
 
 

UNIVERSITI PUTRA MALAYSIA 

 
 
 
 
 
 
 
 
 
 
 

HAYDER ABDULLAH LUAIBI ALRAZEN 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FK 2015 28 

NUMERICAL SIMULATION OF THE EFFECT OF CH4, H2 AND DIESEL 
FUEL MIXTURE ON FOUR STROKE ENGINE 



i 

 

 

 
 
 
 
 
 
 

 
NUMERICAL SIMULATION OF THE EFFECT OF CH4, H2 AND DIESEL FUEL 

MIXTURE ON FOUR STROKE ENGINE 
 
 

 

 

 

 

 

 

By 
 
 

HAYDER ABDULLAH LUAIBI ALRAZEN 

 

 

 

 

 

 

 

 

Thesis Submitted to School of Graduate Studies, Universiti Putra Malaysia, in 
Fulfilment of the Requirements for the Degree of Master of Science 

 
 

November 2015

 



COPYRIGHT 

 

All material contained within the thesis, including without limitation text, logos, 

icons, photographs, and all other artwork, is copyright material of Universiti Putra 

Malaysia unless otherwise stated. Use may be made of any material contained within 

the thesis for non-commercial purposes from the copyright holder. Commercial use 

of material may only be made with the express, prior, written permission of 

Universiti Putra Malaysia. 

 

Copyright© Universiti Putra Malaysia  



i 

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the 

Degree of Master of Science 

 

 

NUMERICAL SIMULATION OF THE EFFECT OF CH4, H2 AND DIESEL FUEL 

MIXTURE ON FOUR STROKE ENGINE 

 

 

By 

 

HAYDER ABDULLAH LUAIBI ALRAZEN 

 

November 2015 

 

 

Chairman     : Associate Professor Kamarul Arifin Ahmad, PhD, Ir 

Faculty          : Engineering 

 

 

Gaseous fuels have been investigated to be a helpful substitute in compression-ignition 

engine by researchers. There was extension in the ignition delay of diesel-CH4 dual-fuel 

mode as compared with usual diesel fuel mode. Methane has a low flame propagation speed 

as well as slight flammability whereas hydrogen has the extreme opposite characteristics. As 

such adding hydrogen can enhance methane’s combustion process making it extra 

convenient in diesel engine application. H2-Diesel produced many of the unwanted effects 

such as rapid burning rate and increased diffusivity and reduced ignition energy of hydrogen 

that may lead to knocking, an impact that is harmful to engine’s mechanical durability as 

well as safety. Methane addition has the ability to make hydrogen combustion stable and 

smoother which can prevent imperfect combustion. Methane can also lower the combustion 

temperature of hydrogen so as to repress NOx emission. In the present study, the author 

proposes that by adding hydrogen into methane and diesel, it can improve the combustion 

process. The usage of GAMBIT software was chosen to create the entire computational 

domain of the engine and for Computational Fluid Dynamics (CFD) the FLUENT code was 

used. The engine was operated under dual-fuel and tri-fuel modes with different values of 

excess air (λ) including 1.2, 1.4, 1.6, 1.8, 2, 2.2 and 2.4. Moreover, torque (20.18 N.M), 

intake temperature (330 K), and engine speed (2000 rpm) were taken constantly at an 

atmospheric pressure. Diesel-CH4, diesel-H2 dual-fuel operation, and diesel-CH4-H2 tri-fuel 

operation were employed in this work. H30-M70, H50-M50 and H70-M30 were designed 

for the mixtures percent of hydrogen to methane which are 30:70, 50:50 and 70:30 %, 

respectively, and then used them in the simulations. Due to knocking, the maximum quantity 

of substitution by hydrogen was limited to 50%. Therefore, the quantity of diesel was 

employed 50 percent by mass from the total fuel at diesel mode and the other 50 percent was 

substituted by the methane and hydrogen as mentioned above. 

