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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 

fulfilment of the requirement for the degree of Master of Science 

COMPUTATIONAL FLUID ANALYSIS OF FLOW AROUND A FINITE 

HEIGHT CIRCULAR CYLINDER USING SPLITTER PLATE 

By 

BABAK MAHJOUB 

October 2015 

Chair : Kamarul Arifin Ahmad, PhD 

Faculty :  Engineering  

Reducing drag force over non-streamlined bodies and controlling shedding of 

vortices behind them has been known as two major problems concerning flow 

control and aerodynamic studies. In the present study circular cylinder was 

chosen as the bluff body under investigation in a subcritical flow regime with Re 

= 3000. The cylinder is mounted to the surface, and possess variety of heights 

relative to its diameter, D, defined as cylinder aspect ratio AR with four 

variations of 3, 6, 9, and ∞ which is same as an infinite cylinder. Two Splitter 

plates are used as passive control apparatuses in the form of detached and 

mounted to the surface with no oscillation just with the same height as the 

cylinder and are mounted upstream and downstream of the cylinder. Splitter 

plates’ length were relative to the cylinder diameter specified as L1/D and L2/D. 

Likewise the gap between plates and the cylinder were defined relative to D as 

G1/D and G2/D. Variation of plates’ length and gap ratio resulted in different 

combinations in which the best possible choice for each AR has been sought in 

this study. This optimum state was defined as a combination where the most 

drag reduction and vortex suppression was found. 

Numerical solution has been deployed to measure the mean drag coefficient, 

Strouhal number and power spectra at the cylinder mid-height point. The 

effectiveness of the splitter plates were found in (i) reducing the drag which was 

mostly resulted by the upstream plate with its relative position as the dominant 

factor (comparing to its length ratio) and (ii) weakening or in some cases 

suppressing the vortex shedding, primarily as the result of implementation of 

downstream plate, while the key variable determined to be its length ratio unlike 

the upstream plate. Due to the presence of upstream plate at its optimum 

position (G1/D = 1.5) a reduction of 7.9% up to 16.8% has been achieved 

depending on the cylinder aspect ratio. Speaking about the aspect ratio, the 

longer the cylinder was, the more effect it took concerning drag reduction. 
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Downstream plate however acted less efficient in diminishing the drag force as 

in dual mode in which both plates are present, the maximum drag reduction 

reached 9.4% up to 18.5%. As regards of the vortex shedding suppression 

though, shorter cylinders found to be easier in controlling the shedding, the 

necessity of employing longer plates to suppress the shedding behind cylinders 

with higher aspect ratio is a proof to this fact, as for the short cylinder with AR=3 

a plate with L2/D=1.5 is enough to suppress the vortices, while a lengthier plate 

with L2/D=5 is required to suppress the vortices in a cylinder with AR=9.  



© C
OPYRIG

HT U
PM

iii 

 

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 

sebagai memenuhi keperluan untuk ijazah Master Sains 

ANALISIS PENGKOMPUTERAN BENDALIR BAGI ALIRAN SEKITAR 

SUATU KETINGGIAN TERHINGGA SILINDER BULATAN 

MENGGUNAKAN PLAT PEMBELAH 

Oleh 

BABAK MAHJOUB 

Oktober 2015 

Pengerusi :  Kamarul Arifin Ahmad, PhD 

Fakulti : Kejuruteraan 

Pengurangan daya seretan terhadap badan bukan garis arus dan pengawalan 

vorteks tumpahan di belakangnya merupakan antara dua masalah utama bagi 

kawalan aliran dan kajian aerodinamik. Kajian masa kini memilih silinder bulat 

sebagai badan tipuan dimana kajian dilakukan dalam rejim aliran dengan Re = 

3000. Silinder dipasang di atas permukaan dan mempunyai pelbagai tahap 

relatif diameter,D, dimana ianya ditakrifkan sebagai nisbah silinder aspek AR 

dengan empat variasi 3, 6, 9, dan ∞ yang sama sebagai silinder tak terhingga. 

Dua plat pemisah digunakan sebagai radas kawalan pasif dalam bentuk 

berkembar dan dipasang dipermukaan tanpa ayunan hanya dengan ketinggian 

yang sama dengan silinder. Ianya dipasang di hulu dan hilir silinder. Panjang 

plat pemisah adalah relatif kepada garis pusat silinder yang dinyatakan sebagai 

L1 / D dan L2 / D. Jurang antara plat dan silinder pula telah ditakrifkan relatif 

kepada D sebagai G1 / D dan G2 / D. Perubahan panjang dan jurang nisbah plat 

menghasilkan kombinasi yang berbeza di mana pilihan yang terbaik bagi setiap 

AR telah dicari dalam kajian ini. Keadaan optimum ini telah ditakrifkan sebagai 

gabungan di mana pengurangan seretan yang paling tinggi dan penindasan 

vorteks ditemui. 

