UNIVERSITI PUTRA MALAYSIA

TREATMENT OF PALM OIL MILL EFFLUENT USING SADWICH ULTRAFILTRATION TECHNIQUE

NAZATUL SHIMA BINTI AZMI

FK 2015 47
TREATMENT OF PALM OIL MILL EFFLUENT USING SADWICH ULTRAFILTRATION TECHNIQUE

By

NAZATUL SHIMA BINTI AZMI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master Science

May 2015
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
TREATMENT OF PALM OIL MILL EFFLUENT USING SANDWICH ULTRAFILTRATION TECHNIQUE

By

NAZATUL SHIMA BINTI AZMI

May 2015

Nowadays, the treatment of palm oil mill effluent (POME) has become a major critical issue in Malaysia that needs to be highlighted. This is due to the extreme organic matter in POME that needs to be treated properly to tackle the environmental issue. POME is a thick brownish viscous liquid waste with an unpleasant odour, and high in colloidal suspension and organic matter. With the needs to solve the problems in terms of environmental protection, economical viability, and sustainable development, a recent innovative ultrafiltration technique using multiple membranes known as “sandwiches membrane”, has been extended for POME treatment. This work was carried out to evaluate the potential of pre-treatment methods (adsorption-settling-surface filtration) prior to ultrafiltration treatment and to investigate the potential of ultrafiltration membrane using single and sandwich configurations to reclaim clear water in the POME. This work is divided into two parts which are: (1) pre-treatment stage prior to ultrafiltration membrane and (2) POME treatment using sandwich membranes. For the pre-treatment of POME prior to ultrafiltration there were two stages involved; adsorption with settling treatment and surface filtration. In the first stage, the combined effects for adsorption with settling experimental conditions such as adsorbent dosage, treatment time and stirring speed in one hour settling time were investigated. The performance of the adsorption and settling stage using palm kernel shell-based activated carbon (PKS-AC) was based on the analysis of the suspended solid. The supernatant was then
pipette out and subjected to simple surface filtration, under vacuum through Whatman® qualitative filter paper, Grade 4 (20-25 μm) and finally to Whatman® qualitative filter paper, Grade 3 (6 μm) before proceeding to the ultrafiltration process. For ultrafiltration membrane treatment, dead-end filtration mode was used. Two 5 kDa flat sheets regenerated cellulose (RC) ultrafiltration membranes were sandwiched together in various orientations without any spacer in between. The effect of operating pressure, stirring speed and pH on the permeate flux and qualities namely total solid, dissolved solid, suspended solid, biological oxygen demand (BOD$_5$), chemical oxygen demand (COD), and turbidity were also investigated. The pollutant concentration percentage reduction for the first stage of pre-treatment using 0.20 g/L of PKS-AC at 39.82 rpm stirring speed in 35.94 min and 60 min of sedimentation time of POME showed a significant reduction in term of total solid (67.30%), dissolved solid (47.11%), suspended solid (71.26%), BOD$_5$ (63.23%), COD (42.38%) and turbidity (63.31%) respectively. In the second stage of pre-treatment, the pollutant concentration was further reduced to 65.36%, 48.75%, 87.57%, 84.5%, 48.9% and 78.9% for total solid, dissolved solid, suspended solid, BOD$_5$, COD and turbidity respectively. After the pre-treatment stage, the membrane technique was applied with purpose to further reduce the pollutant concentration and reclaiming the crystal clear water that complied with WHO water reuse standard. Result for single membrane was compared to those of sandwich with various configurations. Interestingly, SB-sandwich configuration with bottom membrane in the reverse orientation significantly reduced almost 99% of pollutant in raw POME. The best conditions using SB-sandwich was achieved at pH 8, 600 rpm of stirring speed and by applying 2 bar of operating pressure for 90 min of operating time with 47.24 L/m2h of permeate flux. Applying these conditions successfully reclaimed clear water with low concentration of total solid (138 mg/L), dissolved solid (123 mg/L), suspended solid (15 mg/L), BOD$_5$ (90 mg/L), COD (113.3 mg/L) and turbidity (0.8 NTU) from POME. Moreover, by comparing between the single and SB-sandwich membrane, showed some differences in pollutant reduction: total solid (11.45%), dissolve solid (0.28%), suspended solid (53.85%), BOD$_5$ (60%), COD (14.12%) and turbidity (70.12%). Hence, by applying the combination technique of adsorption-settling-surface filtration (pre-treatment) with sandwich membrane ultrafiltration technique successfully treat POME and reclaim crystal clear water that complied with WHO water reuse standard.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah sarjana sains

