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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 

fulfillment of the requirement for the degree of Doctor of Philosophy 

 

SYNTHESIS OF EPICHLOROHYDRIN FROM 

GLYCEROL 

 

By 

HERLIATI 

 

May 2013 

 

 

Chair : Professor Robiah Yunus, PhD 

Faculty:      Engineering 

 

Glycerol is the main byproduct of the biodiesel production. Recently, the market has 

been flooded by the crude natural glycerol due to the rapid growth in biodiesel 

industry. Since this crude glycerol has a very low value because of its impurities, the 

development of new technology to convert glycerol to more valuable chemicals is 

become an interesting study. Among the various possibilities, a technology to 

convert glycerol to epichlorohydrin has caught our attention. Epichlorohydrin 

(EPCH), an important raw material for the production of epoxide resins was 

successfully synthesized via two-stage process. The first stage is hydrochlorination 

reaction of glycerol with aqueous hydrogen chloride as a chlorination agent to 
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produce 1,3-dichloropropanol (1,3-DCP) in the presence of carboxylic acid as the 

catalyst.  The next stage is dehydrochlorination reaction where 1,3-DCP produced 

from the previous reaction was reacted with sodium hydroxide (NaOH) to form 

EPCH without the presence of any catalyst. This study includes both simulation and 

experimental works. 

 

Process simulation is crucial in many chemical process development studies to 

facilitate the analysis, and optimization of technical processes.  It allows the designer 

to test the performance of process under different conditions and provide feedback 

quickly.  In this study, process simulations were conducted prior the experimental 

study on both the 1,3-dichloropropanol preparation, and the epichlorohydrin 

preparation using the ASPEN Plus
TM

 simulation software.  The synthesis of 1,3-

dichloropropanol occurred through hydrochlorination process, was modeled and 

simulated using RBatch block which is suitable for a semi-batch reactor process (SBSTR).  

The simulation was conducted at different temperatures (80 to 120
o
C); different 

molar ratio and different concentration carboxylic acid catalyst at atmospheric 

pressure. The optimum temperature, optimum molar ratio glycerol:HCl, and 

optimum concentration of the catalyst were found at 110
o
C, 1:16, and 8 percent by 

mol of glycerol fed respectively. Subsequently, the synthesis of epichlorohydrin took 

place via dehydrochlorination reaction was simulated using the reactor block RBatch at 

different temperatures (20 to 60 
o
C) and atmospheric pressure without presence of 

catalyst. The optimum temperature and optimum molar ratio 1,3-DCP:NaOH were 

found 60
o
C (333 K) and stoichiometric respectively. The results from simulation 

studies shed insights of the performances of these reactions in terms of conversion, 
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selectivity and yield.  The results from these simulations were used to minimize the 

experimental and scale-up efforts and enable the process optimization to be 

conducted in wider range of conditions which might not be possible by the 

experimental study.   

 

Experimental study on hydrochlorination reaction was carried out under operating 

temperatures ranged from 80 to 120
o
C and atmospheric pressure, reactant molar ratio 

from 1:16 to 1:32, and different types of carboxylic acid catalyst. The amount of 

catalyst required was 8 percent by mol of the total mol of glycerol intake. The 

optimal reaction conditions were: temperature, 110
o
C; reactant molar ratio glycerol 

to HCl, 1:24; catalyst, malonic acid; duration, 3 hours.  Quantitative analyses of the 

reaction products were performed using GC-MS.  

  

Furthermore, experimental studies on dehydrochlorination reaction were carried out 

under temperatures (50 to 80
o
C) and reactant molar ratios (1:1 to 1:9).  Basic 

solution of NaOH was added in the reactor, followed by 1,3-DCP as soon as the 

reaction temperature was reached. The optimal reaction conditions were: 

temperature, 70
o
C; reactant molar ratio 1,3-DCP to NaOH, 1:5; duration at 3 

minutes. Analysis of the reaction products was also performed using GC-MS.  

