
 
 

UNIVERSITI PUTRA MALAYSIA 

 
 
 
 
 
 
 
 
 
 
 

ALIF SYAMIM SYAZWAN BIN RAMLI 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FK 2015 9 

MATHEMATICAL MODELLING OF AERODYNAMIC CHARACTERISTICS 
FOR FLAPPING WING ORNITHOPTER 



© C
OPYRIG

HT U
PM 

MATHEMATICAL MODELLING OF AERODYNAMIC CHARACTERISTICS 

FOR FLAPPING WING ORNITHOPTER 

 

 

 

 

 

 

By 

 

ALIF SYAMIM SYAZWAN BIN RAMLI 

 

 

 

 

 

 

 

Thesis Submitted to the School of Graduate Studies, Universiti Putra 
Malaysia, in Fulfilment of the Requirements for the Degree of Master of 

Science 

October 2015 



© C
OPYRIG

HT U
PM

 
 

All material contained within the thesis, including without limitation text, logos, 
icons, photographs and all other artwork, is copyright material of Universiti 
Putra Malaysia unless otherwise stated. Use may be made of any material 
contained within the thesis for non-commercial purposes from the copyright 
holder. Commercial use of material may only be made with the express, prior, 
written permission of Universiti Putra Malaysia.  
 

Copyright © Universiti Putra Malaysia 

 

 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

i 
 

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfilment of the requirement for the degree of Master of Science 

 

MATHEMATICAL MODELLING OF AERODYNAMIC CHARACTERISTICS 
FOR FLAPPING WING ORNITHOPTER 

 

By 

ALIF SYAMIM SYAZWAN BIN RAMLI  

October 2015 

Chair: Prof. Harijono Djojodihardjo, PhD, Ir 
Faculty : Engineering 

Natural cycle and creation has led to some really efficient flying creatures. It is 
important to look at the criteria, characteristic and constraints in order to 
understand how the mechanisms, principles and natural design are 
aerodynamically achieved. The objective of this study is to establish the salient 
features and functional implication from various components characterized from 
the dynamics, kinematics, and aerodynamics of the flying biosystems, and to 
synthesize a simple yet comprehensive workable mathematical aerodynamic 
modelling of flapping wing ornithopter. Considerations are given to the motion of 
a three-dimensional thin rigid wing in flapping and pitching motion with phase lag. 
Fundamental unsteady aerodynamic analytical approach using modified strip 
theory incorporating leading-edge suction and viscous effect is utilized for 
modelling development. The two-dimensional computational fluid dynamic 
simulation procedure is done on heaving thin rigid wing using ANSYS-CFX 
software for validation purpose. For the analytical computation, the first part of 
the study is focused on a bi-wing ornithopter. Parametric study is carried out to 
reveal the flapping bi-wing ornithopter aerodynamic characteristics and for 
comparative analysis with various selected simple models in the literature. 
Further analysis is carried out by differentiating the pitching and flapping motion 
and studying its respective contribution to the flight forces. Similar procedure is 
then applied to flapping quad-wing ornithopter model. The present flapping wing 
aerodynamic model results computed have been validated satisfactorily with 
other relevant comparable studies. The analysis of component-wise contribution 
based on the flapping and pitching motion shows that: (a) The lift is influenced 
mostly by the incidence angle (b) The thrust is influenced mostly by flapping 
motion (c) Phase-lag could be utilized to obtain optimum lift and thrust for each 
wing configurations. For the quad-wing ornithopter at the present stage, the 
simplified computational model adopted has verified the gain in force obtained as 
compared to bi-wing flapping ornithopter. All these results which have been 
satisfactorily validated lend support to the generic modelling development 
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adopted for the synthesis of flight model. It is also capable to reveal basic 
characteristics of flapping wing ornithopter that is useful for optimization of 
geometry, kinematics and aerodynamics design of flapping wing mechanization. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Master Sains 

 

MODEL MATEMATIK SIFAT-SIFAT AERODINAMIK ORNITOPTER 
BERKIBAS 

 