RAWATAN EFLUEN KILANG MINYAK KELAPA SAWIT MENGGUNAKAN TEKNIK SANDWIC MEMBRAN ULTRATURASAN

Oleh

NAZATUL SHIMA BINTI AZMI

Mei 2015

Pengerusi : Khairul Faezah Md. Yunus, PhD

Fakulti : Kejuruteraan

Pada masa kini, rawatan efluen kilang minyak kelapa sawit (POME) telah menjadi isu utama dan kritikal di Malaysia. Isu ini telah diketengahkan kerana kandungan organik yang amat tinggi dalam POME yang perlu dirawat dengan betul untuk mengurangkan isu alam sekitar. POME adalah sisa cecair berwarna coklat dengan bau yang tidak menyenangkan, dan tinggi di dalam pepejal terampai dan bahan organik. Oleh kerana perlunya untuk menyelesaikan masalah ini dari segi perlindungan alam sekitar, daya maju ekonomi, dan pembangunan mampu, teknik ultraturasan yang inovatif bagi rawatan POME, dengan mengabungkan beberapa membran yang dikenali sebagai "membran sandwic", telah dikaji dengan lebih lanjut. Kerja penyelidikan ini dilakukan untuk menilai potensi teknik pra-rawatan (jerapan-enapan-turasan permukaan) terdahulu sebelum rawatan ultraturasan dan mengkaji potensi membran ultraturasan dengan menggunakan konfigurasi tunggal dan sandwic bagi pulih guna air jernih daripada POME. Kerja penyelidikan ini terbahagi kepada dua bahagian iaitu: (1) peringkat pra-rawatan terdahulu sebelum membrane ultraturasan dan (2) rawatan POME menggunakan sandwic membrane. Terdapat dua peringkat pra-rawatan terdahulu sebelum ultraturasan; rawatan jerapan dengan enapan dan turasan permukaan. Di dalam peringkat pertama, kajian telah dilakukan terhadap kesan gabungan keadaan uji kaji bagi jerapan dengan enapan seperti dos bahan penyerap, masa rawatan dan
kelajuan dengan satu jam pengenapan. Prestasi peringkat jerapan dan
enapan menggunakan karbon teraktif berasaskan tempurung buah kelapa
sawit (PKS-AC) adalah berdasarkan analisa peratusan pepejal terampai
yang dapat dikurangkan. Selepas itu, supernat di keluarkan menggunakan pipet dan menjalani turasan permukaan yang mudah melalui kertas turasan kualitatif Whatman®, Gred 4 (20-25 μm) dan
akhir sekali kertas turasan kualitatif Whatman®, Gred 3 (6 μm)
menggunakan vakum. Untuk rawatan membran ultraturas, mod
penapisan buntu digunakan. Dua helai ultraturas bersaiz 5 kDa
selulosa berregenerasi selulosa (RC) membran ultraturas telah diapit
bersama-sama dalam pelbagai orientasi tanpa pemisah di antaranya.
Kesan tekanan operasi, kelajuan aduk dan pH terhadap fluks dan kualiti
air seperti jumlah pepejal, pepejal terlarut, pepejal terampai, peperluan
oksigen biologi (BOD₃), peperluan oksigen kimia (COD), dan kekeruhan
juga disiasat. Daripada analisis pengoptimuman dengan menggunakan
0.20g/L PKS-AC pada kelajuan 39.82 rpm selama 35.94 min dan 60 min
masa pemendapan, peratus kepekatan bahan cemar bagi pra-rawatan
POME peringkat pertama menunjukkan penurunan signifikan pada
jumlah pepejal (67.30%), larut pepejal (47.11%), pepejal terampai
(71.26%) BOD₃ (63.23%), COD (42.38%) dan kekeruhan (63.31%).
Kepekatan bahan cemar dapat dikurangkan lagi di dalam pra-rawatan
peringkat kedua sebanyak 65.36%, 48.75%, 87.57%, 84.5%, 48.9% dan
78.9% untuk jumlah pepejal, larut pepejal, pepejal terampai, BOD₃,
COD dan kekeruhan. Selepas peringkat pra-rawatan, teknik membran
telah digunakan dalam tujuan untuk mengurangkan lagi kepekatan bahan
cemar dan pulih air jernih. Menariknya, konfigurasi SB-sandwic
dengan susunan konfigurasi membran yang berada di bahagian bawah
yang sonsang menunjukkan pengurangan hampir 99% pengurangan
bahan pencemar. Kondisi yang terbaik telah dicapai dalam ultraturas
POME dengan menggunakan konfigurasi membran SB-sandwic, pH 8,
600 rpm kelajuan pengadukan dan dengan tekanan 2 bar selama 90 minit
ersama 47.24 L/m² h fluks telap. Dengan menggunakan kondisi ini,
pulih guna air bersih berjaya diperolehi daripada POME dengan
kepekatan jumlah pepejal (138 mg/L), larut pepejal (123 mg/L), pepejal
terampai (15 mg/L) BOD₃ (90 mg/L), COD (113.3 mg/L) dan kekeruhan
(0.8 NTU) yang rendah. Tambahan pula, perbandingan antara membran
tunggal dan SB-sandwic menunjukkan perbezaan penurunan bahan
cemar: jumlah pepejal (11.45%), larut pepejal (0.28%), pepejal
terampai (53.85%) BOD₃ (60%), COD (14.12%) dan kekeruhan
(70.12%). Oleh yang demikian, dengan menggunakan teknik gabungan
jerapan-enapan-turasan permukaan (pra-rawatan) dengan teknik
ultraturas membran sandwic boleh merawat POME dan memperoleh
air guna semula yang jernih yang memenuhi syarat standard WHO bagi air guna semula berjaya diperolehi dari POME
ACKNOWLEDGEMENTS