 

 

The addition of gaseous fuels increases the peak in-cylinder pressure and peak temperature 

at both the low and medium values of the exceed air. Meanwhile, at high value of exceeds 

air, no effects on the peak temperature were noted between Diesel-H70-M30 for tri mode 

and Diesel-H2 for dual mode. Compared with CH4-Diesel at 2.4 exceed air, the peak pressure 

increases by 28.57% and 33.414% by way of adding the limit value of hydrogen to methane, 

such as H30-M70 and H50-M50, respectively. Compared with H50-M50, it begins to 

decrease by 0.726% and 3.81% with H70-M30 and H2-Diesel operations, respectively, that 

may be because of the low value of fuels in air compared with other cases. The addition of 

methane in hydrogen produces a smoother combustion of hydrogen and ascertains that the 

engine is safe and it has mechanical durability.  
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Tri-fuel and dual-fuel modes have a similar suppression effect on CO2 emission but with 

hydrogen there is more reduction in CO2 emission compared with methane. However, 

Diesel-H2-CH4 operations decrease the CO emission compared with the Diesel-CH4 

operation and decrease the NO emission compared with the Diesel-H2 operation at every 

exceed air. High hydrogen fraction in methane (H70-M30) is suggested at all exceeds air in 

order to reduce CO/CO2 emissions, whereas low hydrogen fraction in methane (H30-M70) 

can suppress the uncontrolled hydrogen combustion and limit the increment of the NO 

emission. 
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Bahan api gas telah ditemui sebagai pengganti berguna dalam enjin mampatan penyalaan 

oleh penyelidik. Terdapat lanjutan dalam tempoh lengah operasi dwi-bahan api diesel-CH4 

berbanding dengan operasi bahan api diesel biasa. Metana mempunyai kelajuan perambatan 

api yang rendah serta kemudahbakaran sedikit manakala hidrogen mempunyai ciri-ciri yang 

bertentangan. Penambahan hidrogen, boleh meningkatkan proses pembakaran metana dan 

menjadikannya lebih mudah dalam aplikasi enjin diesel. H2-Diesel menghasilkan pelbagai 

kesan yang tidak diingini seperti kadar pembakaran yang cepat, peningkatan keterasapan dan 

pengurangan tenaga pencucuhan hidrogen yang boleh membawa kepada ketukan enjin, 

kesan yang memudaratkan ketahanan mekanikal enjin dan juga keselamatan. Penambahan 

metana mempunyai keupayaan untuk menghasilkan pembakaran hidrogen yang stabil dan 

lancar yang boleh mengelakkan pembakaran tidak normal. Metana juga boleh menurunkan 

suhu pembakaran hidrogen untuk menindas pelepasan NOx. Dalam kajian ini, Gambit 

digunakan untuk mencipta domain pengkomputeran keseluruhan enjin dan komersial 

Pengkomputeran Dinamik Bendalir (CFD) kod FLUENT digunakan. Enjin ini telah 

dikendalikan di bawah dwi-bahan api dan mod tri-bahan api dengan perberbezaan nilai 

lebihan udara (λ) termasuk 1.2, 1.4, 1.6, 1.8, 2, 2.2 dan 2.4. Selain itu, daya kilas (20.18 

NM), suhu pengambilan (330 K), dan kelajuan enjin (2000) telah ditetapkan pada tekanan 

atmosfera. Diesel-CH4, operasi dwi-bahan api diesel-H2, dan operasi tri-bahan api diesel-

CH4-H2 telah digunakan dalam penyelidikan ini. Tiga campuran hidrogen-metana daripada 

30:70, 50:50 dan 70:30 % hidrogen kepada metana, ditetapkan sebagai H30-M70, M50-H50 

dan H70-M30, masing-masing, telah dibeli dan digunakan dalam simulasi ini. Oleh 

disebabkan pengetukan, jumlah maksima penggantian hidrogen adalah terhad kepada 50%. 

Oleh itu, kuantiti diesel telah bekerja 50 peratus dengan kadar aliran jisim daripada jumlah 

bahan api pada mod diesel dan 50 peratus lagi telah dibahagikan terhadap metana dan 

hidrogen seperti yang dinyatakan di atas. 

