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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfilment of the requirement for the degree of Doctor of Philosophy 

 

INJECTION MOULDING SIMULATION OF WOOD-FILLED 
POLYPROPYLENE THIN-WALLED COMPOSITE PARTS 

By 

MOHD AZAMAN MD DEROS 

May 2015 

Chair: Professor Mohd Sapuan Salit, PhD, PEng 
Faculty: Engineering 

Currently, many industries are moving towards the production of products that 
exhibit properties, such as small thickness, low weight, small dimensionality, 
and environmental friendliness. In this project, a shallow thin-walled part 
(thickness = 0.7 mm) was designed to investigate wood-filled polymer 
composites in terms of the processability and quality of moulding parts. 
Numerical simulation (MoldFlow software) assisted with the Taguchi method, 
signal-to-noise (S/N) ratio and analysis of variance (ANOVA) was carried out in 
this research. This study focused on the in-cavity residual stresses, volumetric 
shrinkage and warpage behaviour associated with the thin-walled moulded part 
using different types of wood-filled polymer composites (PP + 40 %wt wood, 
PP + 50 %wt wood, and PP + 60 %wt wood). The analysis demonstrated that 
the shallow thin-walled part is preferable for moulding the wood-filled polymer 
composite material due to the low residual stress (i.e. centre of the part 
surface, 15-23 MPa) and warpage (0.02-0.42 mm) measured than flat thin-
walled parts. The material PP + 60 %wt wood is not suitable for moulded thin-
walled parts because of the early solidification (short shot) and the statistical 
results with a percentage contribution of residual error that was higher than the 
moulding parameters. However, the material PP + 50 %wt wood is the 
preferred type of wood-filled polymer composite for moulded thin-walled parts. 
The predicted in-cavity residual stresses for PP + 50 wt% wood are 
approximately 20.10 MPa, which is lower than the values of approximately 
20.60 MPa and 31.10 MPa predicted for PP + 40 wt% wood and PP + 60 wt% 
wood, respectively. The differences in value of the contour-pattern distribution 
for PP + 50 wt% wood are small (in the ranges of -0.709 % to -0.174 %) 
compared to those for the other types of wood-filled polymer composites. The 
research revealed that the packing pressure and mould temperature are 
important parameters to reduce the residual stresses and volumetric shrinkage. 
To reduce warpage, the important processing parameters are the packing 
pressure, packing time and cooling time for moulded thin-walled part using 
wood-filled polymer composites. The in-cavity residual stress results indicated 
that the stress variation across the thickness exhibits a high tensile stress at 
the part surface, which changes to a low tensile stress peak value close to the 
surface, with the core region experiencing a parabolic tensile stress peak. The 
volumetric shrinkage was lower near the gate than at the end-of-fill location 
along the flow path. The results also indicated that the volumetric shrinkage 
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correlates with the warpage measured on the moulded part. The optimum 
parameter ranges for obtaining the minimum in-cavity residual stresses, 
volumetric shrinkage and warpages are as follows: a mould temperature of 40-
45 °C, a cooling time of 20-30 sec, a packing pressure of 0.85Pinject, and a 
packing time of 15-20 sec. The melt flow index (MFI) is inversely proportional to 
the residual stress, volumetric shrinkage and warpage formation on the 
moulded thin-walled part. The value of the melt flow index must be considered 
in injecting wood-filled polymer composites rather than making the selection 
based on the filler loading content. Visualisation of the simulation results shows 
that the minimum warpage distribution appears more uniform for the moulded 
thin-walled part using PP + 50 wt% wood than for that using PP + 10 wt% glass 
fibre and PP. The warpage at the midpoint of the part surface injected using PP 
+ 50 wt% wood is 0.04mm lower than that value of 0.08mm using PP + 10 wt% 
glass fibre. This phenomenon can be attributed to changes in the distribution of 
residual stresses that occur in the core regions: PP + 50 wt% wood is 
15.77MPa lower than PP + 10wt% glass fibre (17.17MPa). Furthermore, the 
volumetric shrinkages of PP + 10 wt% of glass fibre are observed to begin to 
become uniform at 3.95% from 2.3 sec, which is faster than that of PP + 50 
wt% wood at 2.23% from 2.5 sec take longer or more time. More time required 
for the solidification process tends to minimise warpages occurring at the 
regions. 
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Abstrak tesis yang dikemukan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk Ijazah Doktor Falsafah 

