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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 

the requirement for the degree of Master of Science 

ABSTRACT 

PARAMETRIC INVESTIGATION OF HEAT TRANSFER AND FLUID FLOW 

ON LASER MICRO-WELDING 

 

By 

 

ASGHAR HOZOORBAKHSH 

 

July 2015 

 

Chair: Mohd Idris Shah Ismail, PhD 

Faculty: Engineering 

 

The aim of this research is to investigate heat transfer and fluid flow phenomena during 

laser micro-welding of thin stainless steel sheet. A transient 3-D model is developed 

using computational fluid dynamics (CFD) method to understand some critical 

characterisation such as temperature fields and melt pool formation and also the 

perform parameters on laser micro-welding process. The applications of developed 

thermal models have demonstrated that the laser parameters, such as laser power, 

scanning velocity and spot diameter have considerable effect on the peak temperature 

and resulted weld pool. The heat source model is consisted of surface heat source and 

adaptive volumetric heat source that could be well represented the real laser welding as 

the heat penetrates into the material. In the computation of melt dynamics, mass 

conservation, momentum and energy equations have been considered to count the 

effects of melt flow and the thermo-fluid energy heat transfer. The three-dimensional 

governing equations from the Navier-Stokes for Newtonian fluid are used to estimate 

the melt flow that influences the rate of heat transfer and the distribution of temperature 

in a 3-D domain. 

 

Melt penetration is produced by the use of high power density distribution that results 

in rapid evaporation, which is expected to generate recoil pressure in the weld pool. 

Assuming that atmospheric and vaporised material pressure are balanced at the front of 

the laser beam, the evaporation of the melt leads to significant pressure that drills down 

the melt to the opposite side of the base material when it is heated over the boiling 

point. Furthermore, the surface tension of the molten material is also highly responsible 

for widening the melt pool. The melt surface layer is often influenced by contractive 

forces of the molten material to minimize its surface free energy. Minimization of the 

energy has a substantial effect on the melt surface to stretch out its extent towards the 

non-melted solid region. 

 

The simulation results have been compared with two sets of experimental research to 

predict the weld bead geometry and solidification pattern which laser welds are made 

on stainless steel (SUS304). The shape comparison describes those parameters relevant 

to any changes in the melt dynamics and temperatures are of great importance in the 

formation of weld pool and heat distribution during laser micro-welding. The fair 

agreement between simulated and experimental results has been achieved. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia  

sebagai memenuhi keperluan untuk ijazah Master Sains  

ABSTRAK 

KAJIAN PARAMETRIK PEMINDAHAN HABA DAN ALIRAN BENDALIR 

PADA MIKRO-KIMPALAN LASER 

 

Oleh 

 

ASGHAR HOZOORBAKHSH 

 

Julai 2015 

 

Pengerusi: Mohd Idris Shah Ismail, PhD 

Fakulti: Kejuruteraan 

 

Matlamat penyelidikan ini adalah untuk mengkaji pemindahan haba dan fenomena 

aliran bendalir bagi mikro-kimpalan laser untuk kepingan keluli tahan karat yang nipis. 

Satu model transien tiga dimensi dibangunkan secara berangka dengan menggunakan 

kaedah pengiraan dinamik bendalir (CFD) untuk memahami beberapa kriteria kritikal 

seperti medan suhu dan pembentukan kolam leburan dan kesan parameter kimpalan 

kepada mikro-kimpalan laser. Model terma yang dibangunkan menunjukkan bahawa 

parameter laser, seperti kuasa laser, kelajuan pengimbasan dan diameter tompok 

mempunyai kesan yang besar pada suhu puncak dan menghasilkan kolam kimpalan. 

Model sumber haba adalah terdiri daripada sumber haba permukaan dan sumber haba 

isipadu adaptif yang boleh mengambarkan kimpalan laser sebenar sebagai haba yang 

menembusi ke dalam bahan. Dalam pengiraan dinamik leburan, pengabadian jisim, 

momentum dan persamaan tenaga telah dipertimbangkan untuk mengira kesan aliran 

leburan dan pemindahan tenaga haba termo-bendalir. Persamaan tiga dimensi dari 

Navier-Stokes bagi bendalir Newtonian adalah untuk menganggarkan aliran leburan 

yang mempengaruhi kadar pemindahan haba dan pengagihan suhu dalam 3-D domain. 