First and foremost, I would like to thank to ALLAH S.W.T because with His blessing, I had complete this research after a few years of struggles. Special thanks and gratitude to my supervisory committee, Dr. Khairul Faezah binti Md. Yunos, Dr. Azhari Samsu bin Baharuddin and Dr. Amimul Ahsan for their guidance, advices and support.

I also would like to express my thanks to my family whom has been very supportive and always be on my side. Not to forget, to all my friends who are always there to support and especially during the hard time.

Lastly, my sincere thanks to the all staff and Lab Technician from Department of Process and Food Engineering for their kindness, willingness and cooperation in helping me.
I certify that a Thesis Examination Committee has met on 29 May 2015 to conduct the final examination of (student’s name) on her thesis entitled “Treatment of Palm Oil Mill Effluent using Sandwich Ultrafiltration Technique” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Yus Aniza Yusof, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Siti Mazlina Mustapa Kamal, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Rozita Omar, PhD
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Abdul Wahab Mohammad, PhD
Professor Dato’ Ir.
Universiti Kebangsaan Malaysia
Malaysia
(External Examiner)

ZULKARNAIN ZAINAL PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 12 August 2015
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of master science. The members of the Supervisory Committee were as follows:

Khairul Faezah Md. Yunos, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Azhari Samsu Baharuddin, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Amimul Ahsan, PhD
Senior Lecturer
Department of Civil
Faculty of Engineering
Universiti Putra Malaysia
(Member)

BUJANG KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ________________________ Date: __________________

Name and Matric No.: NAZATUL SHIMA BINTI AZMI (GS30095)
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:
Name of Chairman of Supervisory Committee: __________________________
Khairul Faezah Md. Yunos, PhD

Signature:
Name of Member of Supervisory Committee: __________________________
Azhari Samsu Baharuddin, PhD

Signature:
Name of Member of Supervisory Committee: __________________________
Amimul Ahsan, PhD
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF NOMECLATURES</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION
1.1 Background of study
 1.1.1 Palm oil industry in Malaysia 1
 1.1.2 Palm oil mill effluent (POME) 2
 1.1.3 POME treatment 3
1.2 Problem statement and research gap 4
1.3 Motivation 5
1.4 Objectives 6
1.5 Summary of thesis 6
1.6 Significant and limitation of the study 6
1.7 Outline of thesis 8

CHAPTER 2 LITERATURE REVIEW
2.1 POME and its legislation 9
2.2 POME treatments 11
 2.2.1 Anaerobic, facultative pond and anaerobic
 and facultative digestion 11
 2.2.2 Evaporation treatment 11
 2.2.3 Membrane treatment 12
2.3 Adsorption and settling treatment 14
 2.3.1 Activated carbon 15
 2.3.2 Activated biocarbon (biochar) 16
2.4 Surface Filtration 17
2.5 Membrane technology 18
 2.5.1 Ultrafiltration 21
 2.5.2 Permeate flux 23
2.6 Modification of membrane configuration 26
2.7 Sandwich membrane 27
2.8 Conclusions 30
3 GENERAL MATERIAL AND METHODS
3.1 Palm oil mill effluent (POME) 31
3.2 Characteristics of adsorbent 31
3.3 Characteristics of media filter for surface filtration 32
3.4 Characteristic of ultrafiltration membrane 32
3.5 General experimental plan 33
3.6 Adsorption and settling treatment 36
 3.6.1 Batch study for adsorption and settling treatment 35
 3.6.2 Experimental design 36
3.7 Ultrafiltration membrane treatment 37
 3.7.1 Single ultrafiltration membrane treatment 39
 3.7.2 Sandwich ultrafiltration membrane treatment 41
 3.7.3 Permeate flux analysis 41
3.8 Analytical method 39
 3.8.1 pH 41
 3.8.2 Total solid (TS) 41
 3.8.3 Suspended solid (SS) 42
 3.8.4 Dissolved solid (DS) 42
 3.8.5 Biological oxygen demand (BOD$_5$) 42
 3.8.6 Chemical oxygen demand (COD) 44
 3.8.7 Turbidity 46