 

The kinetics study on dehydrochlorination of dichloropropanol and sodium 

hydroxide to epichlorohydrin was investigated. The effect of temperatures (50 to 

80
o
C) at different times on such reaction was observed. The reaction rate was found 

to be pseudo first order with respect to dichloropropanol concentration. The reaction 
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rate constants at these temperatures were 0.0056; 0.008; 0.012; and 0.021 

respectively.  Subsequently, the activation energy was determined at 38.85 kJ/mol and 

the pre-exponential factor A was 1.62 x 10
4
 sec

-1
.   In the presence of excess water 

and at temperature above 70
o
C, epichlorohydrin can be easily converted to glycerol 

thus lower the yield of epichlorohydrin. Therefore, not only choosing the optimal 

operating conditions but maintaining low amount of water and short contact time are 

important factors in the design of the reactor for epichlorohydrin of DCP.   
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Oleh 

 

HERLIATI 

 

May 2013 

 

Pengerusi: Profesor RobiahYunus, PhD 

Fakulti: Kejuruteraan 

 

Gliserol merupakan hasil sampingan utama di dalam pengeluaran biodiesel. Sejak 

kebelakangan ini, gliserol mentah semula jadi telah didapati membanjiri pasaran 

berikutan pertumbuhan pesat industri biodiesel. Gliserol mentah ini mempunyai 

nilai yang sangat rendah disebabkan faktor ketidaktulenan, maka pembangunan 

teknologi baru untuk menukar gliserol kepada bahan kimia yang lebih bernilai 

adalah satu kajian yang menarik. Di antara pelbagai kemungkinan, teknologi 

untuk menukar gliserol kepada epiklorohidrin telah menarik perhatian untuk  

kajian ini. Epiklorohidrin (EPCH) yang merupakan salah satu bahan mentah yang 

penting untuk pengeluaran resin epoksida telah berjaya dihasilkan melalui dua 

peringkat proses. Peringkat pertama adalah tindak balas penghidroklorinan 

gliserol bersama larutan berair hidrogen klorida sebagai agen pengklorinan untuk 

menghasilkan 1,3-dikloropropanol (1,3-DCP) dengan asid karboksilik sebagai 

pemangkin. Peringkat seterusnya adalah reaksi penyahhidroklorinan di mana 1,3-
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DCP yang dihasilkan daripada tindak balas sebelumnya ditindak balas dengan 

natrium hidroksida (NaOH) untuk membentuk EPCH tanpa menggunakan 

pemangkin. Kajian ini melibatkan kedua-dua kerja simulasi dan eksperimen. 

 

Simulasi proses adalah penting dalam kajian-kajian pembangunan proses kimia 

bagi tujuan memudahkan analisis dan pengoptimuman proses-proses teknikal. Ia 

membolehkan pereka untuk menguji prestasi proses di bawah keadaan yang 

berbeza dan mampu memberi maklum balas dengan cepat. Dalam kajian ini, 

simulasi proses menggunakan perisian Aspen Plus
TM

telah dijalankan terlebih 

dahulu sebelum kajian eksperimen untuk penyediaan 1,3-dikloropropanol 

danepiklorohidrin dilakukan. Sintesis 1,3-dikloropropanol yang berlaku melalui 

proses penghidroklorinan, telah dimodel dan disimulasikan dengan menggunakan 

blok RBatch yang sesuai untuk proses reaktor separa kelompok 

(SBSTR).Simulasi telah dijalankan untuk suhu yang berbeza (80°C hingga 

120°C); nisbah molar yang berbeza dan kepekatan pemangkin asid karboksilik 

yang berbeza pada tekanan atmosfera. Nilai optimum untuk suhu, nisbah molar 

gliserol:HCl, dan kepekatan pemangkin ditemui masing-masing pada 110°C, 1:16, 

dan 8 peratus mol nilai suapan gliserol. Selepas itu, sintesis epiklorohidrin melalui 

tindak balas penyahhidroklorinan pula disimulasi dengan menggunakan blok 

reaktor RBatch pada suhu yang berbeza (20 – 60
o
C) dalam tekanan atmosfera 

tanpa kehadiran pemangkin. Suhu dan nisbah molar 1,3-DCP: NaOH yang 

optimum ditentukan masing-masing pada 60°C  (333 K) dan stoikiometri. 

Keputusan daripada kajian-kajian simulasi ini telah memberikan maklumat 

tentang pencapaian tindak balas-tindak balas ini dari segi pemilihan, penukaran, 
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dan penghasilan. Keputusan-keputusan yang diperoleh dari simulasi ini telah 

digunakan untuk meminimumkan usaha eksperimen dan skala naik serta 

membolehkan pengoptimuman proses dijalankan dalam pelbagai keadaan yang 

tidak boleh dilakukan melalui kajian eksperimen. 

