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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the 
requirement for the degree of Master of Science 

NUMERICAL ANALYSIS OF A SYSTEM OF WIRELESS ENERGY TRANSFER 

VIA RESONANCE OF MAGNETIC INDUCTION 

By 

RADIN ZA’IM RADIN UMAR 

November 2013 

Chairman: Professor Ishak Aris, PhD 

Faculty: Engineering 

In the early 19th century Nikola Tesla, the inventor well known for his contribution for the 
development of the present day alternating current system gave rise to the idea of wireless 
electricity, however it was short lived and sparks insignificant interest to the then society. In 
2007, physicist at Massachusetts Institute of Technology (MIT) has demonstrated an efficient 
scheme of wireless energy transfer via magnetic induction at resonance frequency. The 
literature has reported several methods to optimize the power delivery and efficiency; as well 
as theories to explain the behavior of the wireless energy transfer system. However, most of 
them are based on the Coupled Mode Theory (which was put forward by the MIT physicist), 
and the Impedance Analysis Model. There are some limitations imposed by these theories, 
the Coupled Mode Theory despite being widely accepted in the literature are unfamiliar to 
electrical engineers, in that it introduces variables that does not directly correlate to variables 
accustomed to electrical engineers, as a result an ample time had to be spent to understand the 
theory. While the Impedance Analysis is more familiar and simpler, it only solves the system 
in the frequency domain and does not explain the system relationship to time; thus it only 
considers the steady state condition and does not provide the transient behavior. This thesis 
fills the gap by providing a set of numerical equations to solve the currents of a two-coil 
Wireless Energy Transfer via Resonance of Magnetic Induction in the time domain from an 
initial condition to a steady state condition by using variables familiar to electrical engineers; 
with the objective of obtaining the conditions for that maximizes the efficiency and power 
delivery.  The behavior of the system is governed by variables defined by the values of the 
system’s circuit components, and relationship between these variables is investigated by 
solving the ordinary differential equations of the system’s current and providing both the 
analytical and the numerical solution to the differential equation problem. It was found that, 
analytical solution of the system’s current in the time domain results in a very long algebraic 
expression, while the numerical solution produces equation much shorter in length. Analysis 
is done on the numerical solution by simulating the equation in MATLAB programming. The 
hardware was constructed to test the validity of the numerical solutions to the equations 
presented. The data presented shows an agreeable result between the hardware and the 
equation based simulation. Result of analyses performed found that there exist un-
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symmetrically between the lower resonant frequency and the upper resonant frequency at 
high coupling coefficient. It was also found that there exist several load and frequency 
conditions that give peak power delivery in over-coupled mode. Moreover, a theoretical 
analysis performed suggest that efficiency at very low coupling coefficient could be 
maximize by optimizing the ratio self-inductance to the series capacitance in conjunction 
with a correct terminated load, as such it was shown that efficiency of 55% is obtainable at a 
very low coupling coefficient of 0.005. Finally, this thesis also provides a set of equations to 
calculate the mutual inductance and magnetic field of the system’s coil; this is done by 
applying the Biot-Savart equation to perform finite element calculation. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi 
keperluan untuk ijazah Master Sains 

 

ANALISIS PENYELESAIAN BERANGKA KEPADA SISTEM PEMINDAHAN  
 

TENAGA TANPA WAYAR MELALUI ARUHAN MAGNET PADA RESONAN 
 
 

Oleh 

 

RADIN ZA’IM RADIN UMAR 

November 2013 

 