4 CHARACTERISTICS OF PALM OIL MILL EFFLUENT (POME) AND PRE-TREATMENT STAGE PRIOR TO ULTRAFILTRATION MEMBRANE
4.1 Overview 47
4.2 Raw POME characteristics 47
4.3 Batch adsorption and settling study 48
 4.3.1 Effect of adsorbent dosage of activated carbon for adsorption-settling treatment 48
 4.3.2 Effect of stirring time 49
 4.3.3 Effect of stirring speed 50
4.5 Experimental range and levels of the independent variables 52
4.6 Optimization and verification of models 53
4.7 Comparison of quality pre-treated POME using two different adsorbent 54

5 POME TREATMENT USING SANDWICH MEMBRANES
5.1 Overview 57
5.2 Water flux analysis 57
5.3 Ultrafiltration of POME using single membrane
 5.3.1 Effect of stirring speed on the permeate flux, dissolved solid and turbidity 58
 5.3.2 Effect of pH on the permeate flux, dissolved solid and turbidity 64
5.4 Ultrafiltration of POME using sandwich membrane
 5.4.1 SS-sandwich and SB-sandwich ultrafiltration membrane configurations 69
 5.4.2 Comparison of single and sandwich membrane configurations 72

6 CONCLUSIONS AND RECOMMENDATIONS
6.1 Conclusions 82
6.2 Recommendations 84

REFERENCES 85
APPENDIXES 95
BIODATA OF STUDENTS 108
LIST OF PUBLICATIONS 109

LIST OF TABLES

xv
Table

<table>
<thead>
<tr>
<th></th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Characteristics of POME and its respective standard discharge limit by the Malaysian Department of the Environment.</td>
</tr>
<tr>
<td>2.1</td>
<td>Characteristic of POME.</td>
</tr>
<tr>
<td>2.2</td>
<td>Summary of various treatments to treat POME.</td>
</tr>
<tr>
<td>2.3</td>
<td>Size of material retained, driving force and type of membrane.</td>
</tr>
<tr>
<td>2.4</td>
<td>Four types of membrane devices.</td>
</tr>
<tr>
<td>2.5</td>
<td>Summary of the relevant previous work on sandwich configurations.</td>
</tr>
<tr>
<td>3.1</td>
<td>Properties of activated carbon.</td>
</tr>
<tr>
<td>3.2</td>
<td>Experimental conditions and range batch study for adsorption-sedimentation experiments.</td>
</tr>
<tr>
<td>3.3</td>
<td>Actual and coded factor for 20 runs of experimental design.</td>
</tr>
<tr>
<td>4.1</td>
<td>Experimental range and levels of the independent variables.</td>
</tr>
<tr>
<td>4.2</td>
<td>Optimization of factors for adsorption treatment using Design Expert® Version 6.0.4 software with theoretical and experimental value of response.</td>
</tr>
<tr>
<td>4.3</td>
<td>Comparison of various parameter on quality of pre-treated POME using two different activated carbon in adsorption-settling treatment</td>
</tr>
<tr>
<td>4.4</td>
<td>Summary of the pre-treatment of POME</td>
</tr>
<tr>
<td>5.1</td>
<td>Permeate flux (L/m²h) at early and end stage of sandwich ultratfiltration of pre-treated POME for pH 5.85.</td>
</tr>
<tr>
<td>5.2</td>
<td>Table 5.2: Comparison of various parameters on quality of treated POME after ultrafiltration</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Palm oil processing flow chart</td>
</tr>
<tr>
<td>2.1</td>
<td>Adsorption equilibrium</td>
</tr>
<tr>
<td>2.2</td>
<td>Mechanism of surface filtration</td>
</tr>
<tr>
<td>2.3</td>
<td>The schematic diagrams of the dead-end mode and its effect on the permeate flux and height of the cake layer</td>
</tr>
<tr>
<td>2.4</td>
<td>The schematic diagrams of the cross-flow mode and its effect on the permeate flux and height of the cake layer</td>
</tr>
<tr>
<td>2.5</td>
<td>Schematic diagrams of the principal types of membranes</td>
</tr>
<tr>
<td>2.6</td>
<td>Illustration for an actual membrane compared to an ideal membrane</td>
</tr>
<tr>
<td>2.7</td>
<td>Pressure dependence of permeate flux and limiting flux concept</td>
</tr>
<tr>
<td>2.8</td>
<td>Concentration polarization on a membrane surface</td>
</tr>
<tr>
<td>2.9</td>
<td>Schematic illustration of membrane configuration used by Boyd and Zydney</td>
</tr>
<tr>
<td>3.1</td>
<td>SEM image of RC membrane.</td>
</tr>
<tr>
<td>3.2</td>
<td>Flow diagram of the experimental work</td>
</tr>
<tr>
<td>3.3</td>
<td>Ultrafiltration stirred cell set up</td>
</tr>
<tr>
<td>3.4</td>
<td>Schematic diagram of ultrafiltration stirred batch system</td>
</tr>
<tr>
<td>3.5</td>
<td>Ultrafiltration membrane configurations: (a) single membrane; (b) SS-sandwich membrane; (c) SB-sandwich membrane</td>
</tr>
<tr>
<td>3.6</td>
<td>The BOD₅ procedure</td>
</tr>
<tr>
<td>3.7</td>
<td>The DO procedures</td>
</tr>
<tr>
<td>3.8</td>
<td>The COD procedures</td>
</tr>
<tr>
<td>4.1</td>
<td>Raw POME</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of adsorbent dosage on suspended solid reduction</td>
</tr>
<tr>
<td>4.3</td>
<td>Effect of stirring speed on suspended solid reduction</td>
</tr>
<tr>
<td>4.4</td>
<td>Effect of stirring speed on suspended solid reduction</td>
</tr>
<tr>
<td>4.5</td>
<td>SEM image of CAC (a) before and (b) after the adsorption treatment of POME</td>
</tr>
<tr>
<td>4.6</td>
<td>SEM image of PKS-AC (a) before and (b) after adsorption treatment of POME.</td>
</tr>
<tr>
<td>4.7</td>
<td>Comparison of parameter concentration with different samples.</td>
</tr>
<tr>
<td>5.1</td>
<td>Water flux analysis</td>
</tr>
<tr>
<td>5.2</td>
<td>Permeate flux profile without stirring (0 rpm)</td>
</tr>
<tr>
<td>5.3</td>
<td>Permeate flux profile for three different stirring speeds</td>
</tr>
<tr>
<td>5.4</td>
<td>Permeate flux analysis on different pressure and speed for 90 minutes operation time at pH 5.85</td>
</tr>
<tr>
<td>5.5</td>
<td>Effect of stirrer speed on dissolved solid concentration after ultrafiltration of POME.</td>
</tr>
<tr>
<td>5.6</td>
<td>Effect of stirrer speed on turbidity after ultrafiltration of</td>
</tr>
</tbody>
</table>
POME.