 

Penembusan leburan dijalankan dengan menggunakan taburan kuasa kepadatan tinggi 

yang menyebabkan penyejatan pantas, iaitu dijangka menjana tekanan anjalan dalam 

kolam kimpalan. Dengan mengandaikan bahawa tekanan atmosfera dan bahan 

mengewap adalah seimbang di hadapan pancaran laser, penyejatan leburan membawa 

kepada tekanan ketara yang mengerudi turun leburan ke bahagian bertentangan bahan 

asas apabila ia dipanaskan lebih daripada takat didih. Tambahan pula, tekanan 

permukaan bahan yang lebur juga sangat bertanggungjawab bagi memperluaskan 

kolam leburan. Lapisan permukaan leburan sering dipengaruhi oleh kuasa pengecutan 

bahan lebur untuk mengurangkan permukaan tenaga bebas. Pengurangan tenaga yang 

mempunyai kesan yang besar pada permukaan leburan untuk meregangkan ke arah 

kawasan pepejal yang tidak lebur. 

 

Keputusan simulasi telah dibandingkan dua set penyelidikan eksperimen untuk 

meramal geometri kimpalan manik dan corak pemejalan yang kimpalan laser lakukan 

pada keluli tahan karat (SUS304). Perbandingan bentuk menerangkan parameter yang 

berkaitan dengan sebarang perubahan dalam dinamik leburan dan taburan suhu adalah 

sangat penting pada pembentukan kolam kimpalan dan pemindahan haba semasa 

mikro-kimpalan laser. Pengesahan yang wajar di antara keputusan simulasi dan 

eksperimen telah dicapai.  
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             CHAPTER 1 

CHAPTER  

1 INTRODUCTION 

 

1.1 Background and Motivation 

 

LASER abbreviation stands for Light Amplification by Stimulated Emission of 

Radiation. Maiman (1960) showed the world’s first laser using a crystal of ruby. It is 

characterized as a convergent, coherent, and monochromatic beam of electromagnetic 

radiation which has a wavelength range from ultraviolet to infrared. Nowadays, lasers 

have many applications in different fields of engineering, electronics and medicine 

(Dahotre & Harimkar, 2008). 

 

Developments of Laser end up affordable and easy to maintain systems. The 

highlighted advantages of laser micro-welding are including the energy deposition 

control in the joining area accurately, the heat affected zone (HAZ) minimization, 

complex welds and bond geometries, single-step process, selective joining, low 

mechanical and thermal of the components load and short cycle times (Guo, 2009). 

 

Laser welding is one of the earliest and the most important recorded applications of 

laser material processing, which is still considered a major field of the useful 

application of laser. The principle reason for this popularity is the fact that heating by 

laser irradiation is possible for all kinds of engineering materials irrespective of the 

state, chemistry, size, bonding or geometry. This contactless direct heating is a big 

advantage that causes to join a component with the same or different type by using 

laser just as a clean heating source without the risk of any chemical reaction or change 

of the irradiated material. Obviously, steels and alloys joining constitute the 

consequential request for laser welding. 

 

Micro fabrication progresses have established opportunities to manufacture of the 

micro-scales structures. These opportunities are useful to create the optical, electronic, 

biological and magnetic devices which are ranging from sensors to computation and 

control systems. Micro-welding is an effective technique for manufacturing process in 

cases that the attributes of macro-machining can be reduced in size to the micro-scales. 

In addition, laser beam joining techniques has the highest rating in the microsystems 

technology besides macro-range industrial manufacturing processes. 

 

Very sensitive response has been shown to heat input in weld bead by thin metal 

sheets, and the geometry of weld bead has a significant role in the strength of joining. 

Conventional techniques face some difficulties in thin metal sheet welding, for 

example, some blow holes can be created in the weld bead because of extreme heat 

input. The distortion risk in micro-welding in the small thickness of thin metal sheets is 

another problem. Thus, heat input minimization to thin metal sheet is important 

economically and technically. From the economic point of view, less heat input needs 

lower laser power which results in low running cost and minor equipment investment. 

Technically, smaller heat input ends up less HAZ, less distortion and finally low 

material loss due to evaporation (Ismail, 2012). 

