

UNIVERSITI PUTRA MALAYSIA

ANTIOXIDANT ACTIVITY AND BIOACTIVE COMPOUNDS OF SELECTED TROPICAL PLANTS

ROHEEYATI ASHIKIN BINTI MUSTAFA

FSTM 2009 20

ANTIOXIDANT ACTIVITY AND BIOACTIVE COMPOUNDS OF SELECTED TROPICAL PLANTS

UPM

ROHEEYATI ASHIKIN BINTI MUSTAFA

MASTER OF SCIENCE 2009

ANTIOXIDANT ACTIVITY AND BIOACTIVE COMPOUNDS OF SELECTED TROPICAL PLANTS

By

ROHEEYATI ASHIKIN BINTI MUSTAFA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

September 2009

In The Name of ALLAH, The Beneficent, The Merciful

This thesis is dedicated to my beloved Dad, Mom, Family and

Friends

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in

fulfilment of the requirement for the degree of Master Science

ANTIOXIDANT ACTIVITY AND BIOACTIVE COMPOUNDS OF SELECTED TROPICAL PLANTS

By

ROHEEYATI ASHIKIN BINTI MUSTAFA

September 2009

Supervisor: Azizah Abdul Hamid, PhD Faculty: Food Science and Technology

Antioxidant does not only prevent food containing lipid and oils from becoming rancid, but it also provides protection against harmful free radical and has been strongly associated with reduced risk of chronic diseases such as cardiovascular diseases, cancer and diabetes. The antioxidant activity of 21 selected tropical plant extracts was evaluated utilizing four different assays including conjugated diene, scavenging DPPH radical, TBA and chelating effect on ferrous ion. Bioactive compounds (total phenolics, flavonoids, β -carotene, lycopene, α -tocopherol and ascorbic acid) were also determined in the plants extracts. Results of the study showed that *C.caudatus* extract was highly effective in the prevention of conjugated diene formation and scavenging effect on DPPH radicals. On the other hand, *C.asiatica* and *P.tetragonolobus* extracts demonstrated excellent activity in

inhibiting malondialdehyde (MDA) formation and chelating ability on ferrous ion. As expected, increasing the concentration of extracts used increased the antioxidant activity in all plants tested. The antioxidant activities of some of these plants were found to be as good as that of α tocopherol and BHA (Butylated hydroxyanisole). Results of the study revealed that *L.inermis* extracts consisted of the highest content of phenols and then flavonoids (catechin, epicatechin and naringenin) compared to all the plants tested. On the other hand, excellent concentration of quercetin and ascorbic acid were identified in V.negundo extract whilst surprisingly, *P.bleo* extract showed high content of lycopene and α -tocopherol. Highest kaempferol and myricetin was found in S.grandiflora and C.asiatica extracts whilst luteolin and apigenin were predominantly found in *P.cordifolia* and *K.galanga* extracts. On the other hand, highest β -carotene content was found in *G.procumbens* extract. Excellent correlation (R²=0.8613) was found between radical scavenging activity and the total content of phenolic compounds. Similar correlation ($R^2=0.8430$) was seen between radical scavenging activity and flavonoids compounds. The study suggested that phenolic compounds in particular, the flavonoids contribute to the antioxidant activity.

Keywords: Antioxidant activity; tropical plants; bioactive compounds; phenolic compounds; ascorbic acid.

Abstrak thesis yang dikemukakan kepada Senat Universiti Putra Malaysia

sebagai memenuhi keperluan untuk ijazah Master Sains

AKTIVITI ANTIOKSIDAN DAN SEBATIAN BIOAKTIF PADA TUMBUHAN TROPIKAL TERPILIH

Oleh

ROHEEYATI ASHIKIN BINTI MUSTAFA

September 2009

Pengerusi: Azizah Abdul Hamid, PhD Fakulti: Sains Makanan dan Teknologi

Antioksidan bukan hanya menghalang makanan yang mengandungi lemak dan minyak menjadi tengik tetapi juga memberi perlindungan yang lengkap daripada bahaya radikal bebas serta mempunyai hubungan yang kukuh dengan menurunkan risiko penyakit kronik termasuklah kardiovaskular, kanser dan diabetes. Aktiviti antioksidan dalam 21 ekstrak tumbuhan tropikal terpilih telah dinilai menggunakan empat kaedah berbeza termasuklah diene berkonjugat, penyaringan bagi radikal DPPH, TBA dan kesan pengikatan pada ion ferrous. Sebatian bioaktif (kandungan fenolik, flavonoid, β -karotin, likopena, α -tocoferol dan asid askorbik) telah dikaji dalam tumbuhan tropikal terpilih. Keputusan kajian menunjukkan bahawa ekstrak *C.caudatus* mempamerkan keberkesanan yang tinggi dalam menghalang pembentukan diene berkonjugat serta penyaringan pada radikal

