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A standard cell library contains functional blocks with known electrical characteristics, 

which are characterized to obtain the following parameters: propagation delay, output 

transition time, power representation, and capacitance. Standard cell libraries are 

widely applied by industry designers to the implementation of application-specific 

integrated circuit (ASIC) designs. Such application is facilitated by the provision of 

extremely high gate density and excellent electrical performance. Early validation of 

the characterization data for the standard cells on physical silicon is required to 

guarantee the correct implementation of the final design in silicon functions. The 
silicon validation processes correlate the characterized values with the actual silicon 

performance. However, this process is costly in terms of design and fabrication. 

Moreover, testing the process on wafer silicon measurement validation is difficult in 

terms of test time and because of equipment limitation. 

 

In this research, an enhanced silicon validation method was developed to validate the 

libraries using the basics of the delay chain technique. The method was tested by 

applying two new approaches to designing test element group (TEG) circuits. These 

two approaches are sharing load between multi-chains and input control for multi-input 

gates. These proposed methods can reduce the cost of fabrication through total silicon 

area reduction of the test chip achieved by decreasing the total number of transistors 

required in the design. The total number of I/O PADs required in the validation process 
can also be reduced, and the test time can be enhanced. 

 

The effectiveness of our proposed approaches was evaluated on several test chips that 

consist of an inverter, a multi-input NAND, and NOR gates as basic cells of 

combinational logic circuits in the library. Test chips were designed to verify the 

functionality of the design and to validate timing delays and dynamic and leakage 

power, which are influenced by cell output loading and cell input transition parameters. 

The test chip was tested at operating environments that match simulation corners to 

cover datasheet-specified operating conditions. 
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JAAFAR KHADAIR KADAM AL-FRAJAT 

 

Julai 2015 

 

 

Pengerusi: Fakhrul Zaman Rokhani, PhD 
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Perpustakaan Sel Piawai mengandungi bongkah berfungsi dengan ciri-ciri elektrik yang 

diketahui telah disifatkan untuk parameter-parameter: lengah perambatan, masa 

peralihan keluasan, perwakilan kuasa dan kapasitans. Dengan menyediakan ketumptan 

get yang amat tinggi dan prestasi elektrik yang baik, perpustakaan sel piawai telah 

diterima secara meluas oleh pereka industri dalam pelaksanaan reka bentuk (ASIC) 

Litar Bersepadu Aplikasi Khusus. Pengesahan data pencirian yang awal bagi sel-sel 

piawai dalam bentuk fizikal silikon adalah wajib untuk menjamin bahawa reka bentuk 

akhir dapat dilaksanakan dengan fungsi-fungsi silikon. Proses pengesahan silikon 

membuktikan bahawa nilai-nilai pencirian adalah memadan dengan prestasi silikon 

sebenar. Walau bagaimanapun, proses pengesahan silikon ini adalah mahal dari segi 

reka bentuk dan pemfabrikatan, dan juga sukar dalam pengesahan pengukuran silikon 
wafer dari segi jangka masa ujian dan pengehadan peralatan.  

 

Dalam kajian ini, kaedah pengesahan silikon yang dipertingkatkan telah dibangunkan 

dan diuji dengan menggunakan dua pendekatan baru semasa mereka bentuk litar 

kumpulan elemen ujian (TEG) untuk mengesahkan perpustakaan dengan asas-asas 

teknik rantaian kelewatan. Kedua-dua pendekatan ialah beban perkongsian antara 

berbilang rantai, dan kawalan pemasukan untuk get yang berbilang pemasukan. 

Kaedah-kaedah baru ini dapat mengurangkan kos pemfabrikatan disebabkan oleh 

pengurangan jumlah keluasan silikon cip ujian dengan mengurangkan jumlah bilangan 

transistor yang diperlukan dalam reka bentuk. Jumlah pad I/O diperlukan dalam proses 

pengesahan boleh juga dikurangkan, serta masa ujian dalam proses ujian boleh 
dipertingkatkan. 