 

Kajian eksperimen bagi tindak balas penghidroklorinan telah dijalankan pada julat 

suhu operasi dari 80°C hingga 120°C pada tekanan atmosfera, nisbah molar bahan 

tindak balas dari 1:16 hingga 1:32, dan beberapa jenis pemangkin asid 

karboksilik. Jumlah mangkin yang diperlukan adalah 8 peratus mol dari jumlah 

mol suapan gliserol. Keadaan tindak balas yang optimum adalah: suhu 110°C, 

nisbah molar gliserol kepada HCl 1:24; pemangkin asid malonik; tempoh 3 jam. 

Analisa kuantitatif bagi produk tindak balas telah dilakukan dengan menggunakan 

GC-MS. 

 

Selanjutnya, kajian eksperimen untuk tindak balas penyahhidroklorinan telah 

dijalankan pada suhu (50°C hingga 80°C) dan nisbah molar bahan tindak balas 

(1:1 hingga 1:9). Larutan NaOH dimasukkan dalam reaktor, diikuti oleh 1,3-DCP 

sebaik sahaja suhu tindak balas dicapai. Keadaan tindak balas yang optimum 

adalah: suhu 70°C; nisbah molar bahan tindak balas 1,3-DCP NaOH, 1:6; tempoh 

3 minit. Analisa produk tindak balas juga dilakukan dengan GC-MS.  

 

Kajian kinetik tindak balas bagi proses penyahklorinan dikloropropanol dan 

natrium hidroksida kepada epiklorohidrin telah disiasat. Kesan suhu (50°C hingga 
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80°C) pada tempoh yang berbeza untuk tindak balas itu telah diperhatikan. Kadar 

tindakbalas didapati mematuhi tertib pseudo-pertama berdasarkan kepekatan 

dikloropropanol. Pemalar kadar tindak balas pada suhu ini adalah masing-masing 

0.0056; 0.008; 0.012 dan 0.021. Kemudian, tenaga pengaktifan telah ditentukan 

pada 38.85 kJ/mol dan faktor pra-eksponen A adalah 1,62 x 10
7
 saat

-1
. Dalam 

kehadiran air yang berlebihan pada suhu di atas 70°C, epiklorohidrin boleh 

bertukar kepada gliserol dengan mudah, justeru mengurangkan penghasilan 

epiklorohidrin. Oleh itu, faktor penting dalam reka bentuk reaktor untuk sintesis 

epiklorohidrin daripada DCP tidak sahaja terhad kepada keadaan operasi yang 

optimum,bahkan adalah penting juga untuk mengekalkan jumlah air yang rendah 

dan masa sentuhan yang pendek. 
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CHAPTER 1 

INTRODUCTION 

1.1. Background 

 

Epichlorohydrin (EPCH) is an important raw material for making epoxide resins.  

Approximately 76% of the world’s consumption of EPCH is used to make epoxy resins, in 

the form of synthetic elastomer.  Epoxide resins have a large number of applications 

in the car, housing, boating and leisure industries.  Other applications of 

epichlorohydrin include sizing agents for paper-making industry, textile, ion 

exchange resin, water treatment chemicals, polyols, a variety of glycidyl derivatives, 

and more (Solvay C. , 2003; Dow, 2007).  

 

Today, biodiesel as an alternative, environmentally friendly, and renewable energy 

has been produced on a large scale (Azhari, 2010) However one of the main 

problems in the production of biodiesel is the formation of significantly high amount 

of glycerol (10 wt %) as a by-product (Michael, Andrew, Winnie, & Thomas, 2006) 

As the production of biodiesel increases, the quantity of crude glycerol generated 

will also be considerable, and its utilization will become an urgent topic. According 

to (Zheng, Xiaoloong, & Yinchu, 2008), glycerol markets have reacted strongly to 

the increasing availability of glycerol. Although the global production of biodiesel is 

still very limited, the market price of glycerol has dropped rapidly. If the production 

of biodiesel increases as predicted, as a rough rule of thumb for every 9 kg of 

biodiesel produced, about 1 kg of a crude glycerol byproduct will also be produced. 

As a consequence, the supply of glycerol will be in excess of demand. These aspects 
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have attracted attention from many researchers to develop alternative routes to utilize 

glycerol in the production of useful intermediates or final products.  

