlaku di negara-negara Asia Selatan dan Asia Tenggara dengan pengantara oleh bena hijau pembawa virus. Untuk mengelakkan wabak yang serius, pengesanan penyakit PMV memerlukan kaedah yang cepat, mudah dan sensitif. Kajian ini telah dimulakan dengan proses pemindahan virus dari bena hijau kepada benih khusus (Y1286 dan MR81 untuk RTSV dan RTBV). Selepas proses inokulasi, kedua-dua virus ditulenkan dan kepekatan virus ini telah diperiksa menggunakan UV-spektrofotometer iaitu 1,363 dan 1,6075 mg mL⁻¹ untuk RTBV, 1,227 dan 1,6075 mg mL⁻¹ untuk RTSV. Zarah virus diperhatikan oleh mikroskop elektron penghantaran, dimana RTBV diperhatikan sebagai 168 mm panjang dengan bacilliform, manakala RTSV muncul dengan 35 mm diameter, menunjukkan rod berbentuk hujung bulat. Seterusnya, virus tulen telah imunisasi menggunakan arnab White New Zealand dan antibodi dianalisis pada permukaan immunoassay enzim berkaitan (ELISA). Analisis dengan RTBV menunjukkan bahawa pengambilan darah kedua mempunyai titer tertinggi, sebaliknya bagi RTSV pengambilan pendarahan pertama mempunyai titer tertinggi (1,6960 mg mL⁻1 dan 2,3251 mg mL⁻1). Analisis pada skrin bercetak karbon elektrod (SPCE) dipandankn 0.075 M pyrolle monomer di mana proses elektro-pempolimeran berlaku pada 0.9 V amperometrically selama 20 min. ukuran Chronoamperometry menunjukkan potensi yang terbaik untuk digunakan terletak pada 0.2 V, untuk kedua-dua RTBV dan RTSV. Di samping itu, permukaan antibodi bergerak daripada SPCE dianalisis dengan mengimbas mikroskop elektron. Keluk standard linear bagi setiap virus yang diperoleh berdasarkan ukuran semasa (A) jika, di mana nilai-nilai R² adalah 0,9755 dan 0,967, menunjukkan sensitiviti yang lebih tinggi immunosensor yang dibangunkan. Kajian tindak balas silang, menunjukkan pengkhususan antibodi dengan tindak balas silang yang rendah, walaupun RTBV dan RTSV ia diri ditunjukkan kuat serologi tindak balas silang.
ACKNOWLEDGEMENTS

Alhamdulillah, all praise to Allah the Lord Almighty for giving me the opportunity and strength to conduct this study and to complete this thesis.

First and foremost, I would like to thank my supervisor, Prof Madya Dr Hasfalina Binti Che Man and my co-supervisor, Dr Samsuzana Binti Abd Aziz for giving and providing continuous supervision, guidance and sacrificing their time throughout my study. My immense gratitude also goes to Dr Faridah Binti Salam as my second co-supervisor from Malaysian Agricultural Research and Development Institute (MARDI) for her kindness and continuous supervision. Without their help, this thesis would not have been possible. My sincere appreciation also goes to Universiti Malaysia Perlis (UniMAP), Universiti Putra Malaysia (UPM) and MARDI for the scholarship and sponsorship.

Special thanks to Biodiagnosis and Biosafety (BT3) team Program, especially Pn Gayah, Pn Hazana, En Syafiq Karim, En Syah Noor, En Edy, En Mohd Nor for the discussions and experiments that we had done together. I definitely would not forget working together with brilliant Research Officer especially Pn Aini, Pn Sabrina, Cik Hazalina, and Cik Rafidah for awesome discussion and taking care of my experiments.

My deepest appreciation and love also to my beloved parents for raising me and providing me with good education goes to Prof Dr Uda Hashim as my father and my mother Fatimah Ishak. For my sisters and brothers, I hope I make you all proud and thank you again for continuous love, support and motivation throughout this journey.

