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Basal stem rot (BSR) is a fatal fungal (Ganoderma) disease in oil palm 

plantations which has a significant impact on palm oil production in 

Malaysia. Since there is no effective treatment to control this disease, 

early detection of BSR is vital for sustainable disease management. 

Current method of detection includes periodic visual inspection based 

on the symptoms of the disease which often shows up at the later stage 

of the disease infection and consequent laboratory analysis for 

confirmation. The limitations of current detection technique have led to 

an interest in developing alternative field-based methods that can be 

used for rapid diagnosis of this disease. 
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The ultimate goal of this study was to develop an appropriate 

spectroscopic technique that can be used for an early and accurate 

detection and differentiation of Ganoderma disease with different 

severities. The short term goal was to evaluate the possibility of using 

visible (VIS) and near-infrared (NIR), and mid-infrared (MIR) 

spectroscopy as possible techniques for the above mentioned ultimate 

goal. Reflectance spectroscopy analysis ranging from visible to near-

infrared region (325-1075 nm) and mid-infrared region (2.55-25.05 µm/ 

3921-399 cm-1) was used to analyze oil palm leaf and trunk samples of 

healthy (G0), mildly-infected (G1), moderately-infected (G2) and heavily-

infected (G3) trees in order to detect and quantify Ganoderma disease at 

different infection levels. Reflectance spectra were pre-processed and 

principal component analysis (PCA) was performed to obtain PC scores 

as input features used in different pattern recognition algorithms in 

order to select the best learning model of Ganoderma discrimination. 

Linear discriminant analysis (LDA), quadratic discriminant analysis 

(QDA), k-nearest neighbor (kNN), Naïve-Bayes (NB), artificial neural 

networks (ANNs) and support vector machines (SVMs) classification 

techniques, were tested to classify the leaf and trunk samples into four 

levels of disease severity. The applicability of using band combinations 

extracted from mid-infrared spectroscopy (2.55-25.05 µm) for the 

detection of BSR disease in oil palm leaves was investigated using 
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optimum index factor (OIF) and analysis of variance (ANOVA). The 

results indicated that LDA-based model resulted in high average overall 

classification accuracies of 92% (leaf samples) and 94% (trunk samples) 

when mid-infrared absorbance spectra were analyzed. The analysis of 

VIS-NIR leaf reflectance spectra, in both field and laboratory conditions, 

showed that kNN-based model predicted the disease with high overall 

average classification accuracies of 99% and 90%, respectively. 

Comparing the results achieved from analyzing the reflectance spectra 

(VIS-NIR and MIR) of leaf and trunk samples with SVM and NN 

classifiers demonstrated that mid-infrared absorbance data of trunk 

samples with the average overall classification accuracies of 97% 

(standard deviation = 1%) for SVM and 97% (standard deviation = 3%) 

for NN resulted in better performance in classifying four classes of 

Ganderma infestation. Moreover, among different ratio indices resulted 

from band combinations method, A13.10/A9.90 could differentiate 

between four different classes of healthiness more accurately. Results 

confirmed the usefulness and efficiency of spectra-based classification 

approach for fast screening of BSR. 
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ABSTRAK 

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra 

Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah 

 
 

PENILAIAN SPEKTROSKOPI INFRA-MERAH HAMPIR DAN INFRA-

MERAH PERTENGAHAN UNTUK PENGESANAN AWAL PENYAKIT 

REPUT BATANG DI LADANG KELAPA SAWIT 

Oleh 

SHOHREH LIAGHAT 

Oktober 2013 

 

Pengerusi:  Prof. Shattri Bin Mansor, PhD 

 
Fakulti:  Kejuruteraan 

 

Reput pangkal batang (BSR) ialah sejenis penyakit kulat (Ganoderma) 

dalam perladangan kelapa sawit yang mempunyai kesan ketara 

terhadap pengeluaran minyak sawit di Malaysia. Biarpun tiada rawatan 

berkesan untuk mengawal penyakit ini, pengesanan awal BSR adalah 

mustahak untuk membendung penularan penyakit ini. Kaedah semasa 

pengesanan termasuk pemeriksaan gambaran berkala berdasarkan 

gejala-gejala penyakit itu bagaimanapun kerapkali menunjukkan 

peringkat terkemudian jangkitan penyakit dimana memerlukan analisis 

makmal secara berterusan untuk pengesahannya. Keterbatasan dalam 

kaedah pengesanan semasa telah mewujudkan kecenderungan dalam 
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membangunkan kaedah-kaedah alternatif berasaskan ladang dimana 

boleh digunakan untuk pengesanan secara pantas penyakit ini. 