 

Several opportunities for glycerol transformation, as show at Figure 1.1,  have been 

identified since it can readily be oxidized, reduced, halogenated, etherified, and 

esterified to obtain value-added compounds such as dihydroxyacetone, mesoxalic 

acid, 1,3-propanediol, 1,3-dichloropropanol, glyceryl ethers, glycerol carbonate, and 

glyceryl esters (Zheng, Xiaoloong, & Yinchu, 2008). 

 

 

Figure 1.1 Commodity Chemicals from Glycerol (Zheng, Chen, & Shen, 2008) 

Dealing with a strong growing demand for epichlorohydrin which is expected to 

exceed the existing global production capacity by 2013, studies of glycerol 
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halogenation process or glycerol hydrochlorination process to produce 1,3-

dichloropropanol, which is an intermediate in epichlorohydrin synthesis, will be 

imperative .  Based on the estimated production of biodiesel, it appears that bio-

based glycerol conversion to epichlorohydrin offers an alternative route to existing 

process. 

 

Originally, epichlorohydrin was formed by Berthelot in 1854 and by Clarke and 

Hartman (1941), using caustic soda with α,-dichlorohydrin or α,-

dichlorohpropanol.  (α,-DCP) is a product of the reaction between an aqueous 

solution hydrogen chloride and synthetic glycerol, in the presence of acetic acid as a 

catalyst, at temperature ranged from  80 – 100
o
C.  The reaction schemes involved 

can be seen below in Eq. 1.1 and 1.2 : (Clarke & Hartman, 1941) 

 

 

 

Unfortunately, according to Siano  (Siano, et al., 2006), these old processes are 

characterized by considerable drawbacks, such as the following: 

 the loss of catalyst during the reaction due to the relatively low boiling point of 

acetic acid (117 °C); 

HO OH

OH

+ 2HCl RCOOH
Catalyst Cl Cl

OH

+

H2O

+ NaOH ClHO
+ NaCl + H2OCl Cl

OH

+ (1.1) 

(1.2) 
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 the slowing of the reaction caused by the introduction of water in the reaction 

mixture, due to the use of aqueous hydrochloric acid, and the failure to remove 

the water that is formed as a consequence of the reaction itself; 

 and the difficult separation of  α,-dichloropropanol from the reaction mixture. 

These drawbacks, together with the high cost of synthetic glycerol, have prevented 

this process from becoming established.  

 

Although several routes are known for epichlorohydrin manufacture (Nexant, 2006), 

conventional technology is made from propylene and chlorine as primary raw 

materials in a four-step process which comprises of (Bijsterbosch, Das, & Kerkhof, 

1994):  

- Preparation of allyl chloride through chlorination of propene or propylene at a 

high temperature, 500 – 520
o
C. This step results in low selectivity in which 

by-products such as mono- and dichloroprene and mono- and 

dichloropropane are formed.    

- Preparation of dichloropropanols by addition of hypochlorous acid to allyl 

chloride. This step is performed in water at a temperature of 30
o
C. The low 

solubility of allyl chloride in water requires the use of a large amount of 

water and  

- Dehydrochlorination of dichloropropanols with an alkali aqueous solution to 

epichlorohydrin at a temperature 90
o
C. Epichlorohydrin must be immediately 

removed from the solution in order to prevent formation of mono-

chloropropanol and also glycerol. 
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- Preparing HOCl solution which is used in the dichloropropanol synthesis. It 

is prepared by reacting chlorine with calcium hydroxide.  

The reaction equations for the aforementioned synthesis of epichlorohydrin can be 

seen in Eq. 1.3 to 1.5 as below: (Bijsterbosch, Das, & Kerkhof, 1994) 

 

H2C=CH-CH3  +  Cl2  H2C=CH-CH2Cl  +  HCl                                                (1.3) 
Propene                         Allyl Chloride 
 
H2C=CH-CH2Cl  + HOCl   CH2Cl-CHOH-CH2Cl  + CH2OH-CHCl-CH2Cl        (1.4) 
                                                         1,3-Dichlorohydrin          1,2-Dichlorohydrin 
 
CH2Cl-CHOH-CH2Cl  +  1/2Ca(OH)2    CH2Cl-HCO-CH2 + 1/2CaCl2 + H2O   (1.5) 
                                                                    Epichlorohydrin      
 

Basically, those routes are used in very large scale production, but it suffers from 

some undesirable features such as low chlorine atom efficiency. Only one of four 

chlorine atoms employed in the manufacturing of epichlorohydrin by this route is 

retained in the product molecule, the remainder emerged as a by-product hydrogen 

chloride or waste chloride anion. In addition, high unit consumption of energy; high 

unit of waste water; and use of hazardous evaporated chlorine in the process have 

prompted the search for alternative routes that are more efficient and environment-

friendly (Kubicek, Sladek, & Buricova, 2005). The escalating cost of petrochemical 

raw material such as propylene has also contributed to the accelerated search for 

processes that employ less expensive raw material (Bruce M, et al., 2008). 