It would not be fair as well to express my gratitude to my beloved friends for staying and waiting for me in the laboratory while I was running some overnight experiments such Faris, Ilyas, Hairi, Tarmizi, Amin, Arip, Dr Afiq, Azlan, Imran and others. Thank you very Much.
I certify that a Thesis Examination Committee has met on 7 December 2015 to conduct the final examination of Muhammad Nur Aiman bin Uda on his thesis entitled "Immunosensor-Based Detection of Tungro Disease in Rice Plant" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Aimrun Wayayok, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Mohd Nizar bin Hamidon, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Md Shafiquzzaman Siddiquee, PhD
Senior Lecturer
University Malaysia Sabah
Malaysia
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 16 February 2016
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Hasfalina Che Man, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Samsuzana Abd Aziz, PhD
Senior Lecturer, Ir
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Faridah Salam, PhD
Senior Research Officer
Malaysia Agriculture Research Development Institute (MARDI)
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:
• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: ________________

Name and Matric No.: Muhammd Nur Airman Bin Uda (GS36032)
Declaration by Members of Supervisory Committee

This is to confirm that:
- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ____________________________ Signature: ____________________________
Name of Chairman of Supervisory Committee: Hasfalina Che Man, PhD
Name of Member of Supervisory Committee: Samsuzana Abd Aziz, PhD

Signature: ____________________________
Name of Member of Supervisory Committee: Faridah Salam, PhD
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>iv</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Background

