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BASIN, MALAYSIA 

By 

MASOUD BAKHTYARI KIA 

August 2013 

 

Chairman: Saied Pirasteh, PhD 

 

Faculty: Engineering 

Flooding is one of the most destructive natural hazards that cause damage to 

both life and property every year, and therefore the development of flood 

model to determine inundation area in watersheds is important for decision 

makers. In recent years, data mining approaches such as artificial neural 

network (ANN) and Neuro-Fuzzy techniques are being increasingly used for 

flood modeling. Previously, these methods were frequently used for 

hydrological and flood modeling by taking rainfall as input and runoff data as 

output, usually without taking into consideration of other flood causative 

factors. The specific objective of this study is to develop a flood model using 

various flood causative factors by Multilayer Perceptron neural network 

(MLP) and Local Linear Model Tree (LOLIMOT) techniques, and geographic 
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information system (GIS) to modeling and simulate flood-prone areas in the 

southern part of Peninsular Malaysia. The ANN and Neuro-Fuzzy models for 

this study were developed in MATLAB using seven flood causative factors. 

Relevant thematic layers (including rainfall, slope, elevation, flow 

accumulation, soil, land use, and geology) are generated using GIS, and field 

surveys. In the context of objective weight assignments, the ANN is used to 

directly produce water levels and then the flood map is constructed in GIS. 

Comparison between the forecasted and observed river flow indicate that the 

accuracy of models are quite good especially in ANN model. The flood 

inundation area is derived based on this model by using DEM map. To 

measure the performance of the model, four criteria performances, including 

a coefficient of determination (R2), the sum squared error, the mean square 

error, and the root mean square error are used. The verification results 

showed satisfactory agreement between the predicted and the real 

hydrological records. The sensitivity analysis performed shows that with the 

exception of the rainfall factor as the main reason of floods, the elevation is 

the most important factor and geology has the least influence on river flow. 

The study is first attempt to use these integration methods in the flood 

modeling that used different causative factors. The results of this study could 

be used to help local and national government plan for the future and 

develop appropriate (to the local environmental conditions) new infrastructure 

to protect the lives and property of the people of Johor. 

 

Key Words: Flood, GIS, Spatial Modeling, Neural Networks, Neuro-Fuzzy 
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PEMODELAN BANJIR MENGGUNAKAN BERSEPADU RANGKAIAN 
NEURAL TIRUAN DAN NEURO-SAMAR TEKNIK UNTUK JOHOR 

LEMBANGAN SUNGAI, MALAYSIA 

 

 

Oleh 

 

MASOUD BAKHTYARI KIA 

 

Ogost 2013 

 

Pengerusi:  Saied Pirasteh, PhD 

 

Fakulti: Kejuruteraan 

 

Banjir adalah salah satu bencana alam yang paling merosakkan yang 

menyebabkan kerosakan kepada kedua-dua nyawa dan harta benda  setiap 

tahun, dan oleh itu pembangunan model banjir untuk menentukan kawasan 

banjir di kawasan tadahan air adalah penting bagi pembuat keputusan. 

Dalam tahun-tahun kebelakangan ini, perlombongan data pendekatan seperti 

rangkaian neural tiruan (ANN) dan teknik Neuro-kabur menjadi semakin 

digunakan untuk pemodelan banjir. Sebelum ini,  kaedah ini telah sering 
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digunakan untuk model hidrologi dan banjir dengan mengambil hujan 

sebagai input dan data air larian sebagai output,  biasanya tanpa mengambil 

kira faktor-faktor lain penyebab banjir.  Objektif khusus kajian ini adalah 

untuk membangunkan model banjir menggunakan pelbagai faktor penyebab 

banjir oleh Multilayer Perceptron rangkaian neural (MLP) dan Tempatan 

Linear Model Tree (LOLIMOT) teknik, dan sistem maklumat geografi (GIS) 

untuk pemodelan dan simulasi kawasan banjir di  bahagian selatan 

Semenanjung Malaysia. ANN dan Neuro-kabur model untuk kajian ini telah 

dibangunkan pada MATLAB menggunakan tujuh faktor penyebab banjir. 

Lapisan tema yang berkaitan (termasuk hujan, cerun, ketinggian,  

pengumpulan aliran, tanah, guna tanah, dan geologi) dihasilkan 

menggunakan GIS, dan bidang kaji selidik. Dalam konteks tugasan berat 

objektif, ANN digunakan untuk terus menghasilkan tahap air dan kemudian 

peta banjir itu dibina dalam GIS.  Perbandingan antara aliran diramalkan dan 

memerhatikan sungai menunjukkan bahawa ketepatan model yang agak baik 

terutamanya dalam model ANN. Kawasan banjir banjir berasal berdasarkan 

model ini dengan menggunakan peta DEM. Untuk mengukur prestasi model, 

empat kriteria persembahan, termasuk pekali penentuan (R2), kesilapan 

jumlah kuasa dua, ralat kuasa dua min, dan punca min ralat kuasa dua 

digunakan. Keputusan pengesahan menunjukkan persetujuan yang 

memuaskan antara yang diramalkan dan rekod hidrologi sebenar. Analisis 

sensitiviti dilakukan menunjukkan bahawa kecuali faktor hujan sebagai sebab 

utama banjir, ketinggian adalah faktor yang paling penting dan mempunyai 

pengaruh geologi sekurang-kurangnya ke atas aliran sungai. Kajian ini 

merupakan percubaan pertama untuk menggunakan kaedah integrasi dalam 
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pemodelan banjir yang digunakan faktor penyebab yang berbeza. Hasil 

