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Lightweight design with good crashworthy characteristic is highly desirable in 

automotive industry. Frontal crashes is identified as the most often occurrence. 

Frontal collision occurred at an angle up to 30 degree, so called oblique, as 

prescribed in Federal Motor Vehicle Safety Standard is used in this study. Geometry 

changes and material replacement is approaches used to improve the crash 

performances. Simulation is carried out using Ls-dyna software and optimization is 

done by using Sequential Quadratic Programming that is run in Matlab. 

 

The structure in this study is using aluminum and aluminum foam. The structure is 

partially filled to reduce the additional weight cause by the foam.Furthermore, the 

column thickness, foam length and foam density is varied to achieve the target.From 
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the analysis of partially filled column, it was found that crush force efficiency (CFE) 

is highly affected by the loading angle unlike specific energy absorption (SEA). The 

initial response is however ruled by thin-walled aluminum deformation behavior. 

Introduction of partially filled column promotes improvement in SEA and CFE. SEA 

of the new design and empty column is 1237.76 J/kg and 907.28 J/kg with CFE of 

0.7 and 0.5, respectively.A surrogate based optimization program developed by 

employing the Sequential Quadratic Programming method yield an optimum design 

of (t , L)* = (2.3,151.7) and (t , L)* = (1.1,199), for SEA and CFE, respectively. In 

three variables optimization, the optimum design for maximum SEA and CFE are (t , 

L , ρ)* = (2.0,88.6,0.1) and (t ,L,ρ)* =( 1.4 , 129.6 , 0.2 ). In term of occupant safety, 

car associated with partially filled side member exhibit lowest index in occupant 

injury criteria, 496.6, 694 and 850 for HIC15, HIC36 and CSI, respectively. 

 

The results show thatthe crashworthiness performance of the structure can be 

improved throughintroduction of partially filled column. Using the developed 

programming for optimization, vehicle structures design can be practically 

optimized. 
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Rekabentuk ringan dan mempunyai ciri-ciri perlanggaran yang baik adalah sangat 

berguna kepada automotif industri. Perlanggaran dari hadapan di kenal pasti sebagai 

yang paling kerap berlaku. Perlanggaran hadapan yang menglibatkan posisi sehingga 

sudut 30 darjah, juga dipanggil oblik, seperti yang ditetapkan oleh Federal Motor 

Vehicle Safety Standard telah digunakan untuk kajian ini. Perubahan geometri dan 

bahan adalah pendekatan yang digunakan untuk menambah baik prestasi 

perlanggaran. Simulasi di jalankan dengan menggunakan perisian Ls-dyna manakala 

optimisasi adalah menggunakan Matlab. 

 

Di dalam kajian ini, struktur menggunakan aluminium dan aluminium foam. Hanya 

sebahagian daripada struktur telah di isi bagi mengurangkan penambahan berat. 
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Ketebalan kolum, panjang foam dan isipadu foam telah dimanipulasi bagi mencapai 

target. Daripada kajian, didapati CFE sangat dipengaruhi oleh sudut bebanan tidak 

seperti SEA. Tindak balas awal bagaimanapun menyerupai kolum kosong. 

Penggunaan kolum separa penuh meningkatkan prestasi struktur. SEA bagi kolum 

separa penuh dan kolum kosong adalah masing-masing 1237.76 J/kg dan 907.28 J/kg 

dengan nilai CFE 0.7 dan 0.5. Program optimisasi menggunakan polinomial model 

menggunakan Sequential Quadratic Programming menghasilkan rekabentuk 

optimum iaitu masing-masing (t , L)* = (2.3,151.7) dan (t , L)* = (1.1,199), bagi 

SEA and CFE. Bagi optimisasi melibatkan tiga pemboleh-ubah, rekabentuk optimum 

untuk maksimum SEA dan CFE masing-masing adalah (t , L , ρ)* = (2.0,88.6,0.1) 

dan (t  L,ρ)* =( 1.4 , 129.6 , 0.2 ). Dari segi keselamatan penumpang, kereta yang 

menglibatkan penggunaan side member separa penuh menunjukkan indek terendah 

bagi kriteria kecederaan iaitu, 496.6, 694 dan 850 untuk HIC15, HIC36 dan CSI. 

 

Keputusan kajian menunjukkan bahawa prestasi perlanggaran bagi sesuatu struktur 

boleh diperbaiki dengan penggunaan kolum separa penuh. Menggunakan program 

optimisasi yang telah dibina, rekabentuk struktur kereta boleh di optimumkan. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

 

The recent trend in automobile design is aimed at improving fuel efficiency, crash 

safety and environmental-friendliness. For the crash safety, energy absorbing 

members have to absorb sufficient collision energy, whereas for the environment, the 

automobile structure must be lightweight in order to improve fuel efficiency and 

reduce tail gas emission. According to Zhang et al. (X. Zhang et al., 2008) 10% 

reduction of weight was estimated to give 3-7% fuel saving. Therefore, the weight of 

the automobile must be minimized while ensuring safety against crash.  