Pengerusi: Profesor Ishak Aris, PhD 

Fakulti: Kejuruteraan 

Pada awal abad ke-19 Nikola Tesla, pencipta terkenal dengan sumbangan beliau kepada 
pembangunan arus ulang alik telah membawa idea tentang elektrik tanpa wayar. Walau 
bagaimanapun, idea beliau tidak bertahan lama dan tidak mendapat minat daripada 
masyarakat zaman itu. Pada tahun 2007, ahli-ahli fizik di Massachusetts Institute of 
Technology (MIT) telah menunjukkan skim pemindahan tenaga tanpa wayar yang cekap 
melalui aruhan magnet pada frekuensi resonan. Sorotan ilmiah telah melaporkan beberapa 
kaedah untuk mengoptimumkan penghantaran kuasa dan kecekapan; serta teori-teori untuk 
menerangkan sifat-sifat sistem pemindahan tenaga tanpa wayar. Walau bagaimanapun, 
kebanyakannya adalah berdasarkan kepada Teori Mod Berpasangan (yang telah dikemukakan 
oleh ahli fizik MIT), dan Model Analisis Impedans. Terdapat beberapa batasan pada teori-
teori ini, Teori Mod Berpasangan walaupun diterima secara meluas dalam sorotan ilmiah 
adalah asing kepada jurutera elektrik, ini kerana Teori Mod Berpasangan memperkenalkan 
pembolehubah yang tidak langsung ada kaitan dengan pembolehubah yang biasa digunakan 
jurutera elektrik, akibatnya  masa yang banyak diperlukan untuk memahami teori ini. 
Walaupun Analisis Impedans adalah tidak asing dan lebih mudah, ia hanya menyelesaikan 
sistem dalam domain frekuensi dan tidak menjelaskan hubungan sistem di dalam domain 
masa; oleh itu ia hanya menunjukan kelakuan akhir sistem dan tidak memberikan kelakuan 
antara permulaan dan pengakhiran. Tesis ini memenuhi jurang dengan menyediakan satu set 
persamaan berangka untuk menyelesaikan arus dalam sistem dua gegelung pemindahan 
tenaga tanpa wayar oleh induksi magnet pada frekuensi resonan dalam domain masa dari 
keadaan awal kepada keadaan akhir dengan menggunakan pembolehubah yang biasa 
digunakan jurutera elektrik; dengan objektif untuk mendapatkan kondisi yang 
memaksimumkan kecekapan dan penghantaran kuasa. Kelakuan sistem ini dikawal oleh 
pembolehubah yang ditakrifkan oleh nilai-nilai komponen litar sistem, dan hubungan antara 
pemboleh ubah ini disiasat dengan menyelesaikan persamaan pembezaan kepada arus sistem 
dan menyediakan kedua-dua penyelesaian analitikal dan penyelesaian berangka kepada 
masalah persamaan pembezaan. Didapati bahawa penyelesaian analitikal kepada arus sistem 
dalam di dalam domain masa dalam menghasilkan ungkapan algebra yang sangat panjang, 
manakala penyelesaian berangka menghasilkan ungkapan algebra yang lebih pendek. 
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Analisis penyelesaian berangka dilakukan oleh simulasi persamaan dalam pengaturcaraan 
MATLAB . Perkakasan telah dibina untuk menguji kesahihan penyelesaian berangka yang 
dibentangkan. Data menunjukkan persetujuan antara perkakasan dan simulasi persamaan 
berangka. Keputusan analisis mendapati bahawa terdapat ketidak-simetri antara frequency 
resonan yang lebih rendah dan frekuensi resonan yang lebih tinggi pada pekali gandingan 
yang tinggi. Ia juga mendapati bahawa wujud beberapa kondisi beban dan frekuensi yang 
memberikan penghantaran kuasa yang maksimum dalam mod ‘over-coupled’. Selain itu, 
keputusan analisis mencadangkan bahawa kecekapan pada pekali gandingan yang sangat 
rendah boleh dimaksimumkan dengan mengoptimumkan nisbah kearuhan sendiri kepada 
pemuat siri, beserta beban ditamatkan yang betul. Keputusan telah menunjukkan bahawa 
kecekapan sebanyak 55% boleh diperolehi pada pekali gandingan yang sangat rendah iaitu 
0.005. Akhir sekali , tesis ini juga menyediakan satu set persamaan untuk mengira kearuhan 
bersama dan medan magnet gegelung sistem; ini dilakukan dengan menggunakan persamaan 
Biot - Savart untuk melaksanakan pengiraan unsur terhingga. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Wireless Energy Transfer is a method of electrical energy transmission from a source to a 
receiver without the use of any physical connectors (wire or conductor). Nikola Tesla [1] is 
probably the first to demonstrate the wireless energy transfer via large electrical fields. His 
idea was not well received to then society as it was perceived to be hazardous [2]. On the 
other hand, wireless energy transfer through electromagnetic induction has been widely 
implemented in devices such as the transformer and electrical motor. However, they are 
subjected to very tight magnetic coupling [3]; hence the distance of wireless energy transfer 
is limited to small distances. Only recently, wireless energy transfer regained the interest 
from academics as well as the industry, partly due to the advancement of portable electronics 
such as tablets, smartphones and laptops. 

In 2007, physicists at Massachusetts Institute of Technology (MIT) has demonstrated a high 
efficiency wireless energy transfer scheme at a relatively large distance; implemented via 
magnetic induction at resonant frequency. It is consisted of a transmitting coil and a receiving 
coil connected wirelessly through mutual inductance. The wireless energy transfer is 
achieved by oscillating current through the pair of coil whose natural frequency are identical 
to each other. Due to the nature of resonance, energy is transferred at high efficiency. This 
system demonstrated by the physicist has open up a new concept; such that in the near future, 
it is possible to truly live in a world without wires. 