 

SIMULASI PENGACUANAN SUNTIKAN KOMPOSIT POLIPROPELINA 
TERISI KAYU DALAM BAHAGIAN BERDINDING NIPIS 

Oleh 

MOHD AZAMAN MD DEROS 

Mei 2015 

Pengerusi: Professor Mohd Sapuan Salit, PhD, PEng 
Fakulti: Kejuruteraan 

Masa kini, banyak industri mengorak ke arah pengeluaran produk-produk yang 
mempamerkan sifat-sifat seperti nipis, ringgan, kecil, dan mesra persekitaran. 
Dalam projek ini, sebuah bahagian cetek berdinding nipis (ketebalan = 0.7 mm) 
direkabentuk untuk mengkaji komposit polimer terisi kayu dari segi 
kebolehprosesan dan kualiti bahagian acuan. Simulasi berangka (perisian 
MoldFlow) dibantu dengan kaedah Taguchi, nisbah isyarat hingar (S/N) dan 
analisa varians (ANOVA) telah dijalankan dalam kajian ini. Kajian ini 
menumpukan terhadap kelakuan tegasan baki, pengecutan isipadu dan 
keledingan yang berkaitan dengan pengacuanan bahagian berdinding nipis 
menggunakan komposit polimer terisi kayu daripada jenis-jenis yang berbeza 
(PP + 40 %wt kayu, PP + 50 %wt kayu, and PP + 60 %wt kayu). Analisis 
menunjukkan bahawa bahagian cetek berdinding nipis adalah lebih baik untuk 
pengacuanan bahan komposit polimer terisi kayu disebabkan oleh tegasan 
baki yang rendah diukur (iaitu bahagian tengah permukaan, 15-23 MPa) dan 
keledingan (0.02-0.42 mm) berbanding bahagian rata berdinding nipis. Bahan 
PP + 60 %wt kayu adalah tidak sesuai untuk pengacuanan bahagian 
berdinding nipis kerana pemejalan awal (tembakan pendek) dan keputusan 
statistik menyumbang peratusan baki ralat yang lebih tinggi berbanding 
parameter acuan. Walau bagaimanapun, bahan PP + 50 %wt kayu adalah 
pilihan bagi jenis komposit polimer terisi kayu untuk pengacuanan bahagian 
berdinding nipis. Tegasan baki dalam-rongga untuk PP + 50 wt% kayu 
diramalkan lebih kurang 20.10 MPa, iaitu lebih rendah berbanding nilai-nilai 
yang lebih kurang 20.60 MPa dan 31.10 MPa diramalkan untuk PP + 40 wt% 
kayu dan PP + 60 wt% kayu, masing-masing. Perbezaan nilai taburan kontur-
corak untuk PP + 50 wt% kayu adalah kecil (dalam julat iaitu -0,709 % hingga -
0,174 %) berbanding dengan komposit polimer terisi kayu untuk lain-lain jenis. 
Kajian ini mendedahkan bahawa tekanan padatan dan suhu acuan adalah 
parameter penting bagi mengurangkan tegasan baki dan pengecutan isipadu. 
Untuk mengurangkan keledingan, parameter pemprosesan yang penting 
adalah tekanan padatan, masa padatan dan masa penyejukan untuk 
pengacuanan bahagian berdinding nipis menggunakan komposit polimer terisi 
kayu. Keputusan tegasan baki dalam-rongga menunjukkan variasi tegasan 
merentasi ketebalan mempamerkan tegasan tegangan tinggi pada permukaan, 
yang mana berubah kepada tegasan tegangan nilai puncak yang rendah di 
kawasan dekat permukaan, dengan rantau teras mengalami parabola puncak 
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tegasan tegangan. Pengecutan isipadu adalah lebih rendah berhampiran pintu 
berbanding di lokasi-akhir  di sepanjang arah aliran. Keputusan juga 
menunjukkan bahawa pengecutan isipadu berkaitan dengan kelidingan yang 
terukur pada bahagian acuan tersebut. Julat optimum parameter untuk 
mendapatkan minimum tegasan baki dalam-rongga, pengecutan isipadu dan 
keledingan adalah seperti berikut: suhu acuan 40-45 °C, masa penyejukan 20-
30 saat, tekanan padatan 0.85Psuntik, dan masa padatan 15-20 saat. Indeks 
aliran leburan (MFI) adalah berkadar songsang dengan pembentukan tekanan 
baki, pengecutan isipadu dan keledingan pada pengacuanan bahagian 
berdinding nipis. Nilai indeks aliran leburan perlu dipertimbangkan dalam 
menyuntik komposit polimer terisi kayu berbanding membuat pilihan 
berdasarkan kandungan beban pengisi. Keputusan visualisasi simulasi 
menunjukkan bahawa agihan keledingan minimum kelihatan lebih seragam 
untuk pengacuanan bahagian berdinding nipis menggunakan PP + 50 wt% 
kayu daripada menggunakan PP + 10 wt% gentian kaca and PP. Keledingan di 
titik tengah bahagian permukaan yang disuntik menggunakan PP + 50 wt% 
kayu ialah 0.04mm lebih rendah daripada nilai 0.08mm yang menggunakan PP 
+ 10 wt% gentian kaca. Fenomena ini boleh dikaitkan dengan perubahan 
dalam taburan tegasan baki yang berlaku di kawasan teras: PP + 50 wt% kayu 
ialah 15.77MPa lebih rendah daripada PP + 10wt% gentian kaca 
(17.17MPa).Tambahan pula, pengecutan isipadu PP + gentian kaca 10wt% 
diperhatikan untuk mula menjadi seragam di 3.95% pada 2.3 saat, yang lebih 
cepat berbanding dengan PP + 50 wt% kayu di 2.23% pada 2.5 saat yang 
mengambil masa yang lama atau lebih masa. Lebih banyak masa diperlukan 
untuk proses pemejalan adalah cenderung untuk mengurangkan keledingan 
yang berlaku di kawasan-kawasan tersebut. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 
 

