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In this thesis, after analyzing the properties of hydrogen in analogy to a number 

of common fuels, its productions methods and advantages of water 

electrolysis are introduced briefly. The frequency response of a water 

electrolysis cell is analyzed in order to examine the possibilities of reaching 

higher production efficiencies in other methods of power application than 

steady DC mode. Conductance of such cells was observed to reach a 

maximum value at a certain frequency depending on the physical cell 

characteristics. As a result, a series of experiments were continued in order to 

examine the possibility of enhancing the process efficiency. 

 Laboratory tests were performed on a cell in different voltages ranging 

between 2 V and 10 V, frequencies ranging between DC and 20 MHz and duty 

cycles varying in the range of 10% to 100%. The efficiency value was recorded 

for each case and the results were compared with those of DC mode. The 
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gathered data shows water electrolysis process will be more efficient when the 

power is applied to the cell in the form of pulses. According to the experimental 

results, an efficiency enhancement of up to 14% can be achieved by applying 

short pulses to the system instead of a DC voltage. The result of the latter is 

prevention of the formation of retarding phenomena such as electrical double 

layers and diffusion layer in the vicinity of the electrodes. However, the 

production rate decreases in pulsating power application since the total 

amount of energy application to an electrolytic bath is remarkably reduced in 

pulsating voltage application mode. In other words, the time requirement of 

producing the same amount of hydrogen can be longer as much as near 3 

times of that of low efficiency process. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Master Sains 

PENINGKATAN KECEKAPAN ELEKTROLISIS AIR UNTUK 
PENGELUARAN HIDROGEN 

Oleh 

SEYEDKAVEH MAZLOOMI 

Mac 2013 

Pengerusi: Nasri Bin Sulaiman, PhD 

Fakulti: Kejuruteraan 

 

Dalam tesis ini, selepas menganalisis ciri-ciri hidrogen dalam analogi kepada 

beberapa bahan api biasa, kaedah pengeluaran dan kelebihan elektrolisis air 

diperkenalkan secara ringkas. Sambutan frekuensi sel elektrolisis air 

dianalisis untuk mengkaji kemungkinan mencapai kecekapan pengeluaran 

yang lebih tinggi dalam kaedah lain yang diterima pakai kuasa daripada mod 

DC yang stabil. Kealiran sel-sel itu telah diperhatikan untuk mencapai nilai 

maksimum pada frekuensi tertentu bergantung kepada ciri-ciri sel fizikal. 

Hasilnya, satu siri eksperimen diteruskan untuk mengkaji kemungkinan 

meningkatkan kecekapan proses. 

 Ujian makmal telah dijalankan pada sel voltan yang berbeza antara 2 V dan 

10 V, kekerapan antara DC dan 20 MHz dan kitaran tugas yang berbeza-beza 

dalam lingkungan 10% hingga 100%. Nilai kecekapan dicatatkan bagi setiap 
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kes dan keputusan telah dibandingkan dengan mod DC. Data yang dikumpul 

menunjukkan proses elektrolisis air akan menjadi lebih cekap apabila kuasa 

yang digunakan untuk sel dalam bentuk denyutan. Menurut hasil kajian, 

peningkatan kecekapan sehingga 14% boleh dicapai dengan menggunakan 

denyutan pendek kepada sistem dan bukannya voltan DC. Keputusan kedua 

adalah pencegahan pembentukan fenomena memperlahankan seperti 

lapisan berganda elektrik dan lapisan penyebaran di sekitar elektrod. Walau 

bagaimanapun, kadar pengeluaran berkurangan dalam permohonan kuasa 

denyut kerana jumlah permohonan tenaga kepada mandi elektrolisis adalah 

amat berkurangan dalam mod permohonan voltan denyut. Dalam erti kata 

lain, keperluan masa untuk menghasilkan jumlah yang sama hidrogen boleh 

lagi sebanyak berhampiran 3 kali bahawa proses kecekapan rendah. 
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CHAPTER 1 

1 INTRODUCTION 

Global warming and energy crisis are among the most important issues that 

threaten the peaceful existence of the man-kind. They have been showing 

their faces much more clearly in the past century and no concrete solution is 

introduced in order to curb their ill-effects on the planet. Many different 

approaches are under experimental investigations or being utilized in this 

regard. However, adopting clean and emission-free energy cycle is known to 

be a major break-through in this regard. Utilization of renewable and 

sustainable energy sources is a promising solution for the mentioned 

problems. However, one of the major deficiencies of the use of such resources 

is the method of energy storage.  