  

Heat transfer and fluid flow are the major interest fields to scientific researchers and 

engineering, as well as developers, manufacturers and designers. Significant efforts 
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have been considered for traditional applications research, such as energy devices, 

chemical processing and general manufacturing, containing high performance gas 

turbines, heat exchangers and general power systems.  

 

From the above requirement and difficulties with the present industrial applications, the 

laser micro-welding technology has been increasingly interested. Furthermore, the 

production technologies with short processing time, high reproducibility and high 

accuracy are required. Laser micro-welding which is characterized as a high beam 

quality is a promising technology within this application field. 

 

1.2 Computational Fluid Dynamics (CFD) 

 

Computational fluid dynamics (CFD) involve analysis of heat transfer, fluid flow by 

using of computer-based simulation. In addition, some related phenomena such as 

chemical reactions can be analysed by this technique. CFD is characterised as a very 

powerful technique which has a wide range of application areas such as aerodynamics, 

hydrodynamics, power plant, turbo-machinery, chemical process engineering, electrical 

and electronic engineering, marine engineering, internal and external environment of 

buildings, biomedical and meteorology engineering, environmental engineering, 

hydrology and oceanography. 

 

The conclusive purpose of the CFD developments is to provide a competency 

comparable with other computer-aided engineering (CAE) tools such as stress analysis 

codes. CFD has entered into the wider industrial community since the 1990s. Recent 

upsurge of interest for CFD owe the availability of affordable high-performance 

computing hardware and user-friendly interfaces. 

 

CFD defined as a part of computational mechanics, which in turn can be part of 

simulation techniques. Simulation is an effective method, which is used by physicists 

and engineers to predict or reconstruct the physical situation or engineering product 

behaviour under assumed boundary conditions (Versteeg & Malalasekera, 2007). 

 

1.3 Problem statement 

 

As a conventional joining technique, if the attributes of macro-machining can be 

reduced in size to the micro scales, laser micro-welding is a technique that has the 

potential to become a successful manufacturing process. The laser micro-welding is a 

complex process which includes some phenomena such as thermal convection and 

conduction in a multi-phase system, fluid flow, plasma effects and gas dynamics. 

However, there are some unique problems in scale reduction from macro to micro such 

as creation of a stable welding structure, effect elimination of welding parameters and 

overcoming the size effect, also an appropriate heat control as critical aspect of 

research in weld geometries must be elaborated (Guo, 2009).  

 

There are several important points in micro beam welding which are essential in the 

welding process control, including size of beam, beam characterization, interaction of 

the beam-material, the integration of image processing, temperature measurement and 

numerical simulation. In the most of mentioned parameters scaling effects can be 

realized which strictly influence the quality of welding such as the cooling 

rate/solidification structure, fluid flow stability, distortion and surface tension. In 

addition, laser micro-welding is affected by some important variables in laser such as 
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beam diameter, power of laser, travel speed, beam configuration, condition of the 

substrate, workpiece thermophysical properties and the alloy composition (Majumdar 

& Manna, 2011). 

 

The laser welding process has been numerically and analytically modelled for a 

particular range of conditions for one or a few phenomena, but unfortunately, as can be 

observed in chapter two (literature review) of this dissertation, there is not much 

attention for the fluid flow and heat transfer on laser micro-welds. For instance, the 

heat source and the material interaction which results in rapid heating, melting, and 

also molten metal circulation in the weld pool assisted by surface tension gradient, 

buoyancy forces and recoil pressure in relation to evaporation. Furthermore, the 

resulting structure and properties of the welds and the temperature variations with time, 

i.e., the thermal cycles, can be determined by the resulting of liquid metal flow and heat 

transfer. The weld pool small size, inadequate time for measurement, and high heating 

and cooling rates create some difficulties in experimental measurements of the velocity 

and temperature fields during laser micro-welding process. In addition, downscaling of 

the geometrical dimensions of the welding zone is cause to occur the physical 

phenomena difficulties. 

 

Thus, there is a strong need for heat transfer measurements and related flow studies, 

particularly in situations which the definition of fairly straightforward mathematical 

calculation cannot be completely done. This is including, amongst other things, multi-

phase flow and various flow conditions. Accurate predictions in the heat transport 

process modelling are still not refined in particular in flows which need more studies 

and measurements. Thus, some flow and thermal measurements must be applied to 

refine the models and to extend numerical methods to compute of temperature, 

velocity, and also measurement of real material property which gives rise to have 

reliable and accurate data. 