Thin-walled moulding technology has attracted increasing attention, particularly 
in electronic packing applications. These industries are moving towards the 
production of products with some criteria such as thinness, low weight, small 
dimensionality, environmental friendliness and good structural strength. The 
efforts typically made to reduce material costs and increase productivity include 
reducing the thickness of parts and using low-cost materials such as 
lignocellulosic fillers (i.e., wood flour) to replace fibreglass filler or as fillers in 
thermoplastic composites. Therefore, manufacturers are interested in research 
and development for creating 3C (computer, communication and consumer) 
products specifically using lignocellulosic fibres. In 2006, a casing mobile 
phone made of polylactide (PLA) reinforced with kenaf fibres was launched by 
NEC Corporation using a modified PLA developed by UNITIKA LTD (Zini and 
Scandola, 2011). Šercer et al. (2009), created an innovative wood 
thermoplastic composite for use in developed loudspeaker boxes, which 
yielded good results in processability and repeatability. 
 

The future of lignocellulosic fibre thermoplastic composites will ultimately 
depend on many factors, including new product identification, product quality, 
consumer reaction and perceptions, and the success of research and 
development efforts. Lignocellulosic fibres are promising, sustainable and 
biodegradable green materials that can be used to achieve durability as fillers 
in thermoplastic composite. La Mantia and Morreale (2011) reported that the 
most widely known and used natural-organic fillers in producing thermoplastic 
composite are wood flour and wood fibres. The processing of lignocellulosic 
thermoplastic composites is usually limited to temperatures below 230 °C to 
minimise fibre degradation, as reported by Sanadi et al. (1998).  
 