1.2 Problem Statement

1.3 Research Objectives

1.4 Scope Of Study

1.5 Significant Contribution

1.6 Thesis Organization

2 LITERATURE REVIEW

2.1 History Of Tungro Disease In Malaysia

2.2 Tungro Disease

2.2.1 Causal Viruses

2.2.2 Vector Of Tungro Virus

2.2.3 Symptoms Of Infection

2.2.4 Virus Distribution In Infected Plant

2.2.5 Diagnostic Method And Management Strategies For Tungro Disease

2.3 Biosensor

2.3.1 Concept Of Biosensor

2.4.1 Antibody As Bio-Affinity Receptor In Immunosensors

2.4.1.1 Antigen-Antibody Interaction

2.4.1.2 Cross-Reactivity

2.4.2 Immunoassay Format In Immunosensor Devices

2.4.2.1 Immobilization Strategy

2.4.2.2 Bio-Recognition Coating With Polypyrrole (Ppy) Polymer Onto SPCE

2.4.2.3 Application Of Nanomaterial In Immunosensor

2.5 Electrochemical Immunosensor

2.5.1 Amperometric Technique

2.5.1.1 Detector Labels And Substrates Used In Immunoassays
3 MATERIALS AND METHOD

3.1 Experimental Overview

3.2 Chemical And Biological Reagents

3.3 Inoculation And Breeding Process

3.4 Isolation And Purification Of Rice Tungro Using Multi-Step Centrifugation

3.4.1 Morphology Determination Of Viruses

3.4.2 Quantification Of Concentration Of Tungro Virus By Optical Density Measurement

3.5 Antibody Production Against Tungro Disease

3.5.1 Immunization Procedure

3.5.2 Antibody Purification

3.5.3 Separation Of IgG Using Protein G Column

3.5.4 Indirect ELISA Method For Determination Of Antibody Titer

3.5.5 Protein Assay Using Bovine Serum Albumin (BSA)

3.5.6 Antibody Sensitivity Performance With Positive And Negative Sample

3.6 Conjugation Of Activated Peroxidase To Polyclonal Antibody Using Sodium Periodate Method

3.6.1 Characterization Of IgG-HRP Conjugate

3.6.1.1 Sandwich ELISA Method

3.7 Immunosensors Development Based Biosensor Transducer Using Screen-Printed Carbon Electrode (SPCE) For Tungro Disease

3.7.1 Screen-Printed Carbon Electrode Fabrication

3.7.2 Development Of Electrochemical System

3.7.3 Immobilization Of Antibodies In Polypyrrole

3.7.3.1 Preparation Of Conjugated Gold Nano Particles With Antibody

3.7.3.2 Immobilization Of Antibody Colloid Gold Conjugate In Polypyrrole (Ppy)

3.8 Electrochemical Characterization Of Screen Printed Carbon Electrode (SPCE)

3.8.1 General Procedure For Electrochemical Analysis Of Immunosensors For Tungro Disease Approach

3.8.2 Chronoamperometry Analysis Of TMB/H2O2/IgG-HRP On Bare SPCE For Potential Selection

3.8.3 Calibration Curve Of Tungro Disease Immunosensor

3.9 Cross-Reactivity Study Using Different Antigen Parameter

3.10 Surface Analysis On Morphology Structure For Immobilization Process Onto SPCE
4 RESULT AND DISCUSSION

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Symptomatology Of Artificial Test Plant</td>
<td>44</td>
</tr>
<tr>
<td>4.2</td>
<td>Purification Of Tungro Virus</td>
<td>44</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Quantification Analysis For Virus Concentration And Purity</td>
<td>44</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Morphological Determination Of Structure Of Tungro Disease</td>
<td>47</td>
</tr>
<tr>
<td>4.3</td>
<td>Antibody Production</td>
<td>47</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Optimization Of Antibody Activity Using ELISA For RTBV/RTSV</td>
<td>49</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Characterization Of Protein Assay For Production Antibody</td>
<td>51</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Antibody Sensitivity Performance with Positive and Negative Sample</td>
<td>53</td>
</tr>
<tr>
<td>4.4</td>
<td>Rabbit Polyclonal Antibodies Labeling With Peroxidase</td>
<td>55</td>
</tr>
<tr>
<td>4.5</td>
<td>Characterization Study Using Chromamperometry</td>
<td>57</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Chronoamperometry Analysis Of TMB/H₂O₂/Igg-HRP On Bare SPCE For Potential Selection</td>
<td>57</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Standard Calibration Curve For Immunosensors Tungro Disease Using The SPCE</td>
<td>59</td>
</tr>
<tr>
<td>4.6</td>
<td>Cross Reactivity Studies</td>
<td>63</td>
</tr>
<tr>
<td>4.7</td>
<td>Scanning Electron Microscope Analysis Of The Working Electrode Surface Of SPCE</td>
<td>64</td>
</tr>
</tbody>
</table>

5 CONCLUSION AND RECOMMENDATIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Conclusion</td>
<td>67</td>
</tr>
<tr>
<td>5.2</td>
<td>Suggestions For Future Work</td>
<td>68</td>
</tr>
</tbody>
</table>

REFERENCES 70

APPENDICES 81

BIODATA OF STUDENT 107

LIST OF PUBLICATIONS 108
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Advantages And Disadvantages Of Different Immobilisation Strategies (Andreescu & Marty, 2006; Babacan et al., 2000)</td>
</tr>
<tr>
<td>2.2</td>
<td>Summary Of Electrochemical Sensing Applied In Immunosensor Development (Sethi & Lowe, 1990)</td>
</tr>
<tr>
<td>3.1</td>
<td>Chemical And Reagents Used In This Study</td>
</tr>
<tr>
<td>3.2</td>
<td>Schedule Of RTBV/RTSV Immunization In Rabbit</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The Single-Stranded RNA Genome Of Rice Tungro Spherical Virus (RTSV) (Hull, 1996)</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>The Double–Stranded DNA Genome Of Rice Tungro Bacilliform Virus (RTBV) Bunawan et al., (2014)</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Transmission Of Viruses From Green Leafhopper ((\textit{Nephotettix Virescens}))</td>
<td>10</td>
</tr>
<tr>
<td>2.4</td>
<td>Configuration Of Biosensors Involves The Bio-Recognition, Interface And Transduction Element. (Chambers et al., 2008)</td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>Scheme Of General Immunosensor Design Illustrates The Integration Of The Antibody As An Immunological Recognition At The Solid-State Surface And The Signal Transduction. (Luppa et al., 2001)</td>
<td>15</td>
</tr>
<tr>
<td>2.7</td>
<td>Structural Regions Of An Antibody Molecule (Heurich, 2008)</td>
<td>18</td>
</tr>
<tr>
<td>2.8</td>
<td>Cross- Reactivity Of An Antibody With Different Antigens.Arrow Indicate Epitope-Paratope Binding Site (Salam, F. 2010)</td>
<td>19</td>
</tr>
<tr>
<td>2.9</td>
<td>Three Basic Formats Of Immunoassay Used In Immunosensor. (A) Direct Immunoassay (B) Sandwich Format Immunoassay (C) Competitive Immunoassay (Li, 2006)</td>
<td>20</td>
</tr>
<tr>
<td>2.10</td>
<td>Polymerization Of Polypyrrole By Amperometric Technique</td>
<td>24</td>
</tr>
</tbody>
</table>
At A Constant Set Potential, V. (Arslan, 2008)