 

1.4 Hypothesis of the study 

 

 It is expected to design an advanced numerical model of laser micro-welding 

to develop a broader range of conditions and mutual interactions among the 

heat transfer and fluid flow phenomena using a commercial CFD code, 

ANSYS
®
 FLUENT software. 

 

 A great deal of calculation is requested for the modelling; supposed to 

computer technology developments is capable to make possible much more 

time-consuming calculations and complicated models. 

 

 To verify and validate the reliability of the computed results, it is expected; 

the model can well estimates the weld characteristics in various laser 

parameters and welding conditions, and the simulated and experimental 

results illustrate an acceptable prediction.  

 

1.5 Research objective 

 

In this research work, a modelling of heat transfer and fluid flow of laser micro-

welding based on computational fluid dynamics (CFD) method is developed and the 

results are discussed in detail. The simulation is validated by comparing the 
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experimental results with the same emulated laser parameters and welding conditions 

from another researcher's published work; as highlighted in the acknowledgment.  

 

The specific objectives of the research are summarized and listed as follows: 

 

i. To characterize the thermal phenomena characterisation of heat transfer in 

laser micro-welding process by considering the heat source and the material 

interaction leads to rapid heating, melting and thermal cycles in the heating 

zone. 

 

ii. To conduct computational investigation on fluid dynamics in laser micro-

welding and more notice of the issues of molten metal circulation in the weld 

pool assisted by the recoil pressure, surface tension and buoyancy forces. 

 

iii. To evaluate the velocity and temperature fields due to unusual and 

infinitesimal weld pool size and time duration in laser micro-welding process 

using computational fluid dynamics method (CFD). 

 

1.6 Scope and limitation 

 

It is clear; the laser’s potential understanding completely is associated with a 

comprehensive realizing of the physical phenomena in the micro-welding process. As 

the laser micro-welding is pushed to its limits in new and unique applications, the 

present modelling approach investigates just the fundamental aspects of laser micro-

welding process and the anatomy of micro-welding, particularly heat transfer and fluid 

flow upon the thin stainless-steel sheet by applying the method of computational fluid 

dynamics (CFD). 

 

1.7 Thesis Outline 

 

This thesis consists of five chapters and the contents of each chapter are described 

briefly as follows: 

 

Chapter one is divided into seven subheadings. First one introduces the research 

background and motivation, second one describes the computational fluid dynamics 

(CFD) succinctly. This chapter also is included the problem statement, objectives of the 

research, hypothesis of the study, scope and limitation and thesis outline as third, 

fourth, fifth, sixth and seventh subheadings respectively. 

 

Chapter two presents the detailed literature review associated with laser micro-welding 

and its future developments, mechanism of laser welding and material interaction and 

laser processing of materials. Furthermore, the transient heat transfer and fluid flow 

analysis in three categories; numerical modelling based on mathematical calculation, 

simulation based on finite element method (FEM) and simulation based on finite 

volume method (FVM) have been reviewed separately. 

 

Chapter three describes the methodology involved in this research work. The problem 

identification with CFD and the fluid flow and heat transfer governing equations (mass 

conservation, momentum and energy equations) in three dimensions; state and Navier–

Stokes equations for a Newtonian fluid are investigated sequentially. In continuing, the 

modelling of heat source equations that imported in the simulation by writing a proper 
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and specific coding, known as UDF (User-Defined Functions) has been pursued. Then, 

considered assumptions and developed computational approaches used in the analytical 

model (ANSYS
®
 FLUENT software) in five main steps (geometry model, mesh model, 

material model, cell zone and boundary conditions and solution) are described. 

 

Chapter four is results and discussion and detailed results of the numerical simulation 

are interpreted and discussed. The main core of this chapter is heat transfer and fluid 

flow analysis that investigated from point views of dimensionless numbers, fluid 

dynamics, weld pool shapes and weld thermal cycles. Comparison between 

experimental and simulation results in weld bead geometry and solidification pattern is 

also illustrated to validate the model. 

 

Chapter five is exhibited the conclusion of the research by summarizing this study 

principal results and present suggestions for further research efforts. 
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