 

Utilization of powerful batteries, heat storage, compressed air, pumped 

storage and similar technologies have been studied in this regard. Some of 

the available methods are absolutely practical in order to store the surplus 

energy production of renewable plants. Yet, one of the most challenging 

subjects according to the usage of such sources is how man is able to 

transport or transmit the energy. At the same time, transportation is known to 

have a large share in polluting the environment. Developing a new fuel 

economy seems to be one of the most important sectors in accordance with 

achieving an absolutely clean and “green” energy cycle. 
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1.1 Reasons of looking for alternative energy carriers 

The idea of using alternative fuels was strengthened noticeably after the global 

energy crisis of 1974 [1, 2]. According to the published statistics by the 

International Energy Agency (IEA) currently, the world consumes fossil fuels 

in very large scales (over 89 million barrels per day). A wide and really 

enhanced global scientific, social and political infrastructure supports this 

popularity. A wide and really enhanced global scientific, social and political 

infrastructure supports this popularity. This consumption level does not come 

without problems indeed. Pollutant emission of harmful materials [3-5] and 

greenhouse gasses [6] accompanied with current global warming issues [7] 

are only few of their disadvantages. These fuels have limited exhaustive 

resources [8] and they can be found in certain parts of the planet.  

 

Furthermore, political conflicts, mainly caused by their highly volatile price [9, 

10] is a distinct drawback that definitely threatening the existence of the 

human-race. In addition, these fuels are oil derivatives with a wide range of 

formulations where each can be fed to a certain and limited group of consumer 

machinery. These fuels are basically being “burnt” in order to release their 

energy content, which causes a large fraction of it to release to the atmosphere 

as heat-waste in the process of combustion [11, 12]. 

  

1.2 Available solutions 

Since the age of water mills, man was trying to control the energy content of 

the environment. Many methods have been and are being used in this 



© C
OPYRIG

HT U
PM

3 
 

relevance. Figure 1.1 is an illustration of some of the modern methods of 

energy storage. Many of the mentioned approaches are practical when a 

certain scale of energy storage is the subject of debate. Some require a vast 

area for being developed where others are economical if and only if mega 

scale storage is required. A few have a very low energy storage capacity or 

limited life spans. 

 

Figure 1.1: Modern methods of energy storage 

 

Here are a few instances of the above-mentioned: 
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1-  Hydroelectric energy storage requires building of dams and as a result 

artificial lakes. 

2- Twisting a spring makes us able to store enough power to energize 

small scale consumers such as toys or watches. 

3- Even the best quality batteries have a limited life span. Their efficiency 

decrease as they age and they need a remarkable time for being charged. 

Storing large amounts of energy into batteries usually require industrial 

sophisticated electronically-controlled chargers, voltage regulators and 

current limiters. 

4- Biological energy storage in industrial scales requires large pieces of 

land. 

In addition, most of the mentioned methods in Figure 1.1 are unable to be 

utilized for producing fuels or transportable energy carriers. A promising 

fuel or energy carrier has to have reasonable price, the ability of being 

produced and consumed in an absolutely clean and emission free cycle, 

transportable nature, high energy per mass/volume content and 

acceptable safety features. 

1.3 Benefits of using hydrogen 

Outstanding properties and features of hydrogen make it a very promising 

energy carrier or fuel, although it is not naturally available as a ready to use 

substance. Different methods are being used in order to mass produce 

hydrogen. According to its abundance, hydrogen can be extracted from a 
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variety of materials and compounds or be produced by utilizing a wide range 

of methods including some clean and “green” approaches. More importantly, 

hydrogen can be produced anywhere across the planet. Exceptional energy 

per mass content, storage and transportation possibilities, safety features and 

reduced harmful emissions are few advantages of this substance as an energy 

carrier. 

 

For many researchers that investigate the applications of hydrogen as an 

energy carrier or fuel require readily extractable broad-spectrum knowledge 

on various processes involved in this regard including their pros and cons and 

possible modifications that make the processes suitable for future 

development. Such literature is rare to be found as many research papers 

address narrowly focused aspects of the subject.  

 

1.4 Methods of production 

A range of methods is in use to generate hydrogen from different resources. 

Unfortunately, fossil based fuels are still the main recourse for industrial mass 

scale hydrogen production probably due to their low costs and easy usage in 

machines that designed for fossil fuels. This fact is absolutely in contradiction 

with policies towards a green and sustainable energy cycle. 