2.11 Screen Printed Carbon Electrode (Salam et al., 2012) 27

2.12 (A) Antibody Coated Well Before Competition Of Analyte/Analyte-Labelled (Direct ELISA) (B) Indirect Competitive Assay. (Salam. F, 2010)

3.1 Experimental Overview Of Immunosensor Development For Tungro Disease Detection 31

3.2 Inoculation Of Rice Seedlings With Tungro Viruses In Mylar Cages 33

3.3 Summary Process For Isolation And Purification Of Rice Tungro Virus Using Multi-Step Centrifugation 35

3.4 Conjugation Scheme For Periodate Oxidation And Subsequent Reductive Animation (Adopted From Pierce Website: Www.Piercenet.Com) 40

4.1 Response Of The Artifically Of Rice Symptoms (A) Y1286 Are Varieties Used For Source Of RTSV (B) MR81 Are Varieties Used For Source Of RTBV 44

4.2 (A) The Absorption Spectra Of Purified RTBV. (B) The Absorption Spectra Of Purified RTSV 46

4.3 The Shape Of RTSV And RTBV As Analyzer With Transmission Electron Microscopy (TEM) (A) RTSV Virions Were Spherical In. (B) RTBV Virions Were Bacilliform In Shape 47

4.4 Chromatogram Of IgG Elution From Protein A Affinity Column For RTBV Using AKTA Purifier Systems 48

4.5 Chromatogram Of IgG Elution From Protein A Affinity Column For RTSV Using AKTA Purifier Systems 49

4.6 Antibody Titration Against RTsv 50

4.7 Antibody Titration Against RTbv 50

4.8 (A) Protein Standard Curve For Determination Of Protein Content In Antibody Using BCA Method (Bicinchoninic Acid (BCA) The Absorbances Of (B)RTBV And (C) RTSV At Maximum Wavelength 560nm 52
4.9 The Performance Sensitivity of Anti-RTBV Towards Different Sample of Targets

4.10 The Performance Sensitivity of Anti-RTSV Towards Different Sample of Targets

4.11 (a) and (c) IgG-HRP Conjugate was Purified with Protein A Column and Protein Content in Each of The Fraction was Monitor using UV Absorbance at 280nm. (b) and (d) Sandwich ELISA Method Absorbance at 370nm

4.12 Plot Signal (TMB-H$_2$O$_2$-HRP) to Background (TMB-H$_2$O$_2$) Ratios for Each Step Potential with Chronoamperometry Measurement Which was Recorded After 300 s for Each of The Potential on Bare SPCE for RTBV

4.13 Plot Signal (TMB-H$_2$O$_2$-HRP) To Background (TMB-H$_2$O$_2$) Ratios For Each Step Potential With Chronoamperometry Measurement Which Was Recorded After 300 S For Each Of The Potential On Bare SPCE For RTSV

4.14 Schematic Diagram Of The Application Immobilisation Antibody. (A) Immobilization Of Application Of Gold Nanoparticles With Antibody On Surface Working Electrode. (B) Immobilization Of Antibody On Microtiter Plate (ELISA)

4.15 Sandwich ELISA Format Was Applied On SPCE Using Physical Adsorption For Tungro Disease Detection. (A) Immunoassay Format On SPCE (B) RTSV Standard Plot, Current (I, µa) Versus RTSV Concentration (C) RTBV Standard Plot, Current (I, µa) Versus RTBV Concentration. All Standard Plot Curve Consist With Error Bar= Standard Deviation, N=3