DPPH. Manakala, ekstrak dari C.asiatica dan P.tetragonolobus pula menunjukkan kecemerlangan aktiviti dalam menghalang pembentukan malondialdehyde (MDA) dan keupayaan mengikat ion ferrous. Seperti yang dijangkakan, peningkatan kepekatan ekstrak yang digunakan akan meningkatkan aktiviti antioksidan dalam tumbuhan kajian. Sebilangan dari tumbuhan ini ditemui setanding dengan α -tocoferol dan BHA (Butvlated hydroxyanisole). Keputusan kajian menunjukkan bahawa kandungan tertinggi bagi sebatian fenolik dan flavonoid (katekin, epikatekin dan naringenin) di temui pada ekstrak L.inermis berbanding dengan tumbuhan kajian yang lain. Sementara itu, kepekatan tertinggi bagi kuersetin dan asid askorbik telah dikenal pasti dalam ekstrak V.negundo. Manakala, ekstrak *P.bleo* pula menunjukkan kandungan tertinggi dalam likopena dan αtocoferol. Kandungan tertinggi bagi kaempferol dan myricetin telah di temui pada ekstrak S.grandiflora dan C.asiatica manakala, sebatian luteolin dan apigenin di temui dengan banyaknya dalam ekstrak P.cordifolia dan *K.galanga*. Kandungan tertinggi bagi sebatian β-karotin telah ditemui dalam ekstrak G.procumbens. Hubung kait yang kukuh (R²=0.8613) telah ditemui antara aktiviti penyaringan radikal dengan jumlah kandungan sebatian fenolik. Jalinan hubungan (R²=0.8430) yang sama juga telah di dapati antara aktiviti penyaringan radikal dan sebatian flavonoid. Kajian menunjukkan bahawa kandungan fenolik terutamanya sebatian flavonoid menyumbang kepada aktiviti antioksidan pada tumbuhan kajian.

Kata kunci: Aktiviti antioksidan; tumbuhan tropikal; sebatian bioaktif,

sebatian fenolik; asid askorbik

ACKNOWLEDGEMENTS

In the name of Allah s.w.t, the Beneficent, the Merciful. Praise be to All, Lord of words and 'selawat' to the prophet Muhammad s.a.w. Thanks to God that I have finished this research.

I would like to express my appreciation and very deepest gratitude to Associate Professor Dr Azizah Abdul Hamid, the chairman of my supervisory committee for her guidance, constructive suggestion and comments in the preparation of this thesis. The most of all, her patience and encouragement have helped me a lot throughout the research. Sincerely, I thank her.

My appreciation and sincere thank to Professor Suhaila Mohamed for her generous efforts, advice and suggestion in the preparation of these thesis are very deeply appreciated.

My sincere thanks to all staffs of Faculty of Food Science and Technology especially staffs of Biochemistry Laboratory for their help and guidance to the success of the research.

I would like to express my deepest gratitude to my beloved parents for their endless encouragement and sacrifices. Special thanks also to all my friends, for valuable assistance and moral supports in order to complete my research and this thesis. Last but not least, I would like to express my gratitude to all those who gave me the possibility to complete this thesis.

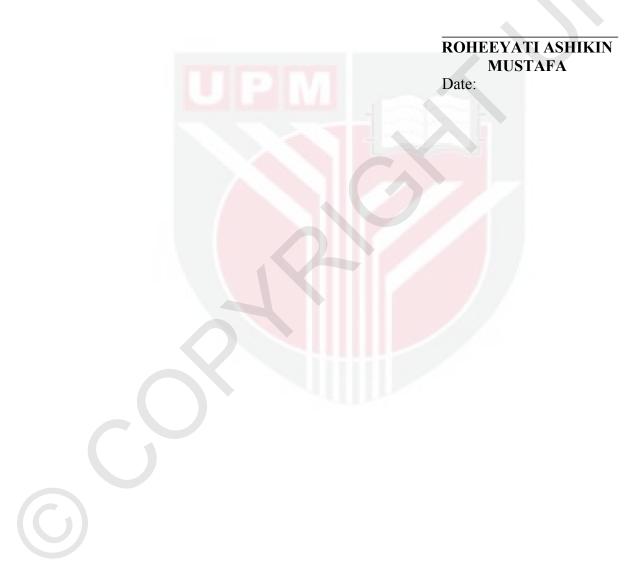
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Azizah binti Abdul Hamid, PhD