Penyelesaian berangka telah digunakan untuk mengukur min pekali seret,  

nombor Strouhal dan kuasa spektrum dibahagian titik tengah silinder. 

Keberkesanan plat pemisah ditemui dapat (i) mengurangkan seretan yang 

kebanyakannya disebabkan oleh plat huluan dengan kedudukan relatif sebagai 

faktor dominan (berbanding dengan nisbah panjang) dan (ii) melemahkan atau 

dalam beberapa kes menekan vorteks tumpahan, terutamanya hasil daripada 

pelaksanaan plat hiliran, manakala pembolehubah utama yang ditetapkan 

sebagai nisbah panjangnya tidak seperti plat huluan. Oleh kerana kehadiran plat 

pemisah hulu pada kedudukan yang optimum (G1 / D = 1.5) pengurangan 7.9% 
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sehingga 16.8% telah dicapai bergantung kepada nisbah aspek silinder. 

Bercakap mengenai nisbah aspek, semakin panjang silinder itu, semakin 

berkesan ianya mengambil mengambil masa bagi pengurangan seretan. Plat 

hiliran adalah kurang berkesan dalam mengurangkan daya seretan. kerana 

dalam mod dual, pengurangan drag maksimum ialah 9.4% sehingga 18.5%. 

Berhubung dengan vorteks tumpahan penindasan, silinder lebih pendek 

didapati lebih mudah dalam mengawalan penumpahan itu, keperluan dalam 

menggunakan plat yang lebih panjang untuk menindas tumpahan dibelakang 

silinder dengan nisbah aspek yang lebih tinggi menjadikan bukti kepada hakikat 

kajian ini. untuk silinder pendek dengan AR = 3 plat dengan L2 / D = 1.5 adalah 

cukup untuk menyekat vorteks, tapi plat yang lebih panjang dengan L2 / D = 5 

diperlukan untuk menekan pusaran dalam silinder dengan AR = 9.  
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CHAPTER 1 

1 INTRODUCTION 

1.1 Overview 

Generally, there are two types of immersed bodies that become subjects of study 

for flow control, namely streamlined and non-streamlined bodies. Streamlined 

bodies are those that are aligned with the flow passage while non-streamlined 

bodies which are also known as bluff bodies, resist the fluid flow and this 

resistance results in the production of undesirable forces. Variety of features 

related to flow around bluff bodies including drag forces, vortex shedding 

behind the body, generation of downstream wakes and flow separation are 

considered in the study of flow control. The above mentioned features associate 

this scope of fluid dynamic to engineering applications, some of which are 

industrial stacks, bridge pillars, large and slender buildings and submerged 

pipelines, etc. 

A comprehensive understanding of flow characteristic around these body is 

required, so that a proper solution to this problem can be established. The non-

streamlined shape of the body causes a blockage in the fluid flow results in 

creation of pressure difference between two sides of the body as shown in the 

Fig 1.1. A high pressure point that is formed at the upstream of the body is called 

stagnation point while this point’s low pressure counterpart exists just at the 

opposite side of the body denominated base point (Rathakrishnan, 1999). The 

differentiation between those mentioned points generates a resisting force 

known as pressure drag which requires a counterbalance force to compensate 

the movement disorder. 

 

Figure 1-1. Pressure coefficient distribution around a non-streamlined body 
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Moreover flow separation is another undesirable phenomenon which results in 

inefficient operations in submarine and air applications of bluff bodies. A 

positive pressure gradient in the direction of the fluid movement leads to 

deceleration of the moving fluid while passing the body, causing an unwanted 

reduction in the flow kinetic energy in the boundary layer until the flow reaches 

a zero or sometimes negative velocity relative to the direction of the flow (Braza, 

Chassaing, & Minh, 1986). This type of pressure distribution which is known as 

adverse pressure gradient triggers the most unpleasant consequences in moving 

fluid such as the above mentioned phenomenon, flow separation (Batham, 1973). 

This sort of gradient is dominantly observed in flows over non-streamlined 

bodies. Negative aspects of flow over bluff bodies are not merely limited to 

pressure forces to the body itself as a type of oscillating flow forms behind the 

body called vortex shedding (P. W. Bearman, 1984; Perry, Chong, & Lim, 1982). 

These vortices detach periodically and form a low pressure area downstream of 

the body which helps the improvement of the pressure drag as well (P. W. 

Bearman & OWen, 1998). 

Shedding of vortices also leads to the formation of Kármán Vortex Street behind 

the body in the wake area, this may also lead to undesirable motions called flow- 

induced vibration (Chen, 1987). Development of new research works follows the 

purpose of weakening or even suppressing these unwanted motions and forces. 

Many strategies and devices have been developed and applied to alter the flow 

behavior over these bodies in order to lessen negative features. 