 

 

Kajian mendapati bahawa nilai tekanan puncak  dan suhu puncak di dalam silinder telah 

meningkat dengan penambahan bahan api gas pada nilai exceeds air yang rendah dan 

sederhana. Perbandingan diantara menggunakan Diesel-H70-M30 untuk mod tri dan Diesel-

H2 untuk mod dual menunjukkan tiada kesan kepada nilai suhu puncak pada nilai exceed air 

yang tinggi. Semasa exceeds air bernilai 2.4, tekanan puncak meningkat dengan 

penambahan had hydrogen kepada metana, seperti H30-M70 dan M50-H50 dan mula 

berkurangan dengan H70-M30 dan operasi H2-Diesel. Operasi Diesel-H2-CH4 

mengurangkan pelepasan CO/CO2 berbanding dengan operasi Diesel-CH4. Operasi Diesel-
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H2-CH4 juga mengurangkan pelepasan NO berbanding dengan operasi Diesel-H2 pada setiap 

exceeds air. Kajian telah mencadangkan bahawa pengurangan pelepasan CO/CO2 berlaku 

apabila kandungan bahagian hydrogen di dalam metana adalah tinggi (H70-M30) pada 

semua keadaan exceeds air. Kandungan bahagian hidrogen yang rendah di dalam metana 

(H30-M70) boleh menyekat pembakaran hidrogen yang tidak terkawal dan mengehadkan 

kenaikan pelepasan NO. 
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1 

 CHAPTER 1 

 
 

INTRODUCTION 

 

 

1.1 Background 
 

Diesel engines, , are commonly used both on and off roads due to their low Hydro 

Carbon (HC), high thermal efficiency and Carbon Monoxide (CO) emissions. On 

the other hand, they are a major contributor in terms of Nitric Oxides (NOx) 

emissions as well as in terms of their Particulate Matter (PM). There have been 

many methods applied to reduce emissions. Diesel Particulate Filter (DPF) and 

Selective Catalytic Reduction (SCR) were used to reduce PM and NOx emissions, 
respectively. As devices and catalysts are tough in retrofitting the engines of 

vehicles, these methods are based on the use of precious and expensive metals. As 

such, many compromising methods were put forward which also include the 

Dual-Fuel-Combustion (Sahoo et al., 2009). 

 

 

Spark-ignition engines use mostly natural gas (NG). In diesel engines, the NG is 

applied under dieseling dual-fuel operation (Korakianitis et al., 2011; 

Papagiannakis & Hountalas, 2004). Papagiannakis et al. (Papagiannakis & 

Hountalas, 2004; Papagiannakis, Rakopoulos et al., 2010) worked on a diesel-NG 

dual-fuel single-cylinder diesel engine. The study outcome showed that there was 

an extension in the ignition delay of diesel-NG dual-fuel operation as compared 

with the usual diesel fuel operation. The highest rate of heat release and in-

cylinder pressure was lowered as the NG addition was increased at low to middle 

loads, but it was raised at high load because of the enhanced rate of burning of the 

diesel-NG cooperated combustion. The CO/HC rapid increase and reduction of 

particulate paved way for the trade-off impact for the diesel-NG dual-fuel engine. 

CO emission control could be fulfilled via the intake air pre-heating and 

increasing the amount of the pilot diesel (Papagiannakis, Kotsiopoulos et al., 

2010). NO emission’s slight reduction was also seen. Poompipatpong and 

Cheenkachorn (Poompipatpong & Cheenkachorn, 2011) emphasized on the 

impact on the emissions of a 4-cylinder diesel-CNG dual-fuel engine by the 

compression ratio and with the engine speed. It was found in their experiment that 

the increased compression ratio and increased engine speed could attain the 

increased thermal efficiency and reduced emission of CO. Inferior thermal 

efficiency was seen when the engine load was low. In diesel fuel and natural gas 

together with the fuelled diesel engines, the major limitations are Undesirable 

thermal efficiency and much higher CO/HC emissions at low to middle loads 

(Korakianitis et al., 2011). 

 

 

For the internal combustion engines, another best alternative fuel is hydrogen. 

This is due to its ability to enhance the engine efficiency as well as the emission 

reduction. Diesel-H2 dual-fuel engine has gained considerable momentum in 

recent years (Bose & Banerjee, 2012; Liew et al., 2010). The process of diesel-H2 

dual-fuel combustion in one heavy-duty diesel engine was studied by Liew et al. 

(Liew et al., 2010). It was shown that the peak in cylinder pressure drastically 
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increased at 70 percent of full engine load and this influence was to be under 

control for the purpose of safety as well as for the engine’s mechanical durability. 