 

Kemuncak matlamat kajian ini adalah untuk membangunkan satu 

teknik berkesan inframerah dekat dan inframerah pertengahan yang 

boleh digunakan untuk pengesanan awal dan tepat serta dapat 

membezakan penyakit Ganoderma dengan tahap permasalahan yang 

berbeza. Matlamat jangka pendek adalah untuk menilai kemungkinan 

penggunaan spektroskopi infrmerah tampak (VIS), inframerah dekat 

(NIR), dan inframerah tengah (MIR) sebagai suatu teknik yang 

berkemungkinan dalam menepati matlamat akhir yang telah 

disebutkan diatas. Analisis spektroskopi pantulan berjulat daripada 

kawasan tampak kepada rantau inframerah dekat (325-1075 nm) dan 

rantau inframerah tengah (2.55-25.05 µm/ 3921-399 cm-1) digunakan 

untuk menganalisisa daun kelapa sawit dan sampel batang pokok yang 

sihat (G0), sedikit dijangkiti (G1), sederhana dijangkiti (G2) dan teruk 

dijangkiti (G3) daripada pokok-pokok sebagai langkah untuk mengesan 

dan menganggarkan penyakit Ganoderma di setiap peringkat jangkitan 

berbeza. Spektrum pantulan merupakan pemprosesan awal juga 

sebagai komponen analisis utama (PCA) telah dilaksanakan untuk 

memperolehi kiraan PC sebagai nilai ciri-ciri kemasukan yang 

digunakan dalam algoritma pengenalpastian sebagai syarat untuk 
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memilih model pembelajaran terbaik dalam mendiskriminasikan 

Ganoderma. Analisis diskriminasi linear (LDA), analisis diskriminasi 

kuadratik (QDA), jiran terdekat k (kNN), Naïve-Bayes (NB), jaringan 

saraf tiruan (ANNs) dan teknik pengkelasan mesin sokongan vektor 

(SVMs), telah diuji terhadap lebih daripada ratusan daun dan  sampel 

batang pokok untuk mengkelaskan ia kepada empat peringkat 

kemudaratan penyakit. Kebolehgunaan dalam menggunakan jalur 

gabungan yang diambil dari spektroskopi inframerah tengah (2.55-

25.05 µm) untuk pengesanan penyakit BSR dalam daun-daun sawit 

telah dikaji menggunakan faktor indeks optimum (OIF) dan analisis 

varians (ANOVA). Keputusan menunjukkan bahawa model berasaskan 

LDA berhasil di dalam klasifikasi keseluruhan tinggi purata 

berketepatan 92% (sampel daun) dan 94% (sampel batang pokok) 

apabila serapan inframerah tengah dianalisis. Analisis spektrum 

pantulan daun VIS-NIR, dalam kedua-dua ladang dan makmal, 

menunjukkan bahawa model berasaskan kNN meramalkan penyakit itu 

dengan pengelasan sederhana tinggi keseluruhan yang berketepatan 

99% dan 90%, masing-masing.  Dengan membandingkan keputusan 

yang diperolehi daripada penganalisaan spektrum pantulan (VIS-NIR 

and MIR) sampel daun dan batang pokok menggunakan pengkelas SVM 

and NN telah menunjukkan bahawa data serapan inframerah tengah 

sampel batang pokok dengan klasifikasi keseluruhan berketepatan 97% 
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(sisihan piawai = 1%) untuk SVM dan 97% (sisihan piawai = 3%) untuk 

NN menghasilkan keadaan lebih baik dalam mengklasifikasikan empat 

kelas wabak Ganderma. Tambahan pula, diantara nisbah indeks 

berbeza yang terhasil dari gabungan kaedah jalur, A13.10 / A9.90 

dapat membezakan diantara empat kelas kesihatan dengan lebih tepat. 