5.7 Permeate flux analysis on different pressure and feed pH for 90 minutes operation time using stirrer speed 600 rpm

5.8 Effect of pH solution on dissolved solid concentration after ultrafiltration of POME using 600 rpm stirrer speed.

5.9 Intrinsic and self-rejection of particles by membrane

5.10 Effect of solution pH on turbidity after ultrafiltration of POME using 600 rpm stirring speed

5.11 Permeate flux changes at pressure 1.5 bar with various pH using SS-sandwich ultrafiltration membrane configuration

5.12 Permeate flux changes at pressure 2 bar with various pH SS-sandwich ultrafiltration membrane configuration

5.13 Permeate flux changes at pressure 1.5 bar with various pH using SB-sandwich ultrafiltration membrane configuration

5.14 Permeate flux changes at pressure 2 bar with various pH SB-sandwich ultrafiltration membrane configuration

5.15 Permeate flux comparison on single, SS-sandwich and SB-sandwich configuration on different feed pH at pressure 1.5 bar

5.16 Permeate flux comparison on single, SS-sandwich and SB-sandwich configuration on different feed pH at pressure 2 bar

5.17 Comparison of dissolved solid concentration after ultrafiltration of pre-treated POME in different configuration and feed pH with operating pressure 1.5 bar

5.18 Comparison of dissolved solid concentration in permeate after ultrafiltration of pre-treated POME in different configuration and feed pH with operating pressure 2 bar

5.19 Comparison of turbidity in permeate after ultrafiltration of POME in different configuration and feed pH with operating pressure 1.5 bar

5.20 Comparison of turbidity in permeate after ultrafiltration of POME in different configuration and feed pH with operating pressure 2 bar