 

Increase in propylene price in the early 2000s contributed to economically 

unsustainable situation in the production of chlorinated organic. In contrast, at that 

time the price of glycerol, which was produced from epichlorohydrin, was falling 

down.  Solvay, as a manufacturer, therefore halted the production of synthetic 
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glycerol from epichlorohydrin in 2005. Solvay, traditional glycerol and 

epichlorohydrin manufacturer, have been trying to reverse the procedure by 

converting the plant to produce epichlorohydrin from glycerol as shown in Figure 

1.2.  

 

In 2007, Solvay, was the first company to start production of epichlorohydrin from 

glycerol at their 10 000 ton plant in France. Glycerol was obtained from a French 

supplier as a by-product of the biodiesel manufacturer from rapeseed oil. 

Furthermore, Solvay also already has the planned investment of 100,000 ton/year 

plant on its integrated site at Map Ta Phut, Thailand, where production was started in 

the middle 2010. 

 

 

Figure 1.2 Reverse process from glycerol to epichlorohydrin (Solvay, 2007) 

 



© C
OPYRIG

HT U
PM

 7 

According to Solvay, the new glycerol-based process shows crucial advantages over 

the existing propylene route as follows: 

- it does not require a solvent; 

- the size of the reactor can be reduced related to higher selectivity; 

- the kinetic is much faster; 

- hydrogen chloride is consumed rather than produced; 

- chlorine consumption is reduced by 50% and water by 70%; and 

- chlorinated residues are 80 % lower. 

 

Like Solvay, Dow also has announced the construction of a large glycerol to 

epichlorohydrin plant in China, which started the production in 2010. The company 

has selected the Shanghai Chemical Industry Park for its 150,000 ton plant. In this 

case, glycerol is purchased from the local producers of biofuels, which in China are 

typically obtained from rapeseed and palm oil. Dow also has decided to build a 

100,000 ton liquid epoxy resin plant at the Shanghai location. The Dow production 

facility reduce waste water by more than 70% compared to conventional propylene-

based technology and will almost completely avoid the formation of organic 

byproducts. 

 

 Kubicek (Kubicek, Sladek, & Buricova, 2005) investigated the proprietary process 

for producing epichlorohydrin from glycerol using an organic acid catalyst. Optimal 

reaction occurred using anhydrous hydrochloric acid with 30 % (mol) caprilic acid as 

a catalyst at above 120
o
C.  This would ensure only a limited fraction (10 %) of the 

catalyst evaporated from the reactor. Siano (Siano, et al., 2006) have also invented a 
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process for production of 1,3-dichloropropanol (DCP) from glycerol and hydrogen 

chloride, which is an intermediate of epichlorohydrin production. This reaction is 

carried out in the liquid phase under temperature of around 100
o
C in the presence of 

acetic acid as catalyst. In order to avoid corrosion of the glass-lined steel reaction 

vessel, the manufacture of DCP is carried out keeping the inner wall of the vessel 

which lies above the level of the liquid medium at a temperature of 120
o
C, at which 

corrosion of the enameled steel is minimized (Krafft, Franck, Andolenko, & Veyrac, 

2007). This process can be run either batch-wise or continuously (Kruper, et al., 

2008) 

 

Even though the hydrochlorination process as explained above, showed very high 

reaction conversion of glycerol (almost 100%) (Kubicek et al., 2005; Krafft et al., 

2007; Tesser et al., 2007; Kruper et al., 2008; Bruce et al., 2008), it still has low 

value in selectivity in terms of 1,3-DCP where only 30 to 56 percent of selectivity 

was achieved (Tesser et al., 2007; Bruce et al., 2008; Lee et al., 2008; Krafft et al., 

