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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 

of the requirement for the degree of Master of Science  

DESIGN OF CMOS POTENTIOSTAT FOR LOW CONCENTRATION 

HEAVY METAL DETECTION 

 

By 

 

MEHRAN RAEISINAFCHI 

 

August 2015 

Chairman : Assoc. Prof. Roslina bt. Mohd. Sidek, PhD 

Faculty : Engineering 

Metal toxicity is a critical concern in both human and ecosystem health. Many heavy 

metals are lethal at high concentration. They can also be harmful at trace 

concentration since accumulating such materials in human organs lead to long-term 

negative health effects such as heart disease and high blood pressure. Therefore, 

heavy metal detection of trace concentration is very important. Electrochemical 

detection system consists of electrodes as transducer, potentiostat as electrical signal 

detector and data converter for signal processing blocks. The potentiostat detects and 

amplifies the current generated by the transducer, and it controls the potential of the 

electrodes. With the advancement of micro- and nano-technology, micro-

electrochemical system provides feasible solution for sensitive detection and 

miniaturized platform.    

Studies have shown that to detect trace concentration of heavy metals, the 

potentiostat should be able to detect low current typically in the range of nA to μA 

and a different types of heavy metals can be detected at the potential between -1V 

and +1V. Researchers have developed CMOS- based potentiostat for detection of 

limited type of heavy metals and current detection level in µA range using CMOS 

technology nodes of 0.18μm and above. The research is aimed to design a 

potentiostat that can detect nA to μA range current and -1V to +1V range of the 

voltage using 0.13μm CMOS technology with ±1.2 V supply voltage. By using 

down-scaled technology, the area consumption is expected to decrease. Dual power 

supply of ±1.2V are used in the design to detect the potential between -1V to +1V. 

To ensure the linearity of output signal, the potentiostat is designed using fully 

differential operational amplifier and rail-to-rail common-mode range buffer. A new 

circuit configuration is also proposed to read nA range of current. By using down-

scaled 0.13μm CMOS technology, the physical layout is reduced to 0.041   , 

about 10 times smaller than design area reported particularly using 0.18μm CMOS 

technology. The post-layout simulation results shows that the proposed design is 

able to read the input current in the range of nA to μA. The linearity is   = 0.999 

and also the maximum voltage swing obtained is 2.4 V from -1.2V to +1.2V. The 

Signal to Noise Ratio (SNR) of CMOS potentiostat for 1nA and 1uA sensor current 

is equal to 38.91 dB and 47.96 dB, respectively. The circuit developed in this 
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research is verified by using published experimental data for 3mg    Cu(II) and 0.6 

mM Cd(II).  The results shows that the values of current peaks and potentials at 

which current peaks occur are close to experimental results for these types of heavy 

metals.  
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Master Sains  

REKA BENTUK POTENTIOSTAT CMOS UNTUK PENGESANAN LOGAM 

BERAT KEPEKATAN RENDAH  

Oleh 

MEHRAN RAEISINAFCHI 

Ogos 2015 

Pengerusi: Professor Madya. Roslina bt. Mohd. Sidek, 

PhD Fakulty: Kejuruteraan 

Ketoksikan logam adalah satu isu yang penting dalam kehidupan manusia dan 

kesihatan ekosistem.  Banyak logam berat merbahaya pada kepekatan yang tinggi.  

Ia juga merbahaya pada konsentrasi rendah, oleh kerana pengumpulan bahan-bahan 

berkenaan dalam organ badan manusia boleh membawa kepada kesan negatif jangka 

panjang pada kesihatan seperti sakit jantung dan tekanan darah tinggi.  Oleh itu, 

pengesanan logam berat pada konsentrasi rendah sangatlah penting.  Sistem 

pengesanan elektrokimia terdiri dari elektrod sebagai transduser, potentiostat sebagai 

pengesan isyarat elektrik dan pengubah data untuk blok pemprosesan isyarat.  

Potentiostat mengesan dan menguatkan lagi arus yang dijana oleh transduser dan ia 

mengawal potensi elektrod.  Dengan kemajuan makro dan nano-teknologi, sistem 

mikro-elektrokimia memberikan satu kaedah penyelesaian yang praktikal untuk 

pengesanan sensitif dan landasan bersaiz kecil.   