  

Automotive structures are designed to sustain impact loading in diverse crash 

directions such as frontal, lateral and rear impact. Above all crash events, frontal 

collision was identified as the most common accidents on the road and gives rise to 

high portion of death (S Kokkula et al., 2006). Thus, it is vital to have an efficient 

energy absorbing structure on the front side of an automobile. The main energy 

absorber on the front side of automotive body is the bumper system and the 

automotive side member (H.-S. Kim, 2001; S Kokkula et al., 2006; Shin et al., 2002; 

X. Zhang et al., 2008). Bumper system is designed to absorbed energy in low speed 
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crash, whereas the automotive side member is intended for high speed impact. 

Hence, this study will be focusing on the performance of automotive side member. In 

the light of lightweight design, partially filled aluminum side member is applied to 

the automobile body instead of the heavier conventional steel. 

 

The threat to passenger safety arouses the need for the crash test. In accordance with 

the safety requirement, Federal Motor Vehicle Safety Standard (FMVSS) No. 208 

has set a procedure for a frontal rigid barrier test of up to 48 kmph, at angles from the 

perpendicular (90 degrees) to the line of travel of up to 30 degrees (Hollowell et al., 

1999). It has been a current practice to initiate crash testing with simulation to avoid 

expensive investment on repeated physical testing. Thus, this research will 

manipulate the design and examine alternative materials for an improvement in 

crashworthiness by using Finite element crash commercial software named Ls-Dyna 

971. Optimization code is developed in Matlab to optimize the structure design. 

Crashworthiness performance of the structure subjected to oblique loading is 

analyzed under the FMVSS No.208 crash test requirement. 

 

1.2 Problem statement 

 

Improvement on safety of automobile is causing an increase in the weight (Carle and 

Blount, 1999). Thus, automotive industry is facing a big challenge in improving the 

crash performance without putting on additional weight. Previous studies show that 

the use of foam filled structure improves the energy absorption (). This fully filled 

structure however reduces the structure mass efficiency by adding too much weight. 
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As an attempt to overcome the problem, this research work will analyze the partially 

filled structure performance. 

 

Current studies on the partially filled structure are involving either the axial or 

bending load and insufficient information can be found on the oblique loading. This 

study will analyze the crash performance of partially filled structure in terms of 

specific energy absorbed (SEA), crush force efficiency and its effect on occupant 

safety. Optimization will be carried out to improve design performance. 

 

1.3 Research objectives 

 

This research is aimed to improve crashworthiness performance of the automotive 

side member. The detailed objectives are: 

 

i. To identify the parameters affecting the crashworthiness. 

ii. To propose a theoretical equation of mean force for a column subjected 

to oblique loading. 

iii. To develop a surrogate model based optimization code to optimize 

crash performances of the column. 

iv. To analyze the effect of an optimum partially filled automotive side 

member on automobile crash performance. 

 

1.4 Significance of the study 
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Lightweight component with high energy absorbing capability improves the 

automobile crash performance. The use of materials alternative to steel such as 

aluminium and aluminum foam offering an option for a better weight-specific energy 

absorption properties than conventional mild steel. In a frontal collision, the impact 

load is transmitted first through the bumper, then through the side members and 

many other surrounding parts, before finally goes to the passenger compartment. So, 

it is desirable to absorb kinetic energy as much as possible before it is passed to the 

passengers. Thorough numerical analysis of automotive side member gives a crucial 

understanding in managing energy transferred during collision under predicted 

oblique loading. Optimization of the components design can also provide guidelines 

in improving structure crashworthiness while take hold of lightweight opportunity. 

 

1.5 Scope of study 

 

This research covers or limited to the following areas: 

 

i. Analysis of automotive side member component 

ii. Crash test simulation conducted according to FMVSS No. 208 frontal 

crash test specification 

iii. Materials used for crashworthiness improvement are AA6060 and 

aluminum foam. 
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iv. Optimization is done by design modification (column thickness, foam 

length and density). 

v. Crashworthiness performance is evaluated in terms of specific energy 

absorption (SEA) and crush force efficiency (CFE). 

vi. Exclude cost, fuel saving and manufacturability. 

 

1.6 Thesis outline 

 

The thesis consists of six chapters. Chapter 1 is an introduction to the research. 

Chapter 2 reviews published literatures on crash analysis and lightweight design. The 

detailed methodology to carry out this research is presented in Chapter 3. Chapter 4 

and Chapter 5 highlight and discuss the main findings of this research. Finally, the 

research findings are concluded and recommendation for further research is brought 

forward in Chapter 6. 
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