1.4.1 Hydrogen from fossil fuels 

Fossil fuels have large and heavy hydro-carbon based molecular structure. 

Extracting hydrogen by breaking the bonds between hydrogen and carbon 
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content is one of the most popular methods of hydrogen production [13]. This 

substance can be extracted from biomass [14], coal [15], gasoline, oil (heavy 

and light), methanol and methane [16].  

Nowadays, Steam-Methane Reforming (SMR) is known as the most 

economical method [17] and has the largest share in global hydrogen 

production (almost 48%) [18]. The reaction of this highly endothermic process 

is given by Equation 1: 

 

H2O+CH4 → CO+3H2    (1) 

 

Coal and oil have the second and third place in this ranking with 30% and 18% 

relative share [17]. Hydrogen production by the means of water electrolysis 

has the smallest share of 4% among the available methods of large scale 

hydrogen production [19] where other resources are not being used in mass 

and industrial scales. Figure 1.2 shows the global share of each method of 

industrial-scale hydrogen production. 
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Figure 1.2: Common methods of hydrogen mass production 

Hydrogen is a byproduct of other oil refinement in many cases. Reasonable 

production price [20] and possibility of mass production [16] are other 

Advantages of fossil based hydrogen production. However, this approach of 

hydrogen production suffers from problems which are mainly based on their 

pollution ratings and limited resources. These methods of hydrogen production 

usually emit CO or CO2 and other greenhouse gasses. The resources are not 

renewable [13] and the production is not known as “green”. 

1.4.2 Hydrogen from water 

Splitting of water molecule by means of electrolysis has been studied for a 

long time [21, 22]. Water is subjected to an electric current in order to force its 

molecules to decompose [19]. A typical schematic of an electrolysis cell is 

illustrated in Figure 1.3. 

Natural Gas
48

Oil
30

Coal
18

Electrolysis
4
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Figure 1.3: Structure of an electrolysis cell 

A simple water electrolysis cell consists of a container, at least two electrodes, 

an electrolyte material and in some cases a separator plate which is also called 

the diaphragm. Most common electrolyte materials are ionized aqueous 

solutions. Since pure water is not an electricity conductor, an ionizing material 

is usually being added to the water in order to make it conduct the electrical 

current.  

 

The metallic electrode plates are placed in the electrolyte where a power 

supply provides the required energy for the current to pass through the cell. 

Some water electrolysis cells have more than two electrodes. In this case, the 

voltage is applied to the first and last plates, where each side of each plate will 

perform as either anode or cathode for the facing sides of the neighbor 

electrodes (refer Figure 4.12). These cells require higher voltage levels indeed 

since the voltage will divide between compartments. 
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As it was mentioned earlier, this method does not have a large share in global 

hydrogen production. High production costs [23] due to low conversion 

efficiency and electrical power expenses [24-26] can be named as the main 

drawbacks of electrochemical hydrogen production. Hence, water electrolysis 

is not a method of choice for large-scale production of this substance, in the 

present context. As a result, electrolytic hydrogen was not able to find its way 

as a competitive alternative for traditional fuels.  

 

Water electrolysis process requires a minimum energy of 39.39 kWh kg-1 of 

hydrogen generation at full conversion efficiency. However, the energy 

demand per kg of hydrogen production of a typical high capacity industrial 

scale electrolyzer is much larger than the mentioned Figure [27, 28]. Many 

efforts are made in order to increase the efficiency of water electrolysis [23, 27, 

29-31]. Higher efficiencies were obtained in extreme pressure and temperature 

conditions. At the same time, increased investment is required to build more 

complex and sophisticated electrolyzers which are able to perform under 

intense temperature and pressure conditions [32-34]. In these cases, higher 

production efficiency comes with dramatically increased corrosion, operation 

and maintenance (O&M) costs and reduced life span [1, 23]. On the other 

hand, estimations show that the monetary investment per production capacity 

unit reduces as the capacity increases [16]. Therefore, most of the available 

electrolyzers work at temperatures lower than the boiling point of water and 

do not exceed the pressure barrier of 50 bar. 
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Despite the mentioned cost disadvantages, water electrolysis has some 

unique qualities. Electrolysis could be used for hydrogen production at any 

place around the globe. The only requirements of this production are electricity 

and water where the production rate/capacity could be tuned for a certain 

demand at any place [13, 16]. With regard to the characteristics of water 

electrolysis, this method is capable of producing absolutely sustainable and 

clean hydrogen. This goal can be achieved if and only if the required electricity 

is obtained from an emission-free method such as wind, solar, geothermal 

systems, ocean wave or other renewable and green sources. The latter is 

further supported by the fact that such energy generating systems can be 

developed 8 times faster than those with oil-base fuels [12]. Whereas their net 

energy profile shows very close overall values for both methods over time, 

there are still some lifespan advantages for the case of renewable 

approaches. 