Reducing the thickness of parts to less than 1 mm and simultaneously applying 
wood fibre as a filler material is extremely challenging in a moulded product 
using injection moulding. Processing at low temperatures makes it difficult for 
the polymer melt to flow into the mould cavities and often leads to an 
inconsistent distribution of residual stresses, volumetric shrinkage and warpage 
in moulded products, particularly in thin-walled parts. Residual stresses, 
shrinkage and warpage are the three major challenges in injection moulding. 
Cheng et al. (2009) reported the effect of non-uniform stress and shrinkage 
distributions on warpage deformation. The distribution of residual stresses 
caused by non-uniform shrinkage ultimately generated the most significant 
warpage problems, particularly in thin-walled parts. Oktem et al. (2007) also 
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reported that warpage and shrinkage were the most frequently involved factors 
in the defects of thin-walled plastic parts in terms of quality. The primary cause 
of warpage is commonly known to be variations in shrinkage during the 
injection processing of thin-walled plastic parts. 
 

Several methods can be used to minimise the part quality problems of moulded 
thin-walled parts by considering the geometrical part design, mould system 
design, cooling system design, moulding parameters and material used. 
Subramanian et al. (2005) reported that the geometry and mechanical 
properties of a material also play critical roles in the warpage and that the final 
warpage of a part strongly depends on its mechanical stiffness, which is a 
function of the geometrical configuration and of the material‟s mechanical 
properties. The maximum deflection is inversely proportional to the thickness 
(high deflection occurs with thin parts). The structural rigidity of a thin-walled 
part is greatly dependent on the geometry of part designs. Hence, the initial 
stage of this research was conducted to investigate processability using wood-
filled thermoplastic composites in different moulded geometries of thin-walled 
part designs (shallow or flat, thin parts). 
 

Plastic injection moulding is a discontinuous and complicated process involving 
the interaction of several variables to control the quality of the moulded parts. 
These variables can be classified in terms of moulding parameters, materials, 
product design and mould design. The process requires appropriate setting 
parameters. The selection of appropriate machining parameters for the 
injection-moulding process becomes more difficult for applications that involve 
thin-walled parts and that use lignocellulosic thermoplastic composites (i.e., 
wood-filled polypropylene composites). Therefore, a statistical design of 
experiments (DOE) can be used to identify the optimum interactions among the 
variables in the injection-moulding process. According to Giboz et al. (2007), 
the level of warpage and shrinkage is highly dependent on the moulding 
process parameters. These authors proposed that efforts to reduce warpage 
and shrinkage to an acceptable level should be focused on the careful control 
of the moulding process parameters. In this research, the next stage of 
optimisation concerns the selection of variables in the moulding process 
parameters (filling time, packing pressure, packing time, cooling time, mould 
temperature, injection pressure, etc.) and the determination of their effects on 
part quality. 
 

The selection of a method for the statistical design of experiments should be 
based on multiple criteria, including practicality, efficacy, ease of construction 
and adequate accuracy. These criteria, when considered collectively, favour 
the Taguchi method. Because of these considerations, the application of the 
Taguchi method, the signal-to-noise and analysis of variance (ANOVA) 
appears to be a more practical approach to the statistical design of 
experiments than other methods, which appear to be more complicated. 
Furthermore, many industries concur with this assessment and have employed 
the Taguchi method to improve their products or manufacturing processes. The 
Taguchi approach appears to provide practical and effective tools for solving 
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challenging quality problems. This method has been used quite successfully in 
several industrial applications such as the optimisation of manufacturing 
processes and design (Wang et al., 2013; Hakimian and Sulong, 2012). 
 

During the injection-moulding process, the moulding processing parameters 
are the main criteria in controlling the quality of the final part. Each moulding 
parameter (i.e., the packing pressure, packing time, mould temperature, etc.) 
has a significant effect on the formation of residual stress, volumetric shrinkage 
and warpage for moulded thin-walled parts. The injection-moulded parts 
undergo shrinkage and warpage caused by residual stresses and temperature 
changes. These residual stresses are usually developed during solidification in 
the post-filling stage rather than during the filling stage. Choi and Im (1999) 
studied specific parameters at the packing and cooling stages to analyse the 
residual stresses. The pressure at the filling stage is much lower than that at 
the packing stage; thus, the pressure has little effect on the shrinkage and 
warpage of parts. Zhou and Li (2005b) observed that residual stresses that 
accumulated during the post-filling and cooling stages will lead to warpage in 
parts after demoulding. During the packing stage, the frozen-in stress caused 
by the packing pressure should be considered when measuring residual 
stresses. Similarly, during the cooling stages, due to the low thermal 
conductivity of polymers and the difference in temperature between the molten 
resin and the mould, an uneven temperature field arises, particularly along the 
gap-wise direction. This non-uniform temperature field distribution ultimately 
leads to differential shrinkage, thermal residual stress, and warpage in moulded 
parts (Zhou and Li, 2005a). 
 