It was observed that hydrogen’s combustion efficiency was considerably less 

when a small quantity of hydrogen was added. Gatts et al. (Gatts et al., 2010) also 

explored on the combustion efficiency of hydrogen through the measurement of 

unburned hydrogen in the exhaust gas. It was shown by these studies that the 

engine load was dependent on the hydrogen combustion efficiency and the 

hydrogen must be added at high load for attaining high energy conversion 

efficiency for the hydrogen fuel as well as for the diesel fuel. Results of Liew et 

al. and Lilik et al. (Liew et al., 2012; Lilik et al., 2010) indicated that 

HC/CO/CO2/PM emissions reduced almost linearly when the hydrogen addition 

was increased, which indicates that the reductions in carbon-based gaseous as well 

as particle emissions are associated with hydrogen quantity being added. NOx 

emission on the other hand, decreased at low to middle loads, whereas it increased 

at high load because of the rapid burning rate of hydrogen which resulted in high 

combustion temperature as well as improved the formation of NOx. The thermal 

efficiency is based on the load and speed of engine, as well as on hydrogen 

quantity being added which was shown in the study conducted by Miyamoto et al. 

(Miyamoto et al., 2011). Kumar Bose and Banerjee (Bose & Banerjee, 2012) 

explored the hydrogen addition’s impact on emission reduction as well as 

performance trade-off with hot and cooled EGRs. They showed that 10 percent 

and 20 percent of EGR indicated a powerful potential in the reduction of NOx as 

well as smoke emissions. This also maintained a simultaneous reduction on 

HC/CO/CO2/BSFC together with the gain of sustainability on the Brake Thermal 

Efficiency (BTE). 

 

 

In the case of conventional gas-diesel dual-fuel engines, there is an engine 

efficiency sacrifice and higher level of some of the emissions such as that of 

HC/CO which cannot be solved without using the after-treatment equipment. 

Some new methods have to be developed. Hydrogen enrichment has the ability to 

enhance the process of combustion of some gases fuels including LPG and NG, so 

as to enhance the total gases fuels energy usage efficiency. Prior times, using the 

mixture of CNG- Hydrogen for spark-ignition fuel engine has been explored 

much in studies (Acikgoz & Celik, 2012; Mariani et al., 2013) and is shown to be 

good for the elimination of some negative aspects of NG spark-ignition engines 

(Korakianitis et al., 2011). The enhancement is related with the unique 

characteristics of hydrogen, including its broad flammability, rapid burning 

velocity, less ignition energy and its carbon-free nature. In the recent times, for 

increasing the performance of conventional gas-diesel dual-fuel engines, studies 

started focusing on tri-fuel engines. Lata et al. (Lata & Misra, 2011; Lata et al., 

2012) did a series of in-depth experimental and theoretical studies on diesel 

engines which use hydrogen-LPG mixture as the gaseous fuel, along with the 

diesel fuel. The main results of these studies showed that low efficiency at low 

load for LPG-diesel dual-fuel mode was enhanced with the hydrogen enrichment 

while the engine was functioning at above 10 percent of the full load. Similar to 

this, methane has a low flame propagation speed as well as slight flammability 

whereas hydrogen has the extreme opposite characteristics. As such, adding 

hydrogen can enhance methane’s combustion process making it extra convenient 
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in diesel engine applications. For hydrogen-diesel dual-fuel mode, the rapid 

burning rate, increased diffusivity and reduced hydrogen ignition energy enable 

the combustion to become unstable, particularly at increased engine loads that 

might result in knocking. The knocking is harmful to engine’s mechanical 

durability as well as safety, as discussed earlier. Methane enrichment has the 

ability to make the combustion of hydrogen stable and smoother which can 

prevent imperfect combustion. Methane can also lower the combustion 

temperature of hydrogen so as to repress NOx emission. This study focuses on 

comparing the combustion characteristics as well as emission features of a diesel 

engine under diesel-CH4 and diesel-H2 dual-fuel operations, as well as under 

diesel-CH4-H2 tri-fuel operations, where the gaseous fuels substitute up to 50 

percent of the overall fuel. Under the tri-fuel operation, hydrogen and methane are 

blended with different percent fractions and then the 2 gaseous fuels are 

combusted together with the diesel fuel. 