5.21 From left – Raw POME, Pre-treated POME, treated POME using single membrane, treated POME using SB-sandwich membran

5.22 SEM images of the RC ultrafiltration membrane surface for (a) new membrane and (b) fouled membrane
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>POME</td>
<td>Palm oil mill effluent</td>
</tr>
<tr>
<td>EFB</td>
<td>Empty fruit bunches</td>
</tr>
<tr>
<td>FFB</td>
<td>Fresh fruit bunches</td>
</tr>
<tr>
<td>PKS-AC</td>
<td>Palm kernel shell - based activated biocarbon</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>CAC</td>
<td>Commercial activated carbon</td>
</tr>
<tr>
<td>BOD₅</td>
<td>Biological oxygen demand</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical oxygen demand</td>
</tr>
<tr>
<td>DOE</td>
<td>Department of the environment</td>
</tr>
<tr>
<td>PKS</td>
<td>Palm kernel shell</td>
</tr>
<tr>
<td>RC</td>
<td>Regenerated cellulose</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscope</td>
</tr>
<tr>
<td>BET</td>
<td>Brunauer, Emmett, and Teller</td>
</tr>
<tr>
<td>BJH</td>
<td>Barret-Joyner-Halenda</td>
</tr>
<tr>
<td>FC-CCD</td>
<td>Face centred central composite design</td>
</tr>
<tr>
<td>DO</td>
<td>Dissolved oxygen</td>
</tr>
<tr>
<td>FAS</td>
<td>Ferrous ammonium sulphate</td>
</tr>
<tr>
<td>DOE</td>
<td>Design of experiment</td>
</tr>
</tbody>
</table>
LIST OF NOMECLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₄</td>
<td>Methane</td>
</tr>
<tr>
<td>VS</td>
<td>Volatile solid</td>
</tr>
<tr>
<td>MOs</td>
<td>Microorganism</td>
</tr>
<tr>
<td>J</td>
<td>Permeate flux</td>
</tr>
<tr>
<td>Aₘ</td>
<td>Membrane area</td>
</tr>
<tr>
<td>dv</td>
<td>Amount of permeate collected</td>
</tr>
<tr>
<td>dt</td>
<td>Time taken for permeate flow to be taken</td>
</tr>
<tr>
<td>S_BET</td>
<td>Surface area</td>
</tr>
<tr>
<td>NTU</td>
<td>Nephelometric turbidity units</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of study

1.1.1 Palm oil industry in Malaysia

Oil palm has become one of the most important and profitable crops in Malaysia. Malaysia was operated about 425 palm oil mill and became the largest producer and exporter around the world (MPOB, 2012). Furthermore, during the period between 2013 and 2014, the palm oil production is increasing 6,975,292 tonne to 7,494,682 tonne (MPOB, 2014). Hence, the palm oil production is expected to increase based on the current demand for palm oil and oleo chemical industries (Ahmad et al., 2011).

Unfortunately, along with the increase of this profitable industry, the productions of wastes resulted from the palm oil processing also increases. There are two types of wastes which are solid and liquid wastes. Solid wastes typically consist of palm kernel shell, mesocarp fruit fibres and empty fruit bunches. The liquid waste generated from the palm oil mill is called palm oil mill effluent (POME).

Typical palm oil processing flow chart can be seen on Figure 1.1. From the waste production view point, the amount of solid palm oil waste available from a mill can be substantial. This consists of empty fruit bunches (EFB), palm kernel shell, mesocarp fibres, and possibly solids from decanters. This biomass normally can be converted into useful product. Along with the palm oil production, a palm oil mill also produces an average of 0.65 tonne of raw POME from every ton of fresh fruit bunches (FFB) processed. Mainly, the most critical waste that needs to be treated seriously is POME due to the high contents of pollutant concentration such as natural organic matter, BOD₅, COD, oil and grease. This is because POME will give big impact to the river and environment with the emission of biogas if it is discharge without proper treatment.
Figure 1.1: Palm oil processing flow chart (Sivasothy, 2000).

1.1.2 Palm oil mill effluent (POME)

As a general definition from the words itself, palm oil mill effluent (POME) is a wastewater that produce from the palm oil processing plant. From visual and sensory observation, POME is a thick brownish viscous liquid waste with an unpleasant odour that is high in colloidal suspended matter (Ahmad et al., 2009). POME is produced mainly from oil extraction, washing and cleaning processes in the mill and it includes cellulosic material, fat, oil and grease (Agamuthu, 1995; Rupani et al., 2010). POME can be classified as non-toxic waste because there were no chemical added during the process. It contains water (95-96%), suspended solids (2-4%) and oil (0.6-0.7%) with pH 4.0 – 4.5 (Foo and Hameed, 2010). POME also has a high organic content, namely
oil and fatty acids (Baharuddin et al., 2010). If POME is discharged without a proper treatment apply, waterways will be polluted due to its high BOD$_5$ (25,000 mg/L), COD (53,630 mg/L), oil and grease content (8,370 mg/L) and suspended solid content (19,020 mg/L) (Ma 1995; Wu et al., 2007). In addition, as reported by Department of Environmental (DOE), Malaysia account about 10% of heavily polluted or dead river, 63% are polluted and only 27% are clean (Fuadi et al., 2012). For this reason, the palm oil industry has a strong responsibility to face the problem in terms of environmental protection, economical viability, and sustainable development.

In order to implement the strict regulations of the Environmental Quality (Prescribed Premises) (Crude Palm Oil) Order, 1997 and the Environment Quality (Prescribed Premises) (Crude Palm Oil) Regulations, 1997, POME needs to be treated effectively and in a proper way. Moreover because of the huge capacity in this sector, it is critical to treat palm oil mill effluent (POME) to an acceptable level (Table 1.1) before discharging it. If POME did not being treat accordingly, it give a big impact and cause severe pollution of waterways due to oxygen depletion and other reflected effect. This is due to the presence of unrecovered oil which causes the raw or partially treated POME to have an extremely high content of degradable organic matter.