1.2 Flow Control 

Generally, flow control is applying strategies in order to positively alter the 

behavior of flow motion. There have been numerous flow control methods, 

however all of them are categorized in two different types namely active and 

passive controls. Active flow control, in which the flow is controlled by inducing 

external forces such as blowing, suction and sound waves exertion, demands 

complicated equations and systems due to the presence of extra motors, pumps 

or speakers. Alternatively by modifying the shape of the body, attaching 

additional elements, changing the roughness, or varying the flow incident 

degree it becomes easier and less costly to control flow over the body, which are 

considered as passive flow control. Many attempts have been made to achieve a 

proper and effective method in the area of passive control. Their main purpose 

is to use aerodynamic means in front of or behind the blockage and reduce flow-

induced forces by controlling the separation of shear layers (Murakami, 

Mochida, & Sakamoto, 1997). Varying the inlet flow regime, using end-plates, 

control cylinders, hinged or detached splitter plates or grooving the bluff body 

are some of the examples of passive control. Roshko’s study can be referred as 

one of the earliest investigations in the scope of passive aerodynamic control 
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(Roshko, 1954).  

The initiative of using control cylinders and splitter plates in his studies 

broadened new horizons in regards to passive flow control, mostly to infinite 

length bodies. The mentioned devices were mainly used to suppress vortex 

shedding and reduce drag over the bluff bodies. Those researches were then 

followed by Apelt where in his studies a circular cylinder was used as the 

controlled body and splitter plates were used downstream of the body to control 

vortices as well (Apelt, West, & Szewczyk, 1973; Apelt & West, 1975). Tripping 

rod were also applied in Alam’s experiment over 2 cylinders with tandem 

arrangement to control aerodynamic forces (Alam, Sakamoto, & Moriya, 2003). 

Among the mentioned studies in which different apparatuses were identified in 

order to modify the fluid flow, there were some other researches involved with 

similarities between characteristics of wake behind various bluff bodies, such as 

the size of formation region, and the rate of shed vortices (Gerrard, 1966). These 

studies which are known as universal parameter formulation were later 

continued in two forms of analytical empirical models (P. Bearman, 1967; Griffin, 

1981). In most of universal parameter formulations there are common scales 

which are defining equations. As an example, the forming parameters of 

Strouhal number, which is the product of a frequency scale in a length scale over 

a defined velocity scale. These scales were chosen differently in various studies, 

as in some of them freestream velocity corresponded to characteristic velocity 

(Fage & Johansen, 1928), while shear-layer velocity replaced the same scale in 

another study (Griffin, 1981). Meanwhile Roshko constructed his parameters 

using wake width as length scale and shedding as frequency characteristic 

(Roshko, 1954). 

There are several add-on devices which have been employed in order to delay 

flow separation, suppress vortex shedding, narrow wake width and eliminate 

flutter effects. One of these add-on devices is splitter plates which have been 

applied in some studies as an attached apparatus (Akilli, Karakus, Akar, Sahin, 

& Tumen, 2008; Sudhakar & Vengadesan, 2012), hinged to the cylinder (Shukla, 

Govardhan, & Arakeri, 2009) or in the form of detached as it has been in the most 

recent studies (Dehkordi & Jafari, 2010; Hwang, Yang, & Sun, 2003; Hwang & 

Yang, 2007; A Igbalajobi, McClean, Sumner, & Bergstrom, 2013). 

1.3 Problem Statement and Hypothesis 

The main problems arise from the cylinder flow namely the drag force and the 

vortex shedding. The solution is sought by employing splitter plates. Many 

studies have been conducted using splitter plates, while there were a number of 

gaps in those researches which are being covered in this study. Different 
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1.5 Scope of the Study 

The study is performed for flow with Reynolds number of Re = 3.0 x 103 in which 

a subcritical flow regime is defined for a finite heighted circular cylinder. The 

Reynolds number is defined based on freestream streamwise velocity and 

cylinder diameter. Circular cylinders has been considered surface mounted with 

free tip exposed to the flow.  

The measuring parameters are drag coefficient (Cd), Pressure coefficient (CP) and 

Strouhal number (St). Parameters to be varied are cylinder AR which leads to a 

dual domain analysis (two dimensional and three dimensional), plates’ 

thickness (t), plates’ length to the cylinder diameter ratio (L1/D and L2/D) and 

plates’ gap ratio relative to the cylinder diameter (G1/D and G2/D). The 

effectiveness of upstream and downstream plate will be evaluated separately 

and will be compared for both finite and infinite case. Finite case refers to study 

over a cylinder with a specific aspect ratio.  

1.6 Thesis Outline 

Chapter 2 provides a comprehensive review on the previously conducted 

studies pertaining flow control over circular cylinders applying attached, 

detached or hinged splitter plates. Various literatures are criticized which 

contains flow analysis of finite and infinite cylinders in an approximately 60 

years’ time-span. Chapter 3 thoroughly discusses about problem setting, time, 

domain, and mathematical model which are used during this study. Results and 

further discussions over this study are embedded in chapter 4. Research 

conclusion, future scopes and recommendations are presented in chapter 5. 
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