4.16 Cross-Reactivity Of Optimized ELISA System With RTBV Against Others Antigens

4.17 Cross-Reactivity Of Optimized ELISA System With RTSV Against Others Antigens

4.18 Immobilization Of Immunosensor Through The Electro-Deposition Method (A) Bare Carbon-Pasted Electrode, (B)
Electro-Polymerization Method Using Ppy-Au-Ab-Kcl

4.19 Immobilization Of Immunosensor Through The Electro-Deposition Method (A) Bare Carbon-Pasted Electrode, (B) Electro-Polymerization Method Using Ppy-Au-Ab-Kcl
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bsa</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>Cm</td>
<td>Choro-Amperometric</td>
</tr>
<tr>
<td>Cv</td>
<td>Cyclic Voltammetry</td>
</tr>
<tr>
<td>Cmv</td>
<td>Cucumber Mosaic Virus</td>
</tr>
<tr>
<td>Cg</td>
<td>Colletotrichum Gloeosporioides</td>
</tr>
<tr>
<td>Dna</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>Elisa</td>
<td>Enzyme-Linked Immunosorbent Assay</td>
</tr>
<tr>
<td>Hrp</td>
<td>Horseradish Peroxidase</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunoglobulines</td>
</tr>
<tr>
<td>Kda</td>
<td>Kilo Dalton</td>
</tr>
<tr>
<td>Lod</td>
<td>Limit Of Detection</td>
</tr>
<tr>
<td>Nkea</td>
<td>National Key Economic Area</td>
</tr>
<tr>
<td>Pcr</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>Prsv</td>
<td>Papaya Ring-Spot Virus</td>
</tr>
<tr>
<td>Ppy</td>
<td>Polypyrrole</td>
</tr>
<tr>
<td>Re</td>
<td>Reference Electrode</td>
</tr>
<tr>
<td>Rtbv</td>
<td>Rice Tungro Bacilliform Virus</td>
</tr>
<tr>
<td>Rtsv</td>
<td>Rice Tungro Spherical Virus</td>
</tr>
<tr>
<td>Rna</td>
<td>Ribonucleic Acid</td>
</tr>
<tr>
<td>Spce</td>
<td>Screen Printed Carbon Electrode</td>
</tr>
<tr>
<td>Spr</td>
<td>Surface Plasmon Resonance</td>
</tr>
<tr>
<td>Std</td>
<td>Standard</td>
</tr>
<tr>
<td>Uv</td>
<td>Ultra Violet</td>
</tr>
<tr>
<td>We</td>
<td>Working Electrode</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>Gram</td>
</tr>
<tr>
<td>Kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>H</td>
<td>Hours</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>Min</td>
<td>Minutes</td>
</tr>
<tr>
<td>Ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>Rpm</td>
<td>Revolutions Per Minute</td>
</tr>
<tr>
<td>°C</td>
<td>Celsius</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

The agriculture sector plays an important role in Malaysia's economic development in providing rural employment, uplifting rural incomes and ensuring national food security. Under the Economic Transformation Programme (ETP), (NKEA Agricultural, 2014) the Malaysian government wants to ensure that food security objectives are achieved. There is a need for up-scaling and increasing the productivity of agro food production in Malaysia to increase self-sufficiency, due to the growing population. However, plant disease out-break continues to be one of the most important issues globally especially in the agriculture based countries.

Lately, plant diseases became a serious problem which significantly affects both the quality and quantity of agricultural products (Sankaran et al., 2010). The infection of disease to the plant area will reduce the quality of agricultural product (Meunkaewjinda et al., 2008) as well as cause a significant agronomic impact (López et al., 2003). Besides, plant diseases can cause periodic or catastrophes in large agricultural fields which can lead to famine (Arivazhagan et al., 2013).