 

Keberkesanan pendekatan yang kami cadangkan telah dinilai pada beberapa cip ujian 

yang terdiri daripada get penyongsang, berbilang pemasukan TAK-DAN dan get TAK-

ATAU sebagai sel-sel asas litar logik bergabungan di dalam perpustakaan Cip ujian 

telah diuji di persekitaran operasi yang sepadan dengan sudut simulasi untuk meliputi 

syarat-syarat operasi yang dinyatakan dalam helai data. Perpustakaan sel piawai, 

Silterra C13LP, telah disahkan dengan menggunakan kaedah ini sebagai kes kajian 

untuk kajian ini. Keputusan menunjukkan tunda masa dan pengesahan kuasa get 

penyongsang, TAK-DAN, TAK-ATAU. Semua keputusan dalam simulasi dan wafer 

silikon memenuhi syarat-syarat operasi untuk sudut proses, voltan dan suhu (PVT).  
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1. CHAPTER 1 

 

INTRODUCTION 

 

This chapter introduces the present research and provides an overview of the design of 

application-specific integrated circuits (ASIC), including the standard cell library, 

which forms a main part of early ASIC technologies. This chapter also discusses the 

problem statement and motivation of the research and presents the objectives and scope 

of the study. The last section outlines the organization and chapters of the rest of the 

thesis. 

 

1.1 ASIC Design 

 

As its name indicates, ASICs are non-standard integrated circuits designed for a 

specific use or application. An ASIC design is generally used for a product with a large 

production run. The design may contain a huge part of the electronics required for a 

single integrated circuit. It entails high cost and outcome and is therefore usually 

reserved for only high-volume products [1]. At the same time, ASICs can be extremely 

cost efficient for many applications with high volumes; that is, regardless of its cost, a 

design can easily be obtained to meet the exact requirements of any high-volume 

products, such as cell phones or other similar applications, particularly high-volume 

consumer products or widely used business products. 

 

Digital ASICs form a main part of all modern information technology (IT) [2]. Their 

application in silicon chip technology facilitates the design of complex systems, 

including wireless devices, smart phones, ts, notebooks, and network routers. The first 

ASICs dealt only with digital logic functions, whereas modern ASICs have been 

extended to deal with mixed signals, which can be slotted in both analog and digital 

logic functions . These mixed-signal ASICs are mostly practical in design and sui for 

an entire system on chip (SoC), which makes them highly attractive for many modern 

applications.  

 

Early ASICs used gate array technology. Today, gate arrays are evolving 

into structured ASICs that contain large IP cores, whereas the logic-only gate-array 

design is now only seldom implemented by circuit designers [3]. The terms "gate array" 

and "semi-custom" are synonymous; the former term is usually employed by logic (or 

gate-level) designers, and the latter by process engineers. By contrast, a full-custom 

ASIC design defines all the photolithographic layers of a device. It is also used for both 

ASIC and standard product designs [4]. 

 

"Standard-cell" cell libraries, along with modern computer-aided design (CAD) 

systems, are nowadays commonly used for digital-only designs. The standard cell 

library has a significant performance and accep cost [5]. Moreover, automated layout 

tools provided by CAD are quick and easy to use and are flexible, but "hand-tweaking" 

or manually optimizing any performance-limiting aspect of the design is possible.  
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1.2 Standard Cell Library 

 

Every ASIC manufacture can create functional blocks with known electrical 

characteristics, such as propagation delay, power, capacitance, and inductance. These 

characteristics can be represented in third-party tools [6]. The standard cell design 

involves utilizing these functional blocks to attain a very high gate density and a 

verified electrical performance. Any full-custom circuit can be designed completely 

using only predefined logic cells from a foundry’s specific standard cell library and 

physical design processes, which are provided by standard electronic design 

automation (EDA) tools. 

 

1.2.1 Cell Library Design  

 

The common design flow of a standard cell library is presented in  

Figure 1.1. The design is initiated by specifying the widths and lengths of the negative-

channel metal-oxide semiconductor (NMOS) and positive-channel metal-

oxide semiconductor (PMOS) devices using an analytical approach to meet the design 

requirements in terms of optimal delay, minimum geometry or optimal noise margins, 

and drive current [7].  

