Operators with diskcyclic vectors subspaces

ABSTRACT

In this paper, we prove that if T is diskcyclic operator then the closed unit disk multiplied by the union of the numerical range of all iterations of T is dense in H. Also, if T is diskcyclic operator and $| | \ddot{O} 1$, then T \acute{O} I has dense range. Moreover, we prove that if > 1, then 1/ T is hypercyclic in a separable Hilbert space H if and only if T \bigoplus IC is diskcyclic in H \bigoplus C. We show at least in some cases a diskcyclic operator has an invariant, dense linear subspace or an infinite dimensional closed linear subspace, whose non-zero elements are diskcyclic vectors. However, we give some counterexamples to show that not always a diskcyclic operator has such a subspace.

Keyword: Diskcyclic operator; Diskcyclic vector; Diskcyclicity criterion; Condition B1; Numerical range