In 2008, the government announced a Food Security Policy (FSP) as a measure to guarantee adequate supplies of food, especially rice. Rice is the staple food for most Malaysian, it is the most consumed crop where 26,041000 tonne matrix in the year 2013 paddy production with 78.8 kg/years per capital consumption. In addition to that, paddy is the third most widely planted crop in Malaysia after oil palm and rubber. In 2013, an approximately 674,332 hectares were planted with paddy including those that are planted twice a year (Department of Agricultural, 2013). Nevertheless, rice tungro disease is greatly hampered the rice production in Southeast Asia including Malaysia. This disease is one of the most vicious and damaging disease causing serious risks to the increase of rice production (Mohd Daud et al., 2013).

This viral disease can affect thousands of hectares due to the absence of symptoms at an early growth stage. As a result, swift disease expansion in the outbreak area becomes one of the challenges in tungro management. The disease detection time and applying effective actions is a major challenge for the control of the disease (Yao et al., 2009). This disease can be calculated to cause production loss as high as 100%. Many farmers called this disease as a cancer disease because of the severe damage it causes and the difficulty of controlling it (Mohd Daud et al., 2013). This disease is caused by two composite viruses which is rice tungro bacilliform virus (RTBV) a double-stranded DNA-containing in the Caulimoviridae family, Tungrovirus genus. Whereas, rice tungro spherical virus (RTSV) is a single-stranded RNA virus in the Sequirviridae family, Waikavirus genus (Nath et al., 2000). These two
viruses combined together in the host plant appears as tungro disease symptoms.

In South and Southeast Asian countries including Malaysia, Green leafhopper (*Nephotettix virescens*) are common vector that combat and disperses the virus agents of tungro disease in rice field. Two main symptoms occur when there is a severe outbreak of these viruses in the rice plantation. Firstly when rice is infected with RTSV it will causes mild or blurred symptoms. Most of researcher called RTSV as latent virus and causal virus of tungro for transmission of rice tungro bacilliform virus by green leafhopper (Lane & Louis, 1991). On the other hand RTBV infections causes yellowing and reddening of the leaves with stunted growth.

Apart from that, RTBV can clearly show the tungro symptoms while RTSV have the capacity to enhance the symptoms. In addition, the green leafhopper has ability to acquire and spread RTSV but incapable to acquire RTBV for spreading the disease. Nevertheless, green leafhoppers that have fed previously on RTSV-infected plants are capable of acquiring RTBV from plants infected with RTBV (Nath et al., 2000). Due to the extreme importance of securing the production of rice, it is necessary to develop a simple and effective tool for tungro disease detection. Most of times, the symptoms of the disease are often detected too late to implement further actions to overcome the problems (Mohd Daud et al., 2013).

Generally, the farmers detect tungro diseases by visual observations. However, it is quite difficulty and not reliable to identify the symptoms through visual; due to the difficulty to differentiate it with non-pathogenic disorder such as nutritional deficiencies, excess water after drought or insect injury which cause similar symptoms (Nath et al., 2000). In addition to that, most farmers are taking simple approach by using pesticides to control and monitor vector. However, this approach is not effective and it also affects the health of the operators (Mohd Daud et al., 2013). In this situation, an imperative method needs to be developed because the two types of viral infections are sometimes present independently in some plants which make it difficult to prevent during serious outbreaks.

Therefore, the detection of tungro disease required a fast, simple and sensitive method compare to convention methods that have been developed for tungro disease detection. Serological technique such enzyme linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) are excessively been used for the detection of tungro virus due to their capable to interact between antigen and antibody (Uda et al., 2013). Despite this exposure, the use of ELISA and SPR for tungro viruses are generally expensive as well as their operation need extension services and required some expertise with sophisticated equipment. A part from that, both methods give a major drawback which are labor-intensive and at least it takes 2 days for the results to be known.
Polymerase chain reaction (PCR) is another diagnostic tool used for tungro disease detection. It is very sensitive to target molecule detection and it can be able to detect low level of specific viral DNA and RNA present in variety of samples with highly sensitivity detection over ELISA. However, the total time frame of the analysis still takes several hours and requires trained personal to conduct the assays (Dasgupta et al., 1996). Nowadays, the use of the biosensor applications become a trend to facilitate the identification of microbial pathogens and the ability to perform simple detection, rapid and sensitive in the sample matrix (Alocilja & Radke, 2003). These technologies has great advantages with unique capabilities for real time and on-site analysis in complex mixture without manipulate for treatment or required large number of sample for analysis (Velasco-Garcia & Mottram, 2003).