Oleh 

ALIF SYAMIM SYAZWAN BIN RAMLI 

Oktober 2015 

Pengerusi: Prof. Harijono Djojodihardjo, PhD, Ir 
Fakulti : Kejuruteraan 

Kitaran semulajadi dan penciptaan membawa pada satu ciptaan terbang yang 
efektif. Adalah penting untuk melihat pada kriteria, sifat dan halangan dalam 
memahami bagaimana mekanisma, prinsip dan rekabentuk semulajadi dicapai 
secara aerodinamiknya. Objektif kajian ini adalah untuk memastikan ciri-ciri serta 
fungsi yang penting melalui kepelbagaian komponen dari aspek dinamik, 
kinematik, dan aerodinamik biosistem berkibas, dan memsintesis model 
matematik aerodinamik ornitopter berkibas yang berfungsi dan menyeluruh. 
Pertimbangan diberi pada gerakan sayap tegar dan nipis tiga dimensi dalam 
gerakan mengibas bersudut dengan fasa tertentu. Pendekatan asas aerodinamik 
tak mantap menggunakan teori belahan menggabungkan kesan likat dan 
sedutan pada bahagian hujung hadapan aerofoil digunakan sebagai model. 
Prosedur simulasi dinamik bendalir dua dimensi dijalankan pada sayap tegar dan 
nipis yang berkibas, menggunakan perisian ANSYS-CFX untuk tujuan 
pengesahan. Untuk pengiraan analisis, bahagian pertama difokuskan kepada 
pesawat berkibas bersayap dua. Kajian parametrik dijalankan untuk 
mendedahkan sifat aerodinamik pesawat berkibas bersayap dua dan juga untuk 
tujuan analisis perbandingan dengan pelbagai model ringkas yang terpilih dalam 
kajian-kajian sedia ada. Analisis seterusnya dijalankan dengan mengasingkan 
gerakan mengibas bersudut mengikut komponen dan mengkaji kesan masing-
masing secara tunggal pada daya penerbangan. Prosedur yang sama 
kemudiannya digunakan pada model pesawat berkibas bersayap empat. Hasil 
model telah disahkan sewajarnya dengan kajian-kajian lain yang relevan. 
Analisis sumbangan komponen melalui pergerakan mengibas bersudut 
menunjukkan: (a) daya angkatan dipengaruhi oleh pergerakan mengibas (b) 
daya tujahan dipengaruhi oleh sudut insiden (c) perbezaan fasa boleh digunakan 
untuk mendapatkan daya angkatan dan tujahan yang optimum bagi setiap 
konfigurasi sayap. Untuk ornitopter bersayap empat, ketika ini, model ringkas 
tersebut menunjukkan peningkatan daya terhasil berbanding yang bersayap dua. 
Hasil terbukti yang diperoleh mampu memberi sumbangan kepada 
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perkembangan model umum yang digunakan untuk penghasilan model 
penerbangan. Ianya juga mampu untuk mendedahkan ciri-ciri asas penerbangan 
berkibas ornithopter yang berguna bagi tujuan pengoptimuman rekabentuk 
geometri, kinematik dan aerodinamik pada mekanisasi sayap berkibas. 
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CHAPTER 1 

 

INTRODUCTION 

 

It is very interesting to observe anthropogenic system that has been developed 
from simplest to most sophisticated one, for example, the simplest are toys, but 
that actually triggered author’s attention which leads to that present work. Also, 
it is observed that mankind has been able to produce new creations emulated 
based on nature, like aircraft and glider to serve mankind’s missions effectively. 
Based on these remarks, the present work is devoted to flapping wing 
ornithopter based on simple principles that is feasible to build. 
 