Keputusan-keputusan yang diperolehi telah mengesahkan kegunaan 

dan kesesuaian pengelasan berasaskan spektrum sebagai pendekatan 

kepada pemeriksaan pantas BSR. 
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1 

CHAPTER 1 

1 INTRODUCTION 

 

Malaysia, with more than five million hectares of land under oil palm 

cultivation, produces up to 18 million tons of palm oil each year. Palm 

oil is the world’s most widely used vegetable oil. About 12% and 27% of 

the world's total productions and exports of oils and fats is provided 

through Malaysian palm oil industry. Malaysia is considered as the 

world second largest grower of oil palm by producing about 40% of the 

world’s palm oil and considered as the number one exporter of palm oil 

by exporting more than 50% of their palm oil. Recently there is an 

increasing interest in producing bio-diesel from palm oil as a source of 

renewable energy (Shuit et al., 2009; Sumathi et al., 2008). Over the 

past few years, there has been a stagnation in palm oil production for 

Malaysia due to various factors (FAPRI, 2010) such as disease and 

concern over healthiness of palm oil in daily diets. Basal stem rot (BSR) 

or Ganoderma fungal infection caused by Ganoderma boninense is 

serious disease in oil palm plantations that makes irreparable damage 

to palm oil industry in Malaysia each year with yield losses up to 80% in 

the infected area. This disease also is one of the major causes for 

increasing the use of chemicals and consequently production costs. 
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Ganoderma is known as the most destructive disease of oil palm 

plantations in Southeast Asia especially in Malaysia and North Sumatra 

(Flood et al., 2000). 

 

Ganoderma can affect the trunk xylem tissue by producing enzymes to 

degrade lignin into carbon dioxide (CO2) and water which are consumed 

by the fungus (Paterson et al., 2000). Lignin is a water impermeable seal 

across cell walls, and acts as a wall against microbial attack. Lignin 

strengthens the xylem tissues of plants (Paterson, 2007). As the fungal 

activity affects the vascular circulation, it restricts the nutrient and 

water consumption resulting in appearance of specific foliar symptoms 

(Figure 1.1a-d) such as one sided yellowing or mottling of the lower 

fronds followed by necrosis, shorter leaves and unopened spears, pale 

appearance with retarded growth, small canopy and skirt-like shape of 

crown (due to leaves declination) as well as reducing the oil palm 

production (Paterson, 2007). This disease can significantly reduce the 

leaf stomatal conductance, transpiration rate, intercellular CO2 

concentration and chlorophyll content that affect photosynthesis (Haniff 

et al., 2005). Ganoderma has great economic impact on palm oil 

industries (Sumathi et al., 2008) especially in Malaysia, with millions of 

hectares of oil palm cultivation (Shuit et al., 2009). This disease can 

infect oil palm trees in all growth stages, although the incidence of this 
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disease increases with the tree age and usually does not affect young 

trees (Ariffin et al., 2000). The spores that grow in non-living tissues 

such as oil palm residues (Khalid et al., 2000) probably spread root to 

root (Sanderson, 2005) or by wind when airborne spores can enter trees 

through wounds caused by shedding of branches, etc. (Paterson et al., 

2000). Once infected, light-brown lesion filled in with swollen hyphal 

cells and cavities will appear and consecutively oil palm trees develop 

typical symptoms. With disease progressing, trunk will become hollow 

and in advanced cases, the infected tree may collapse (Paterson, 2007). 

Usually, the foliar symptoms will appear in advanced stages of infection. 

It is reported that at least one-half of the basal stem tissue has been 

killed by fungus when the foliar symptoms appeared (Paterson, 2007; 

Idris et al., 2000). Young palms usually die within 6-24 months of the 

first symptoms but mature palms can survive a little bit longer (2-3 

years) (Paterson, 2007). 

 

Different methods have been used to control Ganoderma infection such 

as fungicide treatment (George et al., 1996; Sheephard et al., 1986), 

biological control (Zaiton et al., 2006; Wijeskera et al., 1996), removal of 

infected palms and soil mounding, or combination of these methods 

(Ariffin and Idris, 2002). Unfortunately, in advanced infections, none of 
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these methods are entirely satisfactory in reducing the disease effects 

on the yield (Singh, 1990). 