Table 1.1: Characteristics of POME and its respective standard discharge limit by the Malaysian Department of the Environment (Ahmad, 2003; Hanif, 1994).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Standard limit, mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>5-9</td>
</tr>
<tr>
<td>Oil and grease</td>
<td>50</td>
</tr>
<tr>
<td>BOD$_5$</td>
<td>100</td>
</tr>
<tr>
<td>COD</td>
<td>-</td>
</tr>
<tr>
<td>Total solids</td>
<td>-</td>
</tr>
<tr>
<td>Suspended solids</td>
<td>400</td>
</tr>
<tr>
<td>Total nitrogen</td>
<td>150</td>
</tr>
</tbody>
</table>

1.1.3 POME treatment

Nowadays, there is several innovative treatment technologies have been developed to treat POME wastewater. It is important to consider some of the factors before applying the technology such as available space for construction for treatment facilities, ability of process equipment, limitation of waste disposal, desired final water quality and cost of capital and operating (Fuadi et al., 2012). There are three treatments technologies that can be used to treat POME wastewater which are biological, physical and chemical treatment. Biological treatment is normally involved with biodegradation process that involves adsorption by microbial biomass and bioremediation systems (Ahmaruzzaman, 2008). This is because many microorganisms are able to accumulate and degrade different pollutant. Anaerobic digestion, ponding system, activated sludge process and aerated lagoon fall under biological treatment. Physical method of wastewater treatment is solid-liquid separations technique of which filtrations is the main role that can use various media as medium of filtration (Cheremisinoff, 2002).
Some of the examples of physical treatment are granular-medium filtration, sedimentation, membrane separation, and screening. Chemical method relies upon the chemical interactions of the components that need to be demolished from wastewater. The use of the chemical is as either aid in the contaminant separation from wastewater or assists in the destruction or neutralization of harmful effects that associated with contaminants. Some of the chemical method uses are chemical precipitation, adsorption, disinfection, coagulation and others.

1.2 Problem statement and research gap

Over the years, most of the palm oil mills apply biological treatment such as anaerobic or facultative digestion which is believed can overcome the waterways pollution problem (Quah et al., 1982; Ahmad et al., 2003a). Other than that, there are also some mills that utilized zero waste technologies and the treated POME is applied to land (Shah and Kaur, 2004). Conversely, there are several problems and disadvantages arise from the current treatment. In order to ensure that a conductive environment is maintained for microorganisms in which to survive, the biological treatment system requires proper maintenance and monitoring as the bacteria is very sensitive to the changes in the environment. In addition, attentions from skilled operators as well as the commitment from the management are also required. Other than that, biological treatment also generates vast amount of biogas. This biogas consists of methane, carbon dioxide and trace amounts of hydrogen sulphide. These gases are corrosive and odorous (Ahmad et al., 2003a). Normally these issues are always ignored by the mill owners because the effluent treatment is often viewed as a burden and given the lowest priority. Due to the problems and disadvantages of biological treatment, it is suggested and believed that membrane separation technology will be able to treat POME in a more beneficial ways.

However, palm oil industries always find the membrane technology as the expensive treatment due to the high cost of installation set up and maintenance. A lot of study has been done on applying the membrane technology for POME treatment but still it cannot convince the palm oil management due to this high cost problem.

Currently, the ultrafiltration of POME showed a great potential in reclaim a better quality of treated POME. However, the industries face the problem in obtaining the clear crystal water from ultrafiltration of POME without using reverse osmosis membrane which is more expensive. This is mainly due to an uneven and rather broad pore size distribution of the membranes which often limit the rejection and the efficiency of the separation. Although some commercial membranes today have a tighter pore size distribution, it has been found by other researcher that sandwich membrane can improve the rejection characteristics of ultrafiltration membranes. Based on the critical review of previous work, the multilayer or sandwiches of membrane was commonly studied for the protein separation and there was no study applying this technology for POME treatment yet. The potential of membrane layers or sandwich membrane for ultrafiltration of POME has not been explored yet. Therefore, an interest arises to investigate the potential of sandwich membranes of various orientations and the effect of these configurations on the filtration behavior of particles solid in POME. These particles solid in POME which will contribute in determine the other pollutant concentration in POME. Consequently, two flat membranes are sandwiched together in
various configurations in a single stirred cell ultrafiltration device and the effects of various sandwiches on the ultrafiltration of POME are examined in this study. Moreover, the high cost of maintenance can be solved by applying the adsorption-settling-surface filtration treatment as a pre-treatment to reduce fouling effect during ultrafiltration process.

1.3 Motivation

The use of membrane separation technology is normally coupled with pre-treatment. There are several advantages to use membrane separation technology. It can be applied across a wide range of industries; the quality of the treated water is more consistent regardless of the influent variations; it can be used in a process to allow the recycling of selected waste streams within a plant; highly skilled operators would not be required when the plant can be fully automated (Cheryan and Rajagopalan, 1998); and the water reclaimed from this treatment could be reused in the mill. Thus, the primary advantages lie in the reduction of the cost for the water supply and its further treatment as well as in the effective elimination of the pollutant from the POME. Furthermore, if the methods of treatment are easy to operate, this method will then reduce the cost of operation (Wang et al., 2012).