1.1  Background 
 
The desire of human to physically learn from flying biosystems or animals such 
as insects and birds by mimicking them, has been initiated since hundreds of 
years back then and enthused creativity of mankind, from inventors like 
Leonardo Da Vinci and his flying machine to present modern aircraft 
technology. Nowadays, a research of flapping flight focuses on autonomous 
unmanned or ornithopter, which requires synthesis of many generic 
engineering practices incorporating flapping wing aerodynamics, fluid-structure 
aeroelastic interaction and dynamics of flapping wings. Small reconnaissance 
ornithopter like micro air vehicle (MAV) are of great interest for their 
multipurpose flying capabilities, such as flying and hovering indoor as well as 
outdoor for reconnaissance, and agility to move in confined spaces at low 
speeds, as well as for disaster monitoring. For this kind of flight envelope, small 
ornithopter seems to be an optimal mode of flying. Additionally, flapping wing 
ornithopter can be considered to be an effective and environmentally friendly 
flight vehicle that mimics natural flyers through synthesizing various 
technologies.  
 
A comprehensive foundation of force generation in flapping flight is 
synthesized, even though it is rather limited, for defined knowledge of unsteady 
forces production by wings is not well-understood yet. Data are specifically 
lacking in the very low Reynolds number regime -around 10 to 1000- which fits 
the small insects’ flight. Also, animals’ flight is one of the most complicated 
activities found in nature and covers a large diversity of categories with all 
unified in one sophisticated system. The biological and physical elements like 
physiology, morphology, ecology, and wing role must be acknowledged in order 
to understand how the mechanism of real flying animals schemes (Pennycuick, 
1990; Rayner, 1993; Dudley, 1999; Lindhe Norberg, 2002). Insect wings are 
very flexible morphologically, compared with the flying vertebrate groups which 
follow more conservative fashion. Thus, better understanding on the evolution 
and adaptation of a structure through combination of physical laws and 
appearances and behaviour in animals is very essential in order to make a best 
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judgement in selecting optimal structure and form of the flight apparatus to 
achieve optimized flight locomotion and minimize cost of flight. An overview for 
establishing an insight for development of flapping ornithopter has been done 
based on some selected relevant characteristics from flapping biosystems 
(shown in Table 1.1), where each reveals their different individual flight features 
and capabilities.  
 
As demonstrated by flying biological organisms, the motion of pitching and 
flapping in flight of flapping wing offers potential aerodynamic advantages that 
are only viable through such kinematic, compared with conventional fixed-wing. 
Taking advantages of these two benefits, for example, can increase the 
efficiency of flapping flight; (1) The angle of attack for flapping wing can be set 
to zero during the upstroke theoretically, so that it can pass simply through the 
air for better flight performance, and (2) usually, since the flapping wings 
generate both lift and thrust, the structures induced by drag are lessened. Plus, 
it has been suggested by Mueller and DeLaurier (2001) that these advantages 
are even greater with smaller size and lower flight speed. 
 
Biosystem’s flapping flights are also characterized by relatively low Reynolds 
number, flexible wing, highly unsteady flow, laminar separation bubble, non-
symmetrical upstroke and downstroke and for insects, the presence and 
significant role of leading edge vortex, and wake vortices capture and some 
others that seem relevant (Shyy et al, 1999). Complying with various 
characteristics of unsteadiness, appropriate wing shapes and wing kinematics 
of flapping wings can be beneficial in optimizing the generation and 
enhancement of lift and thrust performance. 
 
Table 1.1. Flapping biosystem’s characteristic overview. 

 

Items Insects 
Humming 

Bird 
Bat 

Small 

Birds 
Large Birds 

Flapping 

MAV 

Small 

Low 

Speed 

Airplanes 

1. Types 

Beetles, 
Bumblebees, 

Butterflies, 
Dragonflies 

Amazilia Plecotus 
Auritus 

Sparrows, 
Swifts, 
Robins 

Eagle, 
Hawk, 

Vulture, 
Falcon, Skua 

Gull 

DARPA DRO 
(Ho et al, 

2003) 
Cessna 210 

2. Weight 
Typical (gf)* 

25 × 10-5  - 
12.8 5.1 9.0 35 - 82 952-4300 ≤ 50 1045000 

3. Wing 
Semi-span 

(cm)* 
0.062 – 7.7 5.9 11.5 20 - 48 58-102 < 7.5 5600 

4. Wing-
Loading 
(g/cm2) 

10-3 – 10-1 0.4 0.072 0.029-
0.152 0.35 – 0.67 10-2 - 1 11.18 

5. Typical 
Power (gf 

cm sec-1 per 
gf) 