 

Currently, the most commonly used method for detection of infected 

trees is visually finding Ganoderma specific symptoms such as foliar 

symptoms and fungus fruiting bodies (Basidiomycota mushroom) on the 

infected trunks or primary roots near soil level by the scouting crew 

(Figure 1.1e). Following the identification, the infected trunk samples 

are extracted by drilling for the isolation, growth and identification of 

the fungus in the laboratory (Lim and Fong, 2005) and polymerase 

chain reaction (PCR) analysis is performed to confirm the presence of 

fungus. Such diagnostics process is often difficult and expensive 

(As’wad et al., 2011; Lelong et al., 2010; Idris et al., 2003). Now 

Ganoderma disease is mostly managed by applying fungicides (George et 

al., 1996) and biological agents (Sapak et al., 2008; Azevedo et al., 2000) 

but removing the infected trees is the only effective way to prevent the 

spread of this disease (Ariffin and Idris, 2002). 
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Figure 1.1: Ganoderma specific symptoms on oil palm trees in 

Banting, Selangor, Malaysia: (a) healthy tree (b) and (c) infected 
trees with retarded growth and skirt-like shape of the crown (d) 

yellowing and necrosis leaves (e) fungus fruiting bodies 

(Basidiomycota mushroom) on the infected trunk. 
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One of the major challenges in identifying foliar symptoms of 

Ganoderma disease is that the symptoms appear only in the advanced 

stages of the infection. Thus, there is a need for an efficient sensing 

technique for early detection of Ganoderma in oil palm plantations. 

Some works done using different techniques for early detection of 

Ganoderma but the results were not quite satisfactory. For example 

classification algorithms applied by Shafri et al. (2011) and Lelong et al. 

(2010) were able to identify only the severely infected samples with 

acceptable accuracy using visible and near-infrared (VIS-NIR) spectral 

data. Moreover, the significant bands selected from VIS-NIR spectral 

data of healthy and Ganoderma-infected palms by Shafri et al. (2009) 

and Shafri and Anuar (2008), were not be able to discriminant between 

healthy and mildly-infected leaf samples with high efficiency. Also, the 

airborne hyperspectral imagery used by Shafri and Ezzat (2009), Shafri 

and Hamdan (2009) and Shafri et al. (2012) to detect BSR disease, was 

costly technique which resulted in moderate classification accuracy. 

 

Results demonstrated that despite great efforts, BSR early detection is 

still quite challenging. The current detecting method of this disease is 

time consuming and labor intensive. Application of spectroscopic 

technique along with development of robust statistical models of 

discrimination could provide more efficient and timely management of 
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the disease. This work evaluates the applicability of spectroscopic 

technique for BSR detection in oil palm. The long term goal of this study 

was to develop a cost effective method for detecting Ganoderma disease. 

The short term goal was to develop a NIR and MIR technique for 

detecting Ganoderma disease at early symptomless stage and find the 

best classification algorithm to classify the infected trees from healthy 

trees. 

 

The research problem of this study was to seek a sensing technique for 

early detection of basal stem rot (BSR) in oil palm plantations caused by 

the fatal fungal (Ganoderma) disease. The hypothesis was, if 

spectroscopic technique can be used at BSR asymptomatic stage then 

great losses in palm oil production and high use of fungicide chemicals 

can be prevented. 

 

Objectives: 

The general objective of this research was to detect Ganoderma at early 

asymptomatic stages. Thus, with special focus on early detection of oil 

palm Ganoderma disease, the specific objectives were: 
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1. To explore the applicability of middle infrared spectroscopy for 

early detection of Ganederma infected oil palm trees and to 

discover the limit of disease detection by conducting tests at 

different stages of disease infection. 

 

2. To study the potential application of visible and near-infrared 

reflectance spectral data for early detection of Ganoderma infected 

trees at different levels of severity under laboratory and field 

conditions. 

 

3. To evaluate the accuracy of six different discrimination models 

(LDA, QDA, kNN, NB, SVM and ANN) for detecting oil palm 

Ganoderma infected trees at different stages of infection and 

selecting the best model. 
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