2007).  As reported by Tesser et al. (2007), hydrochlorination process of reaction 

between glycerol and hydrogen chloride results in formation of other different 

organochlorines, hence promote multiple parallel reactions.   Therefore, the 

evaluation of product selectivity i.e., conversion of the reactant to the desired product 

divided by the overall conversion of the reactant or the rate of conversion of the feed 

to the desired product, is more desirable than the conversion itself (Froment et al., 

1979).  Moreover, process parameters affecting the selectivity such as temperature 

and pressure, molar ratio of reactant and catalyst concentration should be thoroughly 

investigated and analyzed.  Therefore, investigations on the effect of those 
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parameters are important in order to improve the hydrochlorination process 

specifically on selectivity toward 1,3-DCP.  This would ensure that the glycerol 

byproduct can indeed be used as the starting material in the production of 

epichlorohydrin.   Since, very little information is available on this subject, computer 

aided process simulation using ASPEN Plus
TM

 software was conducted to minimize 

the experimental and scale-up efforts.  The simulation study would also enable 

the process optimization to be conducted in wider range of conditions which 

might not be possible by the experimental setup.  In addition, the potential of 

using cheap basic solution namely sodium hydroxide in the dehydrochlorination of 

1,3-DCP to produce .epichlorohydrin also be investigated.  Since, the reaction was 

hypothesized to be very fast, kinetics study on this dehydrochlorination was also 

performed to investigate its mechanism and rate equations. 

 

1.2. Objectives and Scopes of Work 

 

The objectives of this research are: 

1. To simulate the effects of  operating conditions such as feed molar ratio, 

temperature and catalyst concentration on synthesis of both 1,3 Dichloropropanol 

and Epichlorohydrin using ASPEN Plus. 

2. To investigate effect of various experimental condition such as effect of feed 

molar ratio Glycerol to HCl, reaction temperature, and type of catalyst on 

hydrochlorination of glycerol  and muriatic acid to 1,3 Dichloropropanol in order 

to obtain optimum process conditions.  
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3. To investigate effect of various experimental condition such as effect of feed 

molar ratio 1,3-Dichloropropanol to NaOH and reaction temperature on 

dehydrochlorination process 1,3-Dichloropropanol  and NaOH in order to obtain 

optimum process conditions and to study its kinetics parameters.  

 

 

This research includes two consecutive processes consist of 

1. Preparation of  1,3-DCP through chlorination of crude biodiesel-based glycerol. 

The scopes of work are directed toward assesing the effects of operating 

parameters on the reaction conversion, selectivity, and yield. The parameters 

considered in this process were namely feed molar ratio, reaction temperature, 

and catalyst concentration. The reaction was between crude biodiesel-based 

glycerol and hydrochloric acid using malonic acid as catalyst. Malonic acid was 

selected due to its high activity and high selectivity (Tesser  et al., 2007); 

2. and followed by dehidrochlorination of 1,3-DCP to produce EPCH. Assesing the 

effects of operating parameters, on both the reaction conversion and yield of 

EPCH, such as reaction temperature, and feed molar ratio were the scopes of 

work for this part. The reaction was between  1,3-DCP and sodium hydroxide 

without catalyst.  
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1.3. Thesis Outline 

 

The thesis consists of six Chapters. Chapter 1 is on the introduction, which 

highlights the background of the problem and the significance of the research work 

in the field of glycerol hydrochlorination. Chapter 2 covers the literature reviews 

on the subject where extensive review, analysis and synthesis are given to the 

reported works of various authors. The review provides the basis not only for the 

simulation sections but also for the experimental sections of the thesis. The reviews 

about kinetic models proposed by prior works are also discussed in this Chapter.  

From Chapter 3 onwards, each Chapter contains its own background, materials and 

methods, results and discussions, and conclusions.  

 

Chapter 3 covers the simulation for both synthesis of the 1,3-Dichloropropanol 

(1,3-DCP) and synthesis of epichlorohydrin using ASPEN Plus
TM

. The 

experimental work on dichloropropanol synthesis from glycerol and aqueous 

hydrochloric acid, 37 %, and analytical technique are described in the Chapter 4. In 

Chapter 5 was describing the kinetics of dehydrochlorination reaction of 

dichloropropanol and sodium hydroxide solution to epichlorohydrin.  Finally, the 

summary of the report and recommendation for the future works are included in the 

conclusion and recommendation section in Chapter 6. 
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