5.3 - 238 130 83 93 - 110 42 - 57 39 1.3×104 

6. Dominant 
Wing 

Movement 
Hover Hover and 

Fly Fly Fly Fly Hover and Fly Fly 

7. Flight 
Speed (m/s) 1.05 - 9 15 10 – 14 6 - 10 10 - 20 3-10 

99m/s 
(cruise at 
6100 m 
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altitude) 

8. Reynolds 
No. 10-1000 7500 14000 103 

– 104 104 - 105 104 - 105 10,000,000 

9. Leading 
Edge 

Vortex/LEV 

LEV by swept 
wing at Re = 

5 × 103 
yes Yes yes yes yes no 

10. Entering 
its own 

TEV/ Wake 
Capture 

yes yes No no no no no 

11. Laminar 
Separation 
Bubble/LSB 

yes yes Yes yes yes yes no 

12. Leading 
Edge Flap - - 

Has been 
observed 
on bats 

- 

e.g. Mallard,  
at Re = 6 × 104 

(Jones et al, 
2008) 

 

- - 

13. Self-
activated 

flaps at TE 
    

e.g. Skua Gull 

 

  

 

*Power functions of wing dimensions and flight parameters against body mass, m, following Shyy 
(1999) and Norberg (1970). The exponent of correlation is for (Mass)exponent 
(Source: Djojodihardjo et al, 2012, 2014) 
 
 
1.2  Problem Statement/Formulation 
 
“Nature is the great master teacher,” in year 1966, Heinrich Hertel had written 
the phrase in his book of Structure-Form-Movement, illustrating the relation 
between biology and technology. It is essential to study the criteria, 
characteristic and constraints in order to comprehend how the mechanisms, 
principles and natural design are aerodynamically achieved in terms of 
technological applications. The nature and engineering structures usually 
display the same mechanical laws, such as for strength, stability, and high 
performance. For example, there may be the idea that flapping wing propulsion 
is more effective than propellers, since birds have gone through millions of 
years for adaptation to the surrounding and they use flapping mechanism, not 
propellers. Principally, ideal ornithopter mechanization has not yet been 
achieved due to the complex kinematical and aerodynamical characteristics of 
insects and birds, and there are many things that still need to be well-
understood before integrating it within the system. For example, the way of 
flight widely differs for each flying creatures in achieving successful flight, even 
among animals that are operational within the same range of Reynolds number 
(Mueller, 2001). 
 
In an attempt to serve the purpose of mechanization simplification for 
aerodynamic performance measure, aerodynamic modelling is introduced to 
provide a mathematical scheme that resembles biosystem characteristics and 
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mechanics to describe the aerodynamic physics, without oversimplification 
and/or complexity of computation. The progression of aerodynamic modelling is 
derived from first principles, with introduction of simplifications to the 
fundamental equations on fluid mechanics reasoned by the relevant 
aerodynamics, geometric and kinematic considerations (Ansari, 2006). 
 
There are several computational modellings that were developed to represent 
the aerodynamics of flapping wing such as strip theory, panel method, vortex 
lattice method and so on. Since the major emphasis is on simplicity, the chosen 
approach should offer relatively fast and least effort in computation with 
conveniences of any correction introduction, yet sufficiently accurate and 
reliable in assessing and providing desired aerodynamic performance (Weis-
Fogh, 1973). 
 
Strip theory is inspired from blade element theory which is known to be used in 
solving rotary wing problems. The theory has been utilized for flapping wing 
analysis by DeLaurier (1993), and also introduced by Shyy (2008), Azuma 
(2006) in their works. It is a simple tool that can provide adequate results 
without the complexity of computational methods (Harmon, 2008). In addition to 
its simplicity, strip theory presents the advantage of easily allowing for 
corrections, including semi-empirical stall models (Leishmann & Beddoes, 
1989), and steady viscous drag (Murua et al, 2012). It is also very effective and 
applicable in designing and predicting the performance of flapping wing 
mechanization (Kim et al, 2008).  
 