Subramanian et al. (2005) reported the mechanical properties of materials also 
play an important role in controlling the warpage. Therefore, a potential solution 
for moulding thin-walled parts is to use a fibre-filled thermoplastic composite, 
which typically increases the material modulus of the moulded part compared 
with an unfilled moulded part. Hakimian and Sulong (2012) observed that 
loading glass fibres in the polymer provides a valuable effect on the formation 
of warpage and the shrinkage properties in moulded micro-gear parts. These 
phenomena are due to the orientation of the fibres along the direction of the 
injection flow during the moulding process. 
 

A literature review reveals that limited research has been conducted on the use 
of lignocellulosic-filler-reinforced thermoplastic composite materials for 
moulded thin-walled parts in the injection-moulding process. The initial stage 
this research was to investigate the advantages and disadvantages of flat or 
shallow thin-walled parts moulded using wood-filled thermoplastic composite. 
In the following stage, the optimal parameters for three different types of wood-
filled thermoplastic composite materials were determined. In addition, the 
effects of the moulding parameters (packing pressure, packing time, mould 
temperature and cooling time) during the post-filling stage of the wood-filled 
thermoplastic composite materials were determined on shallow thin-walled 
parts with thicknesses of 0.7 mm (Figure 1.1) with respect to the filling, in-cavity 
residual stresses, volumetric shrinkage and warpage for thin-walled parts in the 
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injection-moulding process. Finally, further investigation was conducted on the 
comparison of the filled and unfilled thermoplastic composites in moulded thin-
walled parts, specifically using neat polypropylene (PP), PP + 10 wt% glass 
fibre and PP + 50 wt% wood composite.  
 

 
Figure 1.1. A spherical shallow thin-walled plastic shell (isometric view) 

 

1.2 Problem statements 

 

The industry trend is to produce a product with consideration of properties such 
as thinness, lightweightness, smallness and environmental friendliness. Typical 
action is taken in an effort to decrease material costs and increase the 
productivity of parts per hour, commonly by reducing the thickness of the parts 
and using low-cost material sources such as natural-fibre filler as a 
replacement for fibreglass filler in thermoplastic composites. However, when 
decreasing the thickness to less than 1 mm and using natural fibres as fillers, it 
is an extremely challenging task to predict the residual stresses occurring on 
the parts, which are the result of the formation of shrinkage and warpage. 
 

List of problem statements that should be solved in this research: 
 
a) Is the wood-filled thermoplastic composite suitable for injecting on thin-

walled parts using the injection-moulding process? And what 
processing conditions in the injection-moulding process should be 
controlled to produce a high-quality thin-walled moulded part? 

b) What is the effect of the moulding processing parameters and value of 
the residual stresses, volumetric shrinkage and warpage distribution in 
moulded thin-walled parts using wood-filled thermoplastic composite? 
Are interactions present among these behaviours? 

c) How do the filled and unfilled thermoplastic composites in moulded 
thin-walled parts compare in terms of the filling phase, residual 
stresses, volumetric shrinkage and warpage? 