Associate Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Chairman)

Suhaila binti Mohamed, PhD

Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Member)


HASANAH MOHD GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 10 December 2009

DECLARATION

I declare that the thesis is my original work except work for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not currently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

xi

TABLE OF CONTENTS

APPROVA DECLARA TABLE OF LIST OF T LIST OF F LIST OF P	LEDGEMENTS L SHEETS TION FORM F CONTENTS ABLES IGURES	Page iv vi viii ix xi xii xvi xvi xviii xvi xv
CHAPTER	UPM	
I	GENERAL INTRODUCTION	1
п	LITERATURE REVIEW	
	2.1 General observation of plants sample	5
	2.1.1 Andrographis paniculata	5
	2.1.2 Boesenbergia rotunda	7
	2.1.3 Centella asiatica	9
	2.1.4 Cosmos caudatus	11
	2.1.5 Curcuma xanthorrhiza	12
	2.1.6 Gynura procumbens	14
	2.1.7 Justicia gendarussa	15
	2.1.8 Kaempferia galanga	17
	2.1.9 Lawsonia inermis	18
	2.1.10 Melicope lunu	20
	2.1.11 Morinda citrifolia	21

23 2.1.12 Murraya koenigii

2.1.13 Pereskia bleo	25
2.1.14 Piper betel	26
2.1.15 Piper longum	28
2.1.16 Pluchea indica	29
2.1.17 Premna cordifolia	31
2.1.18 Psophocarpus tetragonolobus	32
2.1.19 Sesbania grandiflora	33
2.1.20 Talinum triangulare	35
2.1.21 Vitex negundo	36
2.2 Autoxidations	37
2.3 Antioxidants	39
2.3.1 Synthetic antioxidant	39
2.3.2 Natural antioxidants	40
2.4 Phenolic compounds	41
2.5 Flavonoids	43
2.5.1 Flavanols	46
2.5.2 Flavonols	46
2.5.3 Flavones	47
2.5.4 Flavanones	47
2.6 Carotenoids	48
2.7 Ascorbic acid	49
2.8 Tocopherol	51
2.9 Relationship between antioxidant activity and bioactive compounds	53
2.10 Assay to measure antioxidant activity	54
2.10.1 FRAP (ferric ion reducing antioxidant power)	55

2.10.2 ORAC (oxygen radical absorption capacity)	56
2.10.3 Conjugated diene	57
2.10.4 Radical scavenging activity	57
2.10.5 TBA test	58

	2.10.5 TBA test	58
III	EVALUATION OF ANTIOXIDANT ACTIVITIES IN SELECTED TROPICAL PLANTS 3.1 Introduction	60
	3.2 Materials and methods	62
	3.2.1 Materials	62
	3.2.1 Preparation of the extracts	62
	3.2.2 Evaluation of antioxidant activity of plants extracts	64
	3.2.3 Statistical analysis	67
	3.3 Results and discussion	67
	3.3.1 Conjugated diene assay	67
	3.3.2 Scavenging activity on DPPH radical	70
	3.3.3 TBA value assay	75
	3.3.4 Chelating effect on ferrous ion	78
	3.4 Conclusion	83
IV	BIOACTIVE COMPOUNDS IN SELECTED TROPICAL PLANTS	
	4.1 Introduction	85
	4.2 Methodology	86
	4.2.1 Determination of phenolic compounds	86
	4.2.2 Determination of flavonoids	87
	4.2.3 Determination of β -carotene and lycopene	87

4.2.4 Determination of α -tocopherol	88
4.2.5 Determination of ascorbic acid	89
4.2.6 Statistical analysis	89
4.3 Results and discussion	89
4.3.1 Phenolic content of the plants	89
4.3.2 Flavonoids content of the plants	94
4.3.3 β -carotene content of the plants	113
4.3.4 Lycopene content of the plants	117
4.3.5 α -tocopherol content of the plants	120
4.3.6 Ascorbic acid content of the plants	124
4.3.7 Correlation of antioxidant assay and bioactive compounds in selected tropical plants	128
4.4 Conclusion	136