Kajian telah menunjukkan bahawa untuk mengesan logam berat berkepekatan 

rendah, potentiostat dapat mengesan arus yang lebih rendah biasanya dalam 

lingkungan nA ke μA dan pelbagai logam berat boleh dikesan pada potensi antara -

1V dan +1V. Penyelidik telah membangunkan potentiostat berasaskan CMOS untuk 

mengesan logam berat dan tahap pengesanan arus dalam jalat μA menggunakan nod 

teknologi CMOS dari 0.18μm dan ke atas. Kajian ini bertujuan untuk mereka bentuk 

potentiostat yang boleh mengesan  julat arus dari  nA kepada μA  dan julat voltan 

dari -1V kepada + 1V julat voltan yang menggunakan teknologi CMOS 0.13μm 

dengan voltan bekalan ±1.2V. Dengan menggunakan teknologi berskala rendah, 

penggunaan kawasan ini dijangka akan berkurangan. Dua bekalan kuasa ± 1.2V 

digunakan dalam reka bentuk untuk mengesan potensi antara -1V ke +1V. Untuk 

memastikan  kelelurusan isyarat keluaran, potentiostat direka menggunakan penguat 

operasian kebezaan penuh dan penimbal mod sepunga landasan ke landasan. 

konfigurasi litar baru juga dicadangkan untuk membaca arus dalam julat nA. Dengan 

menggunakan teknologi berskala rendah CMOS 0.13μm, bentangan fizikal 

dikurangkan kepada 0.041    , kira-kira 10 kali lebih kecil daripada kawasan reka 

bentuk dilaporkan terutamanya menggunakan teknologi CMOS 0.18μm. Keputusan 

simulasi pasca susun atur menunjukkan bahawa reka bentuk yang dicadangkan 

mampu untuk membaca arus masukan dalam julat nA ke μA. kelelurusan ialah    = 
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0.999 dan juga voltan maksimum diperolehi ialah 2.4 V daripada -1.2V kepada 

+1.2V. Isyarat kepada Nisbah Bunyi (SNR) daripada CMOS potentiostat untuk 1nA 

dan 1uA sensor arus  semasa adalah sama dengan 38.91 dB dan 47.96 dB. Litar yang 

dibangunkan dalam kajian ini disahkan dengan menggunakan diterbitkan data 

eksperimen untuk 3mg   Cu (II) dan 0.6 mM Cd (II). Keputusan menunjukkan 

bahawa nilai puncak arus dan potensi hampir dengan keputusan eksperimen untuk 

jenis logam berat tersebut. 
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    CHAPTER     1

INTRODUCTION 

1.1 CMOS Technology for Monitoring System 

Developments in Complementary Metal Oxide Semiconductor (CMOS) processing 

technologies and biomedical sensors have led to the realization of monitoring 

devices such as implantable biosensors for  monitoring  patients for example to 

reduce the risk of poison [1, 2]. The integration of transistor with CMOS technology 

enables development of miniaturized systems with higher throughput, lower cost and 

reliable performances. Figure 1.1 illustrates the overview of CMOS technology in 

patients monitoring. Hence, several physiological phenomena are monitored by body 

sensors. Then the data sent to a personal server through the internet. As the data is 

stored in a medical server, long term and short term patient term patient treatment 

can be optimized based on the medical history.  

 

 

Figure 1.1  Overview of Patient Monitoring System based on CMOS 

Technology[2] 
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Economic and functional needs stimulate a progressive increase of the number of 

transistors integrated on a single chip. Until now the electronic technologies have 

been able to satisfy these needs through dimension scaling and reliability 

improvement of electronic components. Figure 1.2 shows the International 

Technology Roadmap for Semiconductor (ITRS) [3].  According to ITRS, Scaling  

(which  is  also  known  as  more  Moore)  refers  to  not  only  the  continued 

shrinking of transistors but also includes non-geometrical process techniques such as 

study of new materials that affect the electrical performance of the chip, as well as 

design technologies that enable high performance, high reliability, low cost, and high 

design productivity. Functional diversification (which is also known as  more  than  

Moore)  aims  to  provide  additional  value,  in  particular  non-digital functionalities 

(Analog/RF communication), to be migrated from the system board level into  

package-level  (system-in-package,  SiP)  or  chip-level  (System-on-Chip,  SoC) [4]. 

Figure 1.2  International Technology Roadmap for Semiconductor (ITRS)[3] 

In environmental application CMOS technology is used for monitoring and 

measuring electrochemical analaytes. Figure 1.3 illustrates the block diagram of the 

electrochemical instrumentation system [5]. This electrochemical instrument 

includes electrochemical sensor, data conversion, microcontroller and potentiostat. 