 

 

Unit: mm 
Length: 55 mm 
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1.3 Hypothesis 

 

An investigation of the processability of wood-filled thermoplastic composite 
materials injected in thin-walled parts was performed. Simulations were used to 
observe the distribution of residual stresses, shrinkage and warpage during 
solidification in the post-filling stage (packing stage and cooling stage). This 
research aimed to analyse and identify the relationship of the hypothesis as 
follows: 
 

PPACK

 MFI  TMOULD  
 α  Residual stresses ;  Volumentric shrinkage ;  Warpage  

 
Remarks: 
PPACK = Packing pressure, MPa; 
MFI = Melt flow index, grams/10min; 
TMOULD = Mould temperature, °C 
 

Some approaches were used to develop and identify the aforementioned 
hypothesis: 
 

1. Simulation and investigation of the processability of wood-filled 
thermoplastic composite materials on shallow and flat thin-
walled parts. This study focused on the effect of the filling on 
cavity residual stresses and warpage.  

2. The optimisation of the moulding processing parameters in the 
post-filling stage (packing pressure, packing time, mould 
temperature and cooling time) was investigated concerning 
their effect on the residual stresses, volumetric shrinkage and 
warpage behaviour. The optimisation was assisted using the 
Taguchi method and ANOVA to study wood-filled thermoplastic 
composites with various filler loadings and melt flow index 
(MFI) values. 

3. Simulation and investigate the effect of moulding parameter at 
post-filling stages (packing pressure, packing time, mould 
temperature and cooling time) against in-cavity residual 
stresses, volumetric shrinkage and warpage formation on 
moulded thin-walled part with varying filler loadings (40–60 
wt%) for wood-filled thermoplastic composites.  

 

Several assumptions were used to generate the above hypothesis: 
 

1. The wood filler has an irregular particulate shape (powder) with 
a filler size less than 0.5 mm. 

2. The minimum wall thickness for a moulded thin-walled part 
using wood-filled thermoplastic composite materials is 0.7 mm. 
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3. The gate size should be similar to or larger than the part 
thickness. 

4. The melt temperature range is 180–195 °C to avoid material 
properties degradation. 

5. The packing time range is 15–20 sec and the cooling time 
range is 20–30 sec; these ranges are sufficient to provide 
better results for the moulded part quality. 

 

1.4 Objectives 

 

The objectives of this research are: 
1. To simulate the processability of wood-filled polypropylene 

composite thin-walled parts (shallow and flat thin-walled parts). 
2. To optimise the moulding processing parameters at the post-

filling stage on thin-walled parts with various filler loadings (40-
60 wt%) based on their effect on the residual stress, shrinkage 
and warpage properties. 

3. To simulate and investigate the residual stress distribution for 
thin-walled parts during the post-filling stage using PP + wood 
composites. 

4. To simulate and investigate the shrinkage and warpage 
distribution on thin-walled parts during the post-filling stage 
using PP + wood composites. 

5. To investigate the processability and identify the interaction of 
warpage between residual stresses and volumetric shrinkage 
formation in moulded thin-walled parts for unfilled and filled 
thermoplastic composites. 

 

1.5 Significance of Study 

 

Natural fibres such as wood fibres are very promising, sustainable and 
biodegradable green materials that can be used to achieve durability without 
the use of toxic chemicals. Furthermore, natural fibre composites can replace 
traditional polymer composites with a lower environmental impact and are 
known as „eco-composites‟ or „green composites‟. These materials are suitable 
for typical application such as on thin-walled parts that do not require excellent 
mechanical properties. Hence, the significance of this study is to build a new 
research platform to explore the potential of processability to use natural plant 
fibre sources to reinforce thermoplastics injected on thin-walled parts using the 
injection-moulding process.  
 

This research also represents an early study in the field of natural-fibre-
reinforced thermoplastic composites that focuses on thin-walled parts injected 
by injection moulding. Therefore, this research also provides a new scope of 
research for future researchers who can refer to these findings as a platform in 
brainstorming new ideas for further investigations concerning the application of 
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natural-fibre-reinforced thermoplastic composite on thin-walled parts or other 
materials.  
 