Motivated by aforementioned observations and overviews, the hypotheses of 
present study are as stated below; 
 

i. Flapping biosystem can be modelled by simple pitching and flapping 
ornithopter. 

ii. An optimum configuration which at least can represent the flapping 
biosystem, can be formulated by using parametric study. 

iii. By utilizing parametric study and comprehensive assessment into the 
flapping mechanism, a better but simple system can be formulated, that 
will be unique as an entity. 

 
Following the hypotheses, the research questions are addressed; 
 

i. What is the important parameter in flapping system?  
ii. Which one can be selected to represent a workable or viable model?  
iii. What are the influences of each parameter on the performance?  
iv. What is the synthesized flapping system configuration as the result of the 

present study? 
 
With these hypotheses and research questions, the present work focuses on 
developing a physically and biologically based mathematical model to 
represent flapping wing biosystem that can easily be built into flapping wing 
ornithopter. 
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1.3  Objective 
 
The primary objectives of the present work are to:  
 

i. establish relevant parameters as related to physical conditions and 
producing desired characteristics of flapping wing biosystem. 

ii. find the relationship between the relevant operating variables and design 
parameters of the conceived models. 

iii. propose a physio-mathematical model which is modified strip theory that 
has been verified to give desired aerodynamic performance and can be 
easily built for flapping wing ornithopter. 

 
 
1.4.  Scope and Limitations 
 
The present work is devoted to inviscid aerodynamic first order analysis but 
taken into account for viscous effect and higher order effects offered by more 
sophisticated approaches. Computational fluid dynamics (CFD) will be utilized 
for simulation and validation purposes. The CFD analysis is beyond the scope 
of the study. More sophisticated aerodynamic theories and analysis will be the 
subject of future work. CFD simulation results can be utilized for establishing 
insights and validation. 
 
 
1.5  Thesis Outline  
 
As such to convey a comprehensive and clear view throughout the subsequent 
chapters, composing of seven chapters, each chapter is briefly described 
below; 
 
Chapter one offers a background of flapping wing ornithopter through 
observation by learning from nature behaviour. The flying biosystem is explored 
to gain the insight for the characteristics scheme of flapping system. The 
challenges and constraints faced are noticed to be tackled with designated 
analytical approach to solve stated problems and satisfy the objectives of the 
research.  
 
Chapter two provides an overview of avian flight history and their impact in the 
aeronautical field. Variety of ornithopter platforms designs and related 
aerodynamic research are introduced and detailed as summary of previous 
analytical and experimental flight and aerodynamics research. Characteristic of 
biosystem is elaborated to provide an insight for wing configuration 
consideration. 
 
Chapter three reviews a relevant aerodynamic theory used to develop the 
aerodynamic modelling structure, including aerodynamics for fixed wing, strip 
theory, and unsteady aerodynamic mechanisms. Each one is addressed 
accordingly to explain the significance in oscillating (flapping) wing flight 
phenomena for utilization in modeling formulation. 
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Chapter four details a generic aerodynamics of flapping wing theoretical 
development developed using theories and formulations described in previous 
chapter. Approach using modified unsteady aerodynamic strip theory, and 
chosen parameters and formulations are addressed to be calculated and 
analysed with certain kinematics of the wing. Finally, the aerodynamic 
expressions used to calculate forces are presented. 
 
Chapter five demonstrates a basic computational analysis for two-dimensional 
flow visualization that serves for qualitative and quantitative investigation 
purpose. The details of performed analysis are elaborated explicitly with certain 
assigned simplifications. 
 
Chapter six offers a results of the aerodynamic modelling when calculated and 
analyzed with particular specifications and parameters. Comparison of results 
with existing theoretical and experimental results from other works by 
researchers is carried out. Further investigation is then conducted by 
performing parametric study and establishing component-wise contribution of 
generic motion on the lift and thrust forces. The modelling is applied to bi-wing 
and quad-wing configurations. Assessment drawn to check relevant capability 
and reasons for argument are presented. 
 
Chapter seven delivers a thesis summary and present general research 
conclusions with recommendations for more detailed and advanced, future 
work in the field. 
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