Due to the rapid development in research, there are many types of biosensor design based on signal transduction such as optical, electrochemical, piezoelectric, calorimetric and magnetic method which have been applied in various areas. Within these great advances in the design of sensor architectures, the integration of biological sensing (capturing) molecules can be in the form of antibodies, enzymes, nucleic acid and cells. At present, biosensors have expansive application in medicine, agriculture, environmental monitoring and the bioprocessing areas. Recent progress in these areas has already led to the introduction of new-generation biosensors into the competitive diagnostics market place (Saleem, 2013).

Presently, immunosensor technologies (Immuno-biosensor) have been developed to replace traditional analytical techniques which rely on the antibody-antigen binding reaction. The technique for immunosensors is based on the combination of specific antigens and antibodies in a solution on the surface support coupled to a signal transducer. Currently, the development of this device is for high degree sensitivity, specificity, reusability, speed ease and on-site analysis. Additionally, the recent advance in nanotechnology gives extraordinary sensing capabilities toward high selective for target analyte molecules.

1.2 Problem Statement

Rice is regarded as the most important crop in the food sub-sector in Malaysia. The government regards food security as an integral national policy objective for overall development and has stressed that food security is synonymous with rice security. Thus, the Malaysian government willingly support any program focused on rice because it is the staple food of the vast majority of the population (Swamy & Kumar, 2013; Tyagi & Mohanty, 2000). In major rice-growing countries, the outbreaks of rice disease remain the major threat to sustainable rice production. As one of the most destructive in paddy plantation, tungro disease has been recognized as nutritional disorder and widely disturbed not only in Malaysia but also affected in South and South East Asia (Uda et al., 2014a).
In the case of tungro disease, the symptoms are often detected lately, which makes it difficult to take any further action. A part from that, this disease is considered as a nutritional disorder of rice since 1950. Up to date, the control of Tungro disease is still a challenge, although many studies have been conducted to eradicate and prevent its outbreak in rice fields. As a result, a monitoring system is essential to provide a faster detection and to prevent a serious outbreak.

Conventional method remains the most reliable technique to be used as a tool to detect tungro disease such ELISA, SPR and PCR (Dasgupta et al., 1996; Uda et al., 2013). However, the major drawbacks of such techniques are labour-intensive which requires trained personnel and take 2-3 days for the results to be confirmation. This long testing time is inconvenience for industrial applications and particularly in the agricultural sector while screening methods generally require minimal technical expertise.

Currently, detection based on biosensor technology promises a fastest result over conventional method. Thus, immunosensor based detection of tungro disease in rice plant can be used for analytical tools and useful as diagnostic for early detection of physiological changes of the paddy. Thus, it becomes one of the potential benefits to sustain rice production.

The development of immunosensor is optimized for operating under specific condition for a special problem and most work is focused on sensitivity, speed, efficiency and simplicity of the assay procedure. Additionally, the ability of direct signal generation in immunosensor has the potential for real-time monitoring of analytes which is suitable tool for continuous monitoring in infected area (Tothill, 2009).

In this thesis, a screen-printed carbon electrode (SPCE) was used in the development of an immunosensor and designed with a three electrodes system (working, reference and counter). The SPCE have been broadly used because they are economical (easy to fabricate in bulk and disposable), easy to handle, have high sensitivity and a miniaturized portable system. Thus it is potential to be used for the detection of tungro disease in paddy fields.

1.3 Research Objectives

The aim of this study is to detect tungro disease using immunosensor platform by screen printed carbon electrode (SPCE) as diagnostic tool with high sensitivity for rice tungro disease virus detection in rice plant.