Generally, membrane cannot be used directly to treat oily wastewater like POME. This is because membrane is sensitive and costly component of the treatment process. In order to reduce the cost of maintenance later on, pre-treatment should be applied to POME and membrane life can be extended also long-term system performance can be improved (Water Environment Federation, 2006). Pre-treatment was applied to avoid membrane fouling which can reduce membrane performance. There are several pre-treatment can be applied such as flow equalization, fine screens, strainers, chlorination, chemical coagulation, adsorption and others. These pre-treatment is include based on influent water quality, filtrate quality requirements, and the membrane used (Water Environment Federation, 2006). It is suggested to apply palm kernel shell-based activated carbon (PKS-AC) adsorption-settling-surface filtration as pre-treatment.
1.4 Objectives

The objectives of the study are as follows:

1. To evaluate the potential of pre-treatment methods (adsorption-settling-surface filtration) prior to ultrafiltration treatment
2. To investigate the potential of ultrafiltration membrane using single and sandwich configurations to reclaim clear water in the POME.

1.5 Summary of thesis

This study describes the treatment process in treating the raw POME. The raw POME was treated by coupling together ultrafiltration membrane treatment with pre-treatment method involves adsorption-settling-surface filtration treatment. This study also describes sandwich ultrafiltration membranes and discusses the potential of sandwich membrane configuration to enhance the performance of ultrafiltration module to effectively treating the POME.

The first part of the study involved pre-treatment by using adsorption-settling-surface filtration which initially applied before ultrafiltration of POME, to reduce the sludge and particles in POME. This pre-treatment was performed prior to reduce and avoid fouling effect on membrane during ultrafiltration membrane process.

The second part of this study proposed the use of ultrafiltration membrane in POME treatment. After pre-treatment stage, pre-treated POME was subjected to ultrafiltration membrane treatment. The ultrafiltration experimental was conducted using single and sandwich membrane (two flat ultrafiltration membranes were stack together without any spacer). The performance and behavior of these configurations were compared. The performance was in term of permeate flux behaviour and reduction in dissolved solid and turbidity.

1.6 Significant and limitation of the study

Current treatments applied by the palm oil mill industries to treat POME have some disadvantages in term of economy viability, management facilities and maintenance, large treatment area required and time consuming. Moreover, almost all the method applied by the palm oil mill industries manage to reduce the pollutants in POME but failed to improve the color (clear water). Thus it is necessary to suggest and investigate a more practical method in treating POME.

This study will provide knowledge concerning the suggested method applied which is sandwich membrane configuration couple with PKS-AC adsorption-settling-surface filtration as pre-treatment. It is believed the findings from the suggested method will improve the colour of treated POME to clear water in line with significant reduction on
the pollutant in the POME. The findings in this study can also provide a fundamental knowledge for the sandwich membrane configuration in term of improving the pore size distribution arrangement in the membrane.

As a result of this study, knowledge of the ultrafiltration of POME using sandwich membrane couple with PKS-AC adsorption-settling-surface filtration (pre-treatment) can be obtained. Suitable operating conditions for both pre-treatment and sandwich membrane treatment also can be obtained to achieve high output with the better quality of treated POME

Unfortunately, there were some limitations encounters in this study. The problems were based on time constraint, condition of the lab surrounding and experimental rig (stirred cell) used in this study. In addition, the temperature of the solution cannot be changed due to the ultrafiltration cell was not suitably set up for temperature control. Due to these limitations, there was some ranges of variables were not being included in this study.

1.7 Outline of thesis

Chapter 1 – Introduction:
This chapter contains a short description of the subject that initiated this research, background on POME characteristics and treatment, motivation, objectives, summary and outline of the thesis.

Chapter 2 – Literature review:
This chapter reviews the overall background of the POME treatment, including the concepts and technology that form a core of the thesis, and give a brief overview of the previous work. This overview provides a general discussion of related research.

Chapter 3 – Materials and methods
This chapter presents the material and methods relevant to adsorption-settling-surface filtration treatment and ultrafiltration membrane treatment. This includes the experimental details of this proposed technique and procedures use in the thesis.

Chapter 4 - Characteristics of POME and pre-treatment stage prior to ultrafiltration
This chapter presented the result and discussions on the pre-treatment method (adsorption-settling-surface filtration treatment).

Chapter 5 – POME treatment using sandwich membranes
The objective in this section is to evaluate and compare the effectiveness of single and sandwich membrane in ultrafiltration of POME.

Chapter 6 – Conclusion and recommendations
This chapter contains concluding remarks and recommendation for future work.
REFERENCES