 

The transistor level schematics for each cell are then generated, and the performance 

must be verified using circuit simulation tools. After a schematic entry, the layout of 

each of the cells must be created, such that each cell is as compact as possible, while 

complying with all the design rules provided by the process foundry. Design rule 

checks (DRC) and layout versus schematic (LVS) checks must be run to verify the 

layout. These checks confirm the absence of design rule errors, sizing errors of 

transistors, or incorrect connections between the layout and schematics. 

 

Specification
Width and length

Circuit Design (schematic)
Transistor level schematic generated for each cell, 

then verified using circuit simulation tools

Layout Design 

Create layout, apply DRC and LVS checks

Characterization 
Simulate cells. Functionality test. Timing and power 

data extraction across PVT. Generate LEF  

PDKs,
Design Rules,
SPICE Models

Netlist (.cdl)

Layout (GDSII),
Extracted Netlist 

(.spi)

Timing & Power 
Model (.lib), .lef, 

verilog, vhdl
 

 

Figure 1.1 Design Flow of The Cell Library 

 

Simulation must also be run on the cells to ensure their proper functionality and to 

extract their timing and power data. Circuit simulation for data extraction is performed 

in terms of process, voltage, and temperature (PVT) parameter corners across a range 

of values expected in usual operations to obtain realistic manufacturing process 

characteristics [8]. The characterization must be conducted using an automatic cell 
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characterization tool. After the simulation, the power and timing data are transformed 

into the format required by the synthesis tool used for the ASIC design.  

Along with the library file, the place and route tool also requires a physical description 

library, which includes definitions of blockages, information on routing layers, pin 

information to prevent the generation of shorts among the cells when the cell 

interconnection is being routed [9]. The tool for the abstract generator can be used to 

obtain the layout exchange format (LEF) file and abstract views for all the cells. 

 

The standard cell library must provide three types of descriptions to be useful to the 

ASIC designer. These descriptions are provided by the documentation and design files 

included as a process design kit (PDK) in design tools. These descriptions can be 

categorized into three groups: (I) physical, (II) logical, and (III) electrical description.  

 

1.2.1.1 Physical Description 

 

The physical description must provide the specific information about the process used 

for the library, particularly the number of layers in which the metals are processed, the 

use of each of these layers, and their coordinates (i.e., vertical and horizontal 

coordinates) [10]. The power rails must also be defined in terms of their width and 

height. The pins placed and the routing grid must be addressed to facilitate the routing 

process. 

 

1.2.1.2 Logical Description 

 

In standard cell libraries, three main groups of logic gates co-exist: (1) 

inverters/buffers, (2) combinational cells, and (3) storage elements (e.g., latches and 

flip-flops). Given the mostly large number of different logic functions and driving 

strength options required in typical designs, the largest of the three above mentioned 

groups is the set of combinational logic gates [11]. The logical description presents the 

logic functionality of each cell.  

 

1.2.1.3 Electrical Description 

 

The cells must be characterized before the library can be used in the ASIC design. The 

timing, power consumption, and noise information of each cell are provided by the 

characterization of the library [12]. Aside from the abovementioned requirements, 

information on the setup, hold, recovery, and removal time constraints are also 

presented in the case of sequential cells [13]. 

 

1.2.2 Cell Library Characterization 

 

Cell characterization is the process of simulating a standard cell using an analog 

simulator or an automated characterization tool to extract the timing, power, and noise 

data and to convert such data into a format that other tools can utilize. The accuracy 

and reliability of the electrical characteristics of the cells used in a standard cell design 

environment are crucial to the reliability and accuracy of any design in which such cells 

are used [14]. However, managing the large amount of information involved is not an 

easy task. In particular, given that the feature sizes of VLSI chips are increasingly 

shrinking, maintaining and updating the electrical characteristics of the library elements 

may adversely affect the process of scaling existing designs to submicron technologies. 
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Although the functional and behavioral aspects of the circuit may not change as a result 

of scaling or moving to a new foundry, timing simulation and critical path analysis 

become important considerations in porting existing designs into new technologies and 

foundries [15]. 