The specific objectives of this research are:

1. To isolate and produce specific antibody for two types of rice disease viruses which are rice tungro bacilliform virus (RTBV) and rice tungro spherical virus (RTSV) as bio-recognition element on the sensor surface.
2. To detect RTBV and RTSV using screen printed carbon electrode for highly sensitive detection of tungro disease.

1.4 Scope of Study

The study was conducted with the scope specified below:

a) In this study, propagation of viruses (RTBV and RTSV) through two artificially infected host varieties, which are MR81 for RTBV and Y1286 for RTSV. Due to continuous availability and suitability for laboratory experiments, these varieties were selected as model system and can be implemented to other rice varieties commonly using by farmers. Further, both varieties being used due to its susceptibility to produce more viruses. Rice plantation was limited to the laboratory scale to obtain precise results and to avoid spreading to the field. Viruses were purified and confirmed using Transmission Electron Microscopy (TEM) and UV-spectrophotometer before immunizing New Zealand White Rabbit, they are capable to produce specific polyclonal antibodies in laboratory scale. Rabbit was chosen as the host for immunization, due to its capability to recognize diverse epitopes, rabbit can also develops antibodies for small epitopes efficiently and tend to produce high-affinity antibodies. The purified antibody was optimized to determine the concentration for titer using ELISA, which revealed the right antibody titer for immunosensor development.

b) Immunosensor platform was developed using screen-printed carbon electrode (SPCE) and characterized the interaction between antigen–antibody to develop the standard curve for sensing purpose. Apart from that, limit of detection (LOD) of the sensor was determined to efficiently identify the unknown sample from paddy plantation. However, this research focused in lab scale without involving any field test in paddy plantation due to the above mentioned reasons.

1.5 Significant Contribution

The main contribution of this research is to develop a highly sensitive method as a diagnostic tool for tungro disease infection. The developed sensing system in this study can be the model to sense diseases in rice other crops. Another significant contribution is to be used for industrial applications and particularly in agricultural sector to sustain rice production and prevent economic impact in Malaysia and around the world. The sensor platform shown here is suitable for antibody based screening, applicable for downstream applications.

1.6 Thesis Organization

This thesis constituted of 5 chapters with reference and appendices attached. Each of the chapters will be briefly discussed and they are interrelated to each other.
Chapters 1, (Introduction), give a general overview of tungro disease outbreak. Therefore, an alternative solution is proposed concerning the specific problem which has been addressed in the objectives and scope of the study.

Chapter 2, Literature review, describes about history of tungro disease and the characteristics of infections. It also include the general concept of biosensor which specific to development of immunosensor, concept of electrochemical and the mechanism of reaction were also reviewed. Summary of the literature review is mentioned in this chapter.

Chapter 3, Methodology, gives the details process from inoculation procedure to host plant until the last part of the development of immunosensors using screen printed carbon electrode (SPCE). Details of purification of viruses, immunization into white rabbit New Zealand, purification of antibody and analysis of sensor analysis was described in this chapter.

Chapter 4, Results and Discussions, presents the experimental results and these results were discussed in light of previous findings.

Chapter 5, Conclusion and Recommendation, provides a comprehensive summary and conclusion of the study and also highlights recommendations for future studies.
REFERENCES

microelectrode arrays. Inter-electrode functionalisation allows formatting into miniaturised sensing platforms of enhanced sensitivity. *Biosensors and Bioelectronics*, 25, 920–926.

Chambers, J. P., Arulanandam, B. P., Matta, L. L., Weis, A., & Valdes, J. J.

Electrochemical sensors for detection of tetracycline antibiotics. Unbound free tetracycline and tetracycline conjugates were removed during the washing step. Direct competitive ELISA method. Carbon working electrode was connected to the electrochemical ayse. *Malaysia Society of Animal Production, 15*, 67–80.

Noraini, S., & Azura, N. (2011). Production of polyclonal antibody against...
tetracycline using KLH as a carrier protein, 66, 61–66.

Nanoparticles and Their Biomedical Applications. *Nanomaterials*, 1, 31–63.

79