 

 

1.2 Problem Statement  

 

For conventional gas-diesel dual-fuel engines, there is an engine efficiency 

sacrifice and higher level of some of the emissions such as that of HC/CO which 

cannot be solved without using the after-treatment equipment. This equipment 

however is expensive. Therefore, novel method has to be developed. Adding 

hydrogen can enhance the process of combustion of some gaseous fuels including 

LPG and NG, so as to enhance the total gases fuels energy usage efficiency. 

Flame propagation speed of methane is low and also it has narrow flammability. 

Meanwhile, the hydrogen has contrary traits; therefore hydrogen enrichment can 

enhance the process of methane combustion and make its convenient for 

application of diesel engine. For hydrogen-diesel dual-fuel mode, rapid burning 

rate, increased diffusivity as well as low ignition energy hydrogen increased the 

combustion abnormal characteristics such as knocking. The knocking is harmful 

to the mechanical durability as well as safety of engine. On the other hand, a 

hydrogen affects emissions by reducing the hydrocarbon (HC), CO, CO2, PM, and 

smoke. The effective method to solve these problems is to blend H2, CH4, and 

diesel to meet the characteristics required by the engine. Methane addition makes 

hydrogen combustion smoother as well as much more stable and blocks abnormal 

combustion. Methane can also lower the combustion temperature of hydrogen so 

as to repress NOx emission. 

 

 

1.3 Hypothesis 
 

The current study proposes that by adding hydrogen into CH4 fuel and diesel it 

can improve velocity of combustion and therefore enhancing the combustion 

characteristics. Mix of natural gas with hydrogen is required to increase the lean-

burn attributes as well as minimize the actual engines emissions (mainly CO2, HC 

as well as CO), but the possibility involving greater NOx emissions will be 

involving concern. This helps combustion behaviour of action with the possibility 

to formulate engines with increased performance and lower environmentally 

friendly impact. Hydrogen itself provides the possible to be an alternate to be able 

to regular fuel, since it is absolutely carbon-free along with not too difficult to 
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make but high pricey. The employment of NG/hydrogen mixtures comprising H2 

gives good possibility to offer the rewards associated with the particular hydrogen 

without having large modification involving currently existing CNG engine. 

 

 

1.4 Research Objectives 
 

The aim of the current study is to simulate dual and tri fuel diesel engines consist 

of methane, hydrogen, and diesel. The current study also observes the impact of 

mixing ratios with variation of exceed air. The specific objectives are as follow: 

1. To perform CFD simulation on CH4-diesel and H2-diesel for dual-fuel 

mode and on CH4-H2-diesel for tri-fuel modes. 

2. To determine amount of gaseous addition for best condition. 

3. To evaluate the combustion characteristics and emissions of a compression 

ignition engine with varying engine operations under different ratios of 

exceed air (λ). 

 

 

1.5 Scope of Research  

 

This study concentrates on the impact of combining tri fuels namely methane, 

hydrogen and diesel on combustion characteristic. Furthermore the effect of λ 

(exceed air) was looked into at each of the engine operations both dual and tri-

modes. This study has the scope to deliver combustion characteristics and 

emissions. There has also been an attempt to illustrate the engine’s combustion 

chamber using 2 dimensional analyses, hence enabling better comprehension of 

the behaviour of combustion chamber. 

 

 

1.6 Thesis Layout 

 

This thesis has been divided orderly into five chapters, the thesis starts with 

introduction in Chapter 1 which includes a background of dual and tri-fuel diesel 

engine.  

 

 

Chapter 2 explains benefits for using alternative fuels of diesel engines and 

explains the effect of hydrogen addition on performance and combustion as well 

as emissions in direct diesel engines. 

 

 

Chapter 3 elaborates on the methodology used that includes a description of the 

grid generation of diesel engine using the Gambit software that created the needed 

mesh by moving the dynamic mesh or MDM model and also defines the 

conditions of the boundary and sets the solver variables in the Fluent software.  

 

Chapter 4 illuminates the results which were accomplished from CFD simulation 

as well as the corresponding discussions. 
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Chapter 5 displays the recommendation for future studies and final conclusion of 

this project. 
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