kajian ini boleh digunakan untuk membantu rancangan kerajaan tempatan 

dan nasional untuk masa depan dan membangunkan yang sesuai (dengan 

syarat-syarat alam sekitar tempatan) infrastruktur baru untuk melindungi 

nyawa dan harta benda rakyat Johor. 

 

Kata Kunci: Banjir, GIS, PemodelanRuang, neural tiruan, Neuro-kabur. 
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CHAPTER 1 

INTRODUCTION 

 

In this chapter, the background and motivation of the study are introduced. 

The limitations of flood modeling are stated in the problem statement, and 

indicate to potential application of new methods to create and develop flood 

models and flood susceptible areas. The aims and significance of the study 

are described and, finally, the study objectives and thesis framework are 

provided. 

 

1.1 Overview 

 

Flooding is one of the most destructive and common natural hazards that 

cause damage to both life and property in many parts of the world every 

year. According to Center for Research on the Epidemiology of Disasters 

report (Sapir et al., 2012), floods were the most reported hazards, accounting 

for 33 percent of all disasters in the period 1970-2011 (Figures 1.1 and 1.2). 

Over this period and particularly the last decade, occurrence of floods has 

increased strongly due to economic developments, urbanization, climate 

change and other factors (Kenyon and Shannon, 2008; Huntington, 2006). 
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Figure 1.1: Regional distribution of disasters by type during 1970-2011 
(Sapir et al., 2012) 
 

 

 
Figure 1. 2: World distribution of disasters by type during 1970-2011 
(Sapir et al., 2012). 
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Floods are part of nature. This type of hazard is a historic problem that 

occurs often in different places in the world and will extend in the future. It is 

impossible to prevent and control flood events completely. Modeling, 

prediction and warning of floods without a doubt are the main task and 

challenge in hydrology (Thierion et al., 2011). This common disaster needs to 

systematic methods and developed the models to mitigation of damages. 

Many efforts have been done to predict, reduce and mitigation of floods by 

researchers and many models have been made in response to this need. 

The models are tools which help to understand how hydrological processes 

work, and improve the ability for successful flood forecasting and mitigation 

of damages. Although there are many models being developed and 

employed for flood forecasting, the main problem and challenge is remaining 

in this task.  

 

1.2 Research Problem 

 

Flood disaster has a very special place in Malaysia. In this country, floods are 

the most important natural hazards in terms of population affected, 

frequency, area extent, and social economic damage. According to Ministry 

of Natural Resources and Environment (2007), flood prone areas cover 9% 

of land area (30000    ) in the country, and 22% of the population (5 million) 

is affected by floods. The annual average flood damage is more than RM 1 

billion. 
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There are several reports on floods in Johor river basin since 1981. 

According to the Ministry of Natural Resources and Environment reports, 

Johor river basin has experienced big floods, especially in the years of 1981, 

1983, 1984, 1986, 1987, 1989, 1990, 1994, 1998, 2000, 2001. In December 

2006 and January 2007, Johor state was affected by two major flood events 

which are considered as the most costly flood events in Malaysian history. 

During these floods, more than 100,000 people were evacuated, 18 persons 

were killed and the costs of losses are estimated about RM 1.5 billion 

(Ministry of Natural Resources and Environment, 2007).  

 

To manage and control flood, Malaysian government has established about 

335 telemetric rain gauges and 208 telemetric water level stations in the 

vicinity of 40 river basins for real time flood monitoring. The government also 

developed space technology to use remote sensing data for natural 

resources and environmental management in 1990s. Different hydrological 

models include physical and conceptual models also have been used to 

predict and flood simulation. Thus, currently, hydrological and meteorological 

data are collected real time, different high resolution satellite data to meet 

more effective environmental monitoring and natural resources management 

are received near real time, the best hardware and software are used to 

analysis the data. Nevertheless, flooding occurs repeatedly every year in 

various parts of the country, destroying property and killing people each year 

(Pradhan 2010).  
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The current method of flood warning in Johor state is based on a relationship 

between rainfall and runoff and ignored other flood causes factors. Exception 

of rainfall factor as the main reason, flood is affected by several factors such 

as land use, duration of the rainfall, initial soil moisture, geology, land use, 

evaporation, watershed infiltration, geomorphology, and so on. The effects of 

these factors are well known separately, but combination of them and 

interaction effects are less. To flood mitigation and reduce the losses, 

authorities and the general public should know these factors and role of each 

one in flood occurrence. This issue has not been done yet in details for study 

area. 