Basically, a potentiostat has two main functions, controlling the potential difference 

between working electrode (WE) and reference electrode (RE) and measuring the 

current flowing between working electrode and counter electrode. The signal is 

generated by the microcontroller in digital form and is then converted to analogue 

form using a digital to analogue converter (D/A) [6]. It is applied to the counter 

electrode (CE) and reference electrode (RE) via a potentiostat which acts to control 

the applied potential. The signal output, in the form of a current, is obtained from 

working electrode (WE).  



© C
OPYRIG

HT U
PM

 

  3 

In the data acquisition process, the current is digitized by an analog to digital 

converter (A/D) under the control of the microcontroller. These binary numbers are 

then stored in the microcontroller memory for storage and further processing. 

  

 

 

Figure 1.3 Block Diagram of the Electrochemical Instrumentation System[5] 

1.2 Heavy Metal 

Metal toxicity is a critical concern in both human and ecosystem health. Many heavy 

metals are lethal at high concentrations. They can also be harmful at trace 

concentration since accumulating such materials in human organs lead to long-term 

negative health effects such as heart disease and high blood pressure [7-9]. Heavy 

metals are namely mercury, lead, cadmium, nickel. Danger of heavy metals is their 

ability for bioaccumulation. Some heavy metals may also play a role in the 

development of various cancers. Environmental pollution from industry is the main 

source of high amount of heavy metals in the environment. In fact, after the 

penetration of these metals into the body, they accumulate in tissues such as fat, 

muscle, bones and joints and cause many diseases and bring various other 

aggravating problems to human [10, 11].  As is shown in the following Figure 1.4, 

the accumulation of heavy metals in the human body is often associated with some 

complications as in the following: Getting cold feet, immunodeficiency, skin rashes, 

digestive problems, fatigue, heart disease, high blood pressure, irritability, allergy, 

forgetfulness and dizziness. 

Electrochemical sensor 
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Figure 1.4 Human problems Caused by Accumulation Heavy Metals in Body 

1.3 Problem Statement 

Researchers have developed potentiostat based on CMOS technology but for the 

detection of limited type of heavy metals and current detection level in µA range [18, 

46]. In order to detect trace concentration of heavy metals, the potentiostat should be 

able to detect lower current typically in the range of nA to µA. Therefore, previous 

CMOS potentiostat due to detection current in µA range cannot be used for low 

concentration heavy metal detection.  Scaled down CMOS technology which tends 

to operate at lower current may be useful for detecting low concentration of heavy 

metals. Down-scaling trend of CMOS technology has significantly improved the 

performance of digital system. However, the decreasing supply voltage imposes 

challenges to analog design. In addition, the requirement for analog-digital 

integration required by study fully on-chip electrochemical sensor system demands 

for feasibility of adopting smaller node CMOS technology.  
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1.4 Research Objective 

This research investigates the design and performance of CMOS potentiostat that can 

detect heavy metals at low concentration using 130nm CMOS technology with low 

supply voltages of ±1.2V. The CMOS potentiostat is aimed to support voltage range 

from -1V to +1V in order to detect different types of heavy metals. It is also aimed to 

sense current in nA range for low concentration detection.  Therefore, the CMOS 

potentiostat is aimed to detect Cu(II) and  Cd(II).  

1.5 Research Scope 

The research focuses on the design and simulation phases of 0.13μm CMOS 

technology. The design has been verified through post-layout simulation and is ready 

for next step which is chip fabrication. Therefore, chip fabrication and experimental 

measurement are excluded for scope of this thesis.  

1.6 Thesis Organization 

Chapter 1 specified the research area explains the motivation of this research.  Next, 

the problem statement and also research objective are introduced prior to our brief 

explanation of the whole system. In chapter 2, the literature review which helps to 

understand the rated aspect of the thesis is explained.  It includes the overview of 

electrochemistry. Then, the electrochemical analysis techniques are presented.  In 

this chapter the potentiostat is introduced. Potentiostat topologies and their 

performance are also presented. In chapter 3, the methodology of this research is 

presented. In this chapter, design procedure, simulation setup and physical layout of 

this research is explained. The simulation result is discussed in chapter 4. Chapter 5 

presents the conclusion of this work.   
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