х	7
•	/

CONCLUSION AND RECOMMENDATION

REFERENCES	139
APPENDICES	170
BIODATA OF STUDENT	197
LIST OF PUBLICATIONS	198

LIST OF TABLES

Table		Page
1	Lycopene content of fruits and tomato products	50
2	Selected tropical plants used in this study	63
3	IC ₅₀ of selected tropical plants in conjugated diene assay	69
4	IC ₅₀ of selected tropical plants in scavenging DPPH radical	73
5	Inhibition of MDA formation	76
6	Phenolic compounds in 21 selected tropical plants	91
7	Catechin content of the plants	96
8	Epicatechin content of the plants	98
9	Quercetin content of the plants	101
10	Myricetin content of the plants	103
11	Kaempferol content of the plants	105
12	Apigenin content of the plants	108
13	Luteolin content of the plants	109
14	Naringenin content of the plants	112
15	β -carotene content in 21 selected tropical plants	114
16	Lycopene content in 21 selected tropical plants	118
17	α -tocopherol content in 21 selected tropical plants	121
18	Ascorbic acid content in 21 selected tropical plants	125
19	Correlation coefficient (R^2) between antioxidant activity	129
20	and phenolic compounds Correlation coefficient (R ²) between antioxidant activity and flavonoids	130
21	Correlation coefficient (R ²) between antioxidant activity	131
22	and β -carotene Correlation coefficient (R ²) between antioxidant activity and lycopene	132

23	Correlation coefficient (\mathbb{R}^2) between antioxidant activity and α -tocopherol	133
24	Correlation coefficient (\mathbb{R}^2) between antioxidant activity and ascorbic acid	134
25	Chromatogram of flavonoids in plants sample	173
26	Chromatogram of carotenoids in plants sample	180
27	Chromatogram of α-tocopherol in plants sample	187
28	Chromatogram of ascorbic acid in plants sample	194

 \bigcirc

LIST OF FIGURES

Figure		Page
1	Autoxidation process	38
2	Structure of flavonoids	44
3	DPPH radical scavenging activity of plants tested at 350	71
4	ppm High chelating abilities on ferrous ion in plants tested	79
5	Moderate chelating abilities on ferrous ion in plants tested	79
6	Lower chelating abilities on ferrous ion in plants tested	80

G

LIST OF PLATES

Plate		Page
1	Andrographis paniculata	5
2	Boesenbergia rotunda	7
3	Centella asiatica	9
4	Cosmos caudatus	11
5	Curcuma xanthorrhiza	12
6	Gynura procumbens	14
7	Justicia gendarussa	15
8	Kaempferia galanga	17
9	Lawsonia inermis	18
10	Melicope lunu	20
11	Morinda citrifolia	21
12	Murraya koenigii	23
13	Pereskio bleo	25
14	Piper betel	26
15	Piper longum	28
16	Pluchea indica	29
17	Premna cordifolia	31
18	Psophocarpus tetragonolobus	32
19	Sesbania grandiflora	33
20	Talinum triangulare	35
21	Vitex negundo	36

LIST OF ABBREVIATIONS

BHA	Butylated hydroxyanisole
BHT	Butylated hydroxytoulene
DNA	Deoxyribonucleic acid
DPPH	1,1-diphenyl-2-picrylhydrazil
GAE	Gallic acid equivalent
HAT	Hydrogen atom transfer
HCl	Hydrochloric acid
КОН	Potassium hydroxide
LDL	Low density lipoprotein
MARDI	Malaysian Agricultural Research and Development Institute
MDA	Malondialdehyde
mM	Milimolar
PG	Propyl gallate
ppm	Part per million
PUFA	Polyunsaturated fatty acid
RDA	Recommended dietary allowance
SET	Single electron transfer
TBA	Thiobarbituric acid
TBHQ	Tert-butylhydroquinone
TFA	Triflouroacetic acid

CHAPTER I

INTRODUCTION

Lipid oxidation is a highly deteriorative process in foods, as it leads to unacceptable properties of the products and lost in shelf life, palatability, functionality and nutritional quality. Loss of palatability in foods is partly due to the generation of off flavours that arise primarily from the breakdown of unsaturated fatty acid during autoxidation (Jadhav et al., 1996). The high reactivity of the carbon double bonds in unsaturated fatty acids makes these substances primary target for free radical reactions. The chain of autoxidation reactions includes initiation, propagation and termination. Propagation reactions are primarily responsible for the autocatalytic nature of autoxidation. *In vivo*, lipid oxidation may play a role in cancer, atherosclerosis, Alzheimer's and cardiovascular diseases (Wojdylo et al., 2007).