 

The second problem is related to the deficiency of available flood models to 

use and definition of these factors. Since flood events and river flow nature 

are inherently uncertain, nonlinear and complex, it is impossible to predict 

flood frequency, water volume, and flood prone areas using available flood 

models by using all incorporate factors in catchments.  

 

Many researchers have used different techniques with different factors, 

scales, accuracy for modeling. There is not standardized agreed model for 

simulate rivers behavior and preparing flood susceptibility maps in basins 

(Aronica et al. 2012).   

 

In recent years, development of information processing, machine learning, 

and advances in the field of remote sensing and geographic information 
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system (GIS) have greatly facilitated the operation of flood mapping and flood 

risk assessment. Apart from these tools, some works on fuzzy set methods 

(Luchetta and Manetti, 2003; Blazkova and Beven, 2004; Maskey et al., 

2004; Ercanoglu and Gokceoglu, 2004; Akter and Simonovic, 2005), artificial 

neural networks (ANN) models (Brath et al., 2002; Shrestha et al., 2005; 

Piotrowski et al., 2006; Peters et al., 2006), and Neuro-Fuzzy models (Dixon 

,2004; Mahabir et al., 2006) have been attempted for flood modeling studies. 

These techniques in hydrology and flood studies used to calculate amount of 

runoff and determine relationship between rainfall and runoff in some basins. 

Since recognition, evaluation and modeling of hydrological processes in 

basins need to various information and knowledge about the models, 

techniques, and the study area (Merz et al., 2008; Aronica, G.T., et al., 2011) 

it seems these techniques can be improved by using more information and 

parameters in the modeling.  

 

Due to some success of neural networks and fuzzy set theories, this 

research attempted to develop an objective procedure that take into account 

the advantages of GIS, ANN, and Neuro-Fuzzy theory (Spatial Neuro-Fuzzy) 

for flood modeling zonation in study area. 

 

1.3 Significance of Research 

 

Protection of the lives and properties from floods is of high priority for 

decision makers. Despite the significant costs to forecasting the floods,floods 
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still affect several parts, destroy properties, and kill people each year 

increasingly. Flood events are unavoidable, and the problem is not whether 

the next flood will occur or not (Maidment, 2002), but to reduce the losses, 

authorities and peoples should know when and where will they happen and 

which part of the area affected by floods.  

 

In order to estimate precise flood risks, accurate flood model and mapping 

flood prone area are needed. Using new methods such as ANN and Fuzzy 

for precise prediction of river discharge, and capability of remote sensing and 

GIS techniques for monitoring and mapping of flooded areas, increase our 

ability to decrease these losses. 

 

 
1.4 Research Objectives 
  

 

The objective of this study was to improve a flood model using various flood 

causative factors using ANN, Neuro-Fuzzy technique and GIS to modeling 

and simulation of flood-prone areas at Johor River Basin, Malaysia. This is 

accomplished by: 

 

 
- To create learning algorithms to enhance the performance of the ANN 

and Neuro-Fuzzy flood models; 
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- To apply, simulate, and compare the ANN and Neuro-Fuzzy flood 

models for simulation of water level and producing the flood map based 

on the best model;  

- To determine and rank the most causative flood factors for flood 

mitigation in study area. 

 

1.5 Scope of Research 

 

This thesis enhances and examines two approaches to flood modeling and 

determine the influence of each factor on the flood. The first approach is 

based on a subdivision of artificial intelligence called artificial neural 

networks, the Multi-Layer Perceptron networks. The second is a combination 

of neural and fuzzy method, the Local Linear Model Tree (LOLIMOT) 

algorithm. The operation methods are developed and enhanced using the 

MATLAB software. After models accuracy assessment, the best models are 

used to flood simulation at Johor river basin.  Each of these approaches will 

be explained in detail in the following chapters. 

 

 
1.6 Thesis Organization 
 
 

 
The thesis comprises of five chapters, including this introductory chapter, 

which describes the flood problems and the advantages of having an 

accurate flood model. The model and common types of hydrological and 
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flood models, and flood problems in Malaysia are reviewed in chapter two. 

Moreover, it looks at how new technologies such as GIS, ANN, and Neuro-

Fuzzy are applied to facilitate flood prediction. The third chapter is introduced 

the study area and explain detailed methodology used for this study. In the 

fourth chapter, the findings of research are presented. The final chapter, 

conclusion, draws upon the entire thesis, gives a brief summary. It also 

includes an implication discussion of the findings for future research into this 

area. Detailed research data and results of ANN and Neuro-Fuzzy analysis 

and MATLAB programming are shown in the appendices. Schematic 

representation of the Thesis is shown in Figure 1.3. 



© C
OPYRIG

HT U
PM

 

 

 

10 

 

Figure 1. 3: Schematic representation of the Thesis. 
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