 

Many types of characterization models are available, depending on the focus of the 

target characteristics. The nonlinear delay model (NLDM) is widely used to 

characterize the propagation delay through digital cells and blocks to their outputs 

depending on the load capacitances and input rise and fall times. The model also 

describes how the rise and fall times of the output depend on these values. The 

nonlinear power model (NLPM) focuses more on leakage and dynamic power 

measurements, aside from timing. The composite current source (CCS) delay model 

was introduced to address the challenges of modeling technologies with a scale of 90 

nm and below. The effective current source model (ECSM) is designed to have 

accurate model delay, in which voltage fluctuations, process variation, and noise are 

intensely problematic. ECSM is the industry's first and only open standard current 

source model and currently enjoys broad industry support.  

 

1.3 Qualification of the Standard Cell Library 

 

A cell library usually consists of an ensemble of hundreds of individual cells. If it is to 

function as a whole to provide building blocks for larger designs, not only should each 

individual cell be correctly designed but also should the synthesized designs based on 

these library cells be free of errors. However, designing a cell library requires 

conducting many complex tasks and involves the design efforts of a number of 

engineers. Errors are easily incurred in such situation; even though each cell is designed 

correctly, errors may still exist. Benchmark circuits are usually designed to uncover 

leftover errors in a cell library. This way, the quality of a cell library can be 

substantially improved.  

 

The idea of ―high-quality cell libraries‖ is interpreted in many different ways. A cell 

library regarded as a high-quality library by one company may not be considered viable 

by another company [16]. However, high-quality cell libraries possess many common 

characteristics, some of which are listed below: 

 

1. Each individual cell should function correctly in the models for logic synthesis 

and simulation. 

2. Each individual cell whose timing performance and power consumption are 

claimed in the data sheet or models should be sufficiently accurate. 

3. Each individual cell layout should be free of design rule violations. 

4. Each individual cell should be usable by a synthesis tool. 

5. The cells should be capable of optimizing the placement and route of a large 

design. 

 

To achieve these qualification standards, two main fields must be checked in terms of 

their quality: (1) library verification, or the verification of the applicability of the cells 

in ASIC tools, and (2) cell validation, or the validation of each individual cell’s 

functionality, timing, and power values as provided by the foundries in the library file. 
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1.3.1 Library Verification 

 

The purpose of library verification is to ensure that the cells can work with ASIC tools 

[17]. This verification is achieved by ensuring that the cells can be utilized in synthesis 

tools and that they can optimize the placement and route of large designs [18]. The 

layout of the individual cells must also be free of design rule violations [19]. To justify 

the cells’ capability of being utilized by synthesis tools and of optimizing the placement 

and route required by a large design, designers must design special benchmark circuits 

or digital blocks that can address such issues [20]. Using the standard library cells of a 

design-specified height (i.e., according to the cells used) and the design-specified width 

of logic rows and varying the width of the wiring channel are various ways of 

accommodating the number of interconnection wires determined during place and route 

[21]. 

 

1.3.2 Library Cell Validation 

 

A critical issue that affects the standard cell ASIC design is the quality of the standard 

cells provided by the foundry in the library file [22]. By providing a rich set of library 

cells, the coordination between the logical and physical design becomes significantly 

more valuable [23]. However, this process is considered costly in terms of the design of 

the test chip and the test process. As such, the individual cells themselves must be 

validated using physical verification DRC and LVS checks to ensure the quality of the 

layout design. The function of each individual cell must also be checked to guarantee 

the functionality of the cells [24]. 