1.6 Scopes and Limitations of the Study 
 

The scope of research is to identify the processability and certain moulding 
properties of wood-filled thermoplastic composites for moulded thin-walled 
parts using the conventional injection moulding process. Using computer 
simulation to ensure that the scope of the research follows these research 
objectives, some limitations of the research are needed and are listed below: 

a) The thickness of the shallow, thin-walled part is 0.7 mm. 
b) The process involved is the injection-moulding process. The 

analysis of the processing parameters focuses on the post-
filling stage (packing pressure, packing time, mould 
temperature and cooling time). 

c) The simulation analysis is performed using commercial 
software, Autodesk MoldFlow Insight 2011 (Serial No: 357-
1191113642). 

d) The materials used for the simulation in the MoldFlow 
Thermoplastic Composite Database include: 
 PP + 40%wt wood (Trade name: NCell 40: GreenCore 
Composites) 
 PP + 50%wt wood (Trade name: Isoform Lip Cpcw 50: 
Isokon) 
 PP + 60%wt wood (Trade name: WPC-2-mv: 
Fraunhofer Institute) 
 PP (Trade name: SABIC PP PHC27: SABIC Europe 
B.V) 
 PP + 10 wt% glass fibre (Trade name: Polypro R200G: 
Idemitsu Kosan Co Ltd) 

e) The properties, such as the in-cavity residual stresses, 
volumetric shrinkage and warpage, were investigated. 

f) The optimisation was assisted by the Taguchi method and 
ANOVA. 

 

1.7 Layout of the Thesis 

 

The thesis is primarily divided into eight chapters as follows: 
 

Chapter 1 provides background concerning the research, including the problem 
statement, hypothesis, objectives, significance of the study and limitations 
expected in this research. 
 

Chapter 2 overviews on the literature review of previous work conducted on the 
thin moulding process using injection moulding. A comprehensive review is 
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presented on technical and ecological views concerning the processability of 
lignocellulosic thermoplastic composites (i.e. wood-filled) used in moulded thin-
walled product. In-depth reviews were conducted concerning the optimisation 
of the moulding process and the effect of moulding parameters on the part 
quality (i.e., residual stresses, volumetric shrinkage and warpage) of moulded 
parts. 
 

Chapter 3 describes the overall research methodology. This research 
methodology includes the simulation analysis on moulded thin-walled parts with 
thicknesses of 0.7 mm with a selection of materials from the database and 
post-filling parameters on the fill time, in-cavity residual stresses, volumetric 
shrinkage and warpage. This research also uses the Taguchi method and 
ANOVA for optimisation and to identify the significance of parameters affecting 
the residual stress, volumetric shrinkage and warpage in moulded thin-walled 
parts. 
 

Chapter 4 present simulation analysis results of the processability in moulded 
thin-walled parts using wood-filled thermoplastic composites. The simulation 
results on the filling, in-cavity residual stresses and warpage were used to 
identify the types of part design that should be preferable in moulded thin-
walled parts. 
 

Chapter 5 discusses the optimisation analysis assisted by the Taguchi method 
and ANOVA to identify the best parameter setting and significant moulding 
parameters for moulded thin-walled parts using different types of wood-filled 
thermoplastic composites (with the filler loading ranging from 40 wt% - 60 
wt%). In-depth discussions are presented concerning the residual stresses, 
volumetric shrinkage and warpage formation on moulded shallow thin-walled 
parts due to the moulding parameter settings used and material properties 
such as the viscosity. 
 
Chapter 6 reports on the simulation analysis of the in-cavity residual stress 
behaviour formation in moulded thin-walled parts using wood-filled 
thermoplastic composites. The discussion more specifically investigates the 
effect of the moulding parameters during the post-filling stages on the in-cavity 
residual stress formation. 
 

Chapter 7 which present findings on the simulation analysis of the volumetric 
shrinkage and warpage behaviour formation in moulded thin-walled parts using 
wood-filled polymer composites. The discussion more specifically investigates 
the effect of the moulding parameters during the post-filling stages on the 
volumetric shrinkage and warpage behaviour formation. 
 

Chapter 8 detailing discusses the simulation analysis of unfilled and filled 
thermoplastic composites on moulded thin-walled parts. A detailed discussion 
is presented concerning the processability and the interaction of warpage on 
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the formation of residual stresses and volumetric shrinkage in moulded thin-
walled parts. 
 

Chapter 9 stated the synchronization discussion, overall conclusion of the 
research project and recommendations for further work. 
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