Every single renewable energy harvesting system has its own capital cost. 

Utilizing one, all or a combination of few of the new energy production systems 

is inevitable for future energy production demands [13, 24]. However, current 

concern is to analyze the possibilities of hydrogen production based on the 

available social, industrial and political infrastructures. Schoots et al. [20] 

calculated the required investment cost as 1000 US$ kWh-1 for nominal power 

of the hydrogen production plant. Referring to the mentioned power demand 

of hydrogen generation, the estimation is that a plant requires an investment 

of 50,000 US$ for each 1kg h-1 capacity of electrolytic hydrogen production. 
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On the other hand, evaluations show remarkable reductions of expense as the 

production capacity increases [16]. 

 

1.5 Problem Statement 

Water electrolysis is not as efficient as widely used methods of hydrogen mass 

production. Therefore, production price by this method is relatively higher than 

other approaches. In addition, although water electrolysis is an electricity 

dependent process, literature about the effect of electric power application 

methods on the process efficiency are very rare to find.  

 

Electrolytic hydrogen generation is mainly practiced under the influence of a 

DC voltage. Therefore, by knowing the electrical characteristics and behavior 

of a water electrolysis cell, possibility of the utilization of a pulsating power 

application method for enhanced process efficiency can be examined. The 

main goal is to conduct experiments with different methods of voltage 

application to minimize cell impedance and reach higher conductance levels 

in a water electrolysis bath. The latter points will lead to less power dissipation 

and higher production efficiency. 

 

1.6 Aim and objectives 

1- To introduce a simplified electrical equivalent circuit for a water 

electrolysis cell. 
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2- To propose a method of power application for enhancing the efficiency 

of hydrogen production by the means of water electrolysis. 

3- To propose a container shape for electrically efficient water electrolysis. 

1.7 Research scope and limitations 

In order to introduce an electrical equivalent circuit for a water electrolysis cell, 

its frequency response is analyzed. Based on experimental work, the 

conductance bode diagrams of a series of electrolysis cells were plotted. By 

knowing the order of the transfer function of such cells over a certain frequency 

spectrum, and regarding the resemblance of their physical structure with 

electrolytic capacitors, a simplified equivalent circuit is introduced. 

Regarding the introduced equivalent circuit, and based on the available 

published material, a method of voltage application to an electrolysis cell is 

proposed. Finally, a series of experiments were conducted to evaluate the 

effect of the proposed approach on the efficiency and hydrogen production 

rate of a number of electrolysis cell setups. 

 

Maximum applied frequency to the experimental electrolysis cells was limited 

due to the spectral limitations of the utilized electrical function generator and 

maximum switching speed of the available power transistors. 

 

Because of the lack of constant access to a gas chromatography unit, 

humidity, temperature, pressure and flow rate sensors were used to measure 
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the amount of produced hydrogen. Samples were taken for being tested by a 

gas chromatograph in order to validate the measurements and calculations. 

Hydrogen concentration was measured by the chromatograph unit for 

mixtures produced at calculated higher efficiencies.  

1.8 Thesis organization 

Section 1 of this thesis introduces the reasons of interest in hydrogen as an 

energy carrier. Characteristics of this substance are compared with those of a 

number of common fuels in this regards. In this section, different methods of 

hydrogen production are introduced as well as the benefits of electrolytic 

hydrogen production. 

 

In the literature review section (section 2), the information gathered from 

several related published papers and textbooks. After the discussion about the 

influencing factors on the electrical efficiency of water electrolysis, different 

methods of power application to such systems are analyzed. In addition to the 

above-mentioned, common switching devices are compared in order to select 

a proper device of such kind for the experimental work. 

 

The experimental cell setup, sensors, electronics and test conditions are 

introduced in section 3 to provide an insight into the experimental work.  

 

The results are analyzed in section 4 in order to introduce an electrical 

equivalent circuit and evaluate the possibilities of energy saving by the utilized 
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method of voltage application. Finally, the concepts of the designed container 

are the subject of discussion in this section.  

 

Research conclusions are briefly reported in section 5 in addition to the 

introduction of possible subjects for further research in the area of this thesis. 
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