 

The performance of individual cell is essential to validate the timing and power s 

provided in the library file. Test element group (TEG) circuits are designed to validate 

the timing and power on silicon to ensure the match between the silicon and simulation 

program with an integrated circuit emphasis (SPICE) file [25]. Three types of the TEG 

circuits have been addressed; the ring oscillator is commonly used to electrically 

characterize standard cells, although it operates by self-oscillation and catching the 

oscillation while testing the chip is not easy [26]. The delay path method is very easy to 

understand and implement, although limited in accuracy [27]. The delay chain method 

can validate the functionality and performance of standard cell ASIC libraries, 

facilitates the verification of the performance of each cell, and proves the integrity of 

the ASIC customer chip design environment [28]. Figure 1.2 shows the validation 

process for any standard cell design. 

 

 
Figure 1.2 Validation Process [29] 

Cell Library 

• .lib File Format 

 

• Characterized values 
provided by the 
foundry. 
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tool for accurate 
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• Simulated values must 
be compared with .lib 
file. 

On - Silicon Chip 

• Silicon Wafer 

 

• Measured with special 
equipments. 

• Measured values must be 
compared with model 
prediction for both 
simulation and .lib file. 
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1.4 Problem Statement and Motivation 

 

The early validation of the characterization data of standard cells used in physical 

silicon has become compulsory to guarantee that the final design implemented in 

silicon correctly functions under all PVT conditions [30-32]. The silicon validation 

processes prove that the characterized values match the actual silicon performance [27, 

32, 33].  

 

However, this process of silicon validation is costly in terms of design and fabrication 

processes. This cost can be either by consuming large area in the design which will 

reflect into silicon area later which considered costly, or using huge amount of 

input/output pins during the design which will lead to have more I/O pads [34-36]. In 

addition, the process of silicon validation conducting a test on wafer silicon 

measurement validation is difficult in terms of testing time and limitations in 

equipment. The time required to validate each individual cell can be long due to the 

repetition of tests considering different output loads and PVT conditions. Over and 

above the equipments does not support multi - chain tests at the same time due to the 

limited number of input/output probes provided by test equipments [33, 34, 36]. 

 

1.5 Research Objective 

 

The overall objective of this thesis is to establish an improved validation technique for 

the standard cell library. Based on the problem statement, the specific objectives of this 

study are as follows: 

 

1. To design new circuit techniques targeting a cost-effective validation approach 

of Test Element Group (TEG) circuits. 

2. To investigate the trade-off in the performance of the proposed techniques.  

3. To examine the proposed validation techniques on transistor-level simulation 

and on-silicon test chip. 

 

1.6 Research Scope 

 

This work discusses the proposed cost-efficient validation techniques for standard cell 

libraries. Using TEG circuit approach, and targeting the NLDM-characterized data, the 

combinational logic cells for Silterra C13LP library is validated to verify the accuracy 

of the proposed techniques. Many chips using the delay chain method are fabricated 

and tested in Process, Voltage and Temperate (PVT) corners to obtain a match between 

the real-silicon and simulated values. The pre-silicon simulation and post-silicon 

measurement data have been used to validate the library SPICE time and power values. 

Figure 1.3 shows the scope of the study. 
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Figure 1.3 Research Scope  

 

1.7 Organization of the Thesis 

 

Chapter 1 provides a general background on ASIC design and defines the standard cell 

libraries and their characterization. It discusses the qualification of the standard cell 

library and presents the library verification and cell validation techniques. The rest of 

chapter explains the problem statement, objectives, and scope of the study.  

 

Chapter 2 reviews in detail the standard cell library validation and discusses the ASIC 

designs, including the standard cell library, which forms a main part of such designs. It 

also addresses the characterization models and validation techniques. The last section 

reviews on-silicon wafer chip measurements and related issues.  

 

Chapter 3 introduces the general methodology of this research and discusses the chip 

design process. It also discusses the proposed techniques and assumption, which 

consists of the design, chip, and analytical models. It then describes the simulation and 

measurements issues. 

 

Chapter 4 presents the results and outcome of the research and analyzes in particular 

the results of the pre- and post-layout simulation and measurements. 

 

Finally, Chapter 5 summarizes the conclusions suggested by the findings of this 

research and provides suggestions for future work to improve on the current research. 
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