Antioxidants have been added in food for years to prevent the process of oxidation and are widely used today for food preservation. It can affect different stages of an oxidative sequence. Antioxidant can be specific or has multiple sites of action either as reducing agent, free radical scavenger, quenching of singlet oxygen and potential complexing of pro-oxidant metal. A number of specific reactions can be used to monitor the different molecular mechanism of antioxidants (Chen et al., 2007).

A number of synthetic antioxidants such as BHA (Butylated hydroxyanisole), BHT (Butylated hydroxytoulene), TBHQ (tert-butylhydroquinone) and propyl gallate have been added in foodstuffs during processing to suppress lipid peroxidation and consequently to improve food quality and stability. Since consumers are concerned about long term safety and negative perception of the used of synthetic antioxidants

in lipid containing food, there is an interest in identifying alternative natural and safe sources of antioxidant especially from plant origin. Studies have shown that many fruits, vegetables, spice, grains and herbs exhibited strong antioxidant capacities which are attributed to the presence of active compounds or phytochemicals in the plants (Thaipong et al., 2006).

Plants contain a variety of active compound with unique chemical properties. Phenolic compounds (flavonoids, phenolic acids and tannins), nitrogen-containing compounds (alkaloids, chlorophyll derivatives, amino acids, peptides and amines), carotenoids, tocopherols or ascorbic acids and its derivatives play important role in antioxidant properties (Velioglu et al., 1998). Phenolic compounds become very interesting to the food industry because of their capability to retard the oxidative degradation of lipid. This bioactivity of phenolics may be related to their abilities to act as efficient free radical scavenging, reducing agents, hydrogen donor, singlet oxygen and metal chelator (Rice- Evans et al., 1996).

Flavonoids have been proven to display a wide range of pharmacological and biochemical action such as antimicrobial, antithrombotic, antimutagenic and anticarcinogeni activities (Turkoglu et al., 2007). In food systems, flavonoids can act as free radical scavengers and terminate the radical chain reactions that occur during the oxidation of triglycerides. Therefore, they present antioxidative efficiency in oils, fats and emulsions (Roedig-Penman and Gordon, 1998).

Ascorbic acid shows antioxidant potential by acting as chain breaking scavenger for peroxy radicals and also to act synergistically with tocopherol by donating a

hydrogen atom to the tocopherol-derived phenolate radical, thus regenerating its activity. Tocopherol is one of the best quenchers for singlet oxygen and chainbreaking antioxidant. Singlet oxygen is powerfully quenched by carotenoids, especially β - carotene.

Malaysia has an amazing diversity of plant species. Some of them have long been used as traditional medicine. Medicinal plant parts (leaves, roots, barks, flowers, stems and fruits) commonly rich in phenolic compound have multiple biological effects including antioxidant activity. The plants, *Andrographis paniculata*, *Boesenbergia rotunda*, *Centella asiatica*, *Cosmos caudatus*, *Curcuma xanthorrhiza*, *Gynura procumbens*, *Justicia gendarussa*, *Kaempferia galanga*, *Lawsonia inermis*, *Melicope lunu*, *Morinda citrifolia*, *Murraya koenigii*, *Pereskio bleo*, *Piper betel*, *Piper longum*, *Pluchea indica*, *Premna cordifolia*, *Psophocarpus tetragonolobus*, *Sesbania grandiflora*, *Talinum triangulare* and *Vitex negundo* are local herbs in Malaysia, well known for their medicinal properties. However, scientific information on these plants were lacking and some were not available or reported.

The herbs were examined as potential sources of bioactive compounds within the framework of this research project. Therefore, the objectives of this study are:

1. To evaluate the antioxidant activity of selected tropical plants utilizing different methods including formation of conjugated diene, free radical scavenger, formation of malondialdehyde (MDA) and chelating activity on ferrous ions.

- To identify and determine the bioactive compounds including phenolic compounds, flavonoids (flavanol, flavones, flavonol and flavonones groups),
 β-carotene, lycopene, α-tocopherol and ascorbic acids in the plants.
- 3. To evaluate the relationship between bioactive compounds and antioxidant activity in the plants.