1.2 Problem Statement 

The field of Wireless Energy Transfer via Resonance of Magnetic Induction is a relatively 
new field. It was first introduced in 2007; as such the physics to explain the behavior of the 
system is still at its infancy. The physicist at MIT has put forward the Coupled Mode Theory 
to explain the energy sharing behavior of the system. While this theory is widely accepted, it 
is more preferred in the physics world and is unfamiliar to electrical engineers [4], [5]. The 
reason is because; the equation presented introduced variables that do not directly correlate to 
the variables familiar to electrical engineer. For example, the Coupled Mode Theory only 
explained the energy of the system, and does not explain how the components variables that 
the system is consisted of are in relationship to the current and voltages of the system. 
Therefore, it takes huge amount of time for electrical engineers to study the Coupled Mode 
Theory, to understand the concept and behavior of the system. Moreover, the Coupled Mode 
Theory only solves the system in steady state condition and it does not give the behavior of 
the system in transient time. While the alternative model, the Impedance Analysis Model is 
more familiar to engineers, it only explains the behavior of the system in the frequency 
domain, not in the time domain. Thus, analyses of power delivery are often reported in the 
form of s-parameters and not in watts. Additionally, this model has to assume that voltages 
and currents are purely sinusoidal, which might not be the case in real world implementation. 
For example, the time varying real world occurrence (such as dead time and rise time) is not 
simulate-able in the Impedance Analysis Model. Furthermore, similar to the Coupled Mode 
Theory, the Impedance Analysis Model only solves the system in steady state condition.  
Hence, this thesis shall bridge these gaps, by providing a set of equations to solve the system 
in the time domain from an initial state condition to the steady state condition; by using 
variables that are familiar to electrical engineers. 
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1.3 Importance of the Study 

Apart from being able to better understand the underlying principle of operation of the 
system, studying the system’s behavior, namely, the equation for current, power and 
efficiency of the system in the time domain is important because: 

• It gives the behavior of the system’s currents and voltages; the magnitude, and phase in 
relation to the time domain. 

• It results in more precise simulation in comparison to actual hardware implementation by 
allowing real world occurrences such as dead time and rise time to be simulated. 
Moreover, the equation allows the system to be simulated under any type of input 
voltages defined by the user (as supposed to pure sinusoidal input voltage limited in other 
equation models). 

• It allows the system’s behavior to be simulated from an initial condition, transient 
condition and steady state condition. 

• It allows for the optimal condition of the system to be determined based on the systems 
circuit’s components and variables. These variables include: 

o Mutual Inductance (or Coupling Coefficient). 
o Frequency of Operation. 
o Series Tuning Capacitor. 
o Self-Inductance of the Coil. 
o Alternating Current Resistance of the Coil. 
o Output Load Resistance. 

By solving the equations of the system under these different variables conditions, the 
resonance frequency of operation, optimal load condition, and optimal self-inductance to 
capacitance ratio could be determined. Moreover, since the behavior of the system could 
be obtained under different mutual inductance (or coupling coefficient) condition, it is 
possible to obtain the optimal condition under a very large distance of energy transfer 
(extreme low coupling coefficient), as such that it would maximize the power delivery 
and efficiency of the energy transfer. 

1.4 Objectives of Research 

In line with the aforementioned problem statement, the main objective of this research is to 
provide a set of numerical equations that model and explain the behavior of the system, 
namely the current of the system in the time domain, by using variables that are more familiar 
to electrical engineers. To justify the significance of the presented equations, analysis is done 
on the equation as such it is to achieve the following: 

o It should produce an agreement between experimental result and the simulation based 
on the equations presented. 

o Analysis of the equation results in the determination of resonance frequency of 
operation, and optimal load condition, as such that the system under the optimal 
condition the system would produce the highest efficiency and power delivery 

o Analysis of the equation results in the determination of optimal self-inductance-
capacitance ratio, and optimal load as such it maximizes the efficiency for a system 
under extreme low coupling coefficient, k, where 0 < k < 0.01. 

In order to provide a comparison between the experimental result and the equation-based-
simulation, the mutual inductance and the magnetic field around the coils need to be 
determined. Thus a secondary objective of this research is to provide a set of equations to 
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calculate the magnetic field around the system’s coils and hence calculation of the mutual 
inductance. This is done by applying the Biot-Savart equation to do finite elements 
calculations. 

1.5 Scopes of Research 

The scope of the research is limited to deriving the equation of the current of system in the 
time domain, using both analytical and numerical method. Then, the analysis of the equations 
is done by simulating the equations with MATLAB programming. The purpose of the 
simulation is to obtain the optimal conditions that maximize the efficiency and power 
delivery of the system. Upon obtaining the result of the analysis, experiment is designed 
where hardware is constructed. The result obtained from the hardware construction is 
compared to the result of the equations analysis; this is to justify the validity of the derived 
equations. Nonetheless, despite the fact that the thesis main contribution is the equation of the 
current of the system in the time domain, reader would find that most analysis is performed in 
the frequency domain. This is due to the fact that there is a lack of information in the 
literature regarding the current of the system in the time domain; in order to perform 
comparison analysis with the published work in the literature, the author has do the analysis 
in the frequency domain using the equation derived for the time domain; albeit reader would 
find that references shall be given in the time domain to explain the findings of the frequency 
domain results.  

Moreover in order to do the comparison, the mutual inductance and magnetic field of the 
system has to be obtained; as such the equation governing the mutual inductance and 
magnetic field of the system shall also be derived.  This research focuses on explaining the 
behavior and optimal conditions of the systems; thereby the health issues associated with the 
wireless energy transfer system shall not be investigated. 

1.6 Research Contributions 

This thesis claims the following to be its main contribution to the body of knowledge: 

1. The equation of the transmitter current and receiver current of the Wireless Energy 
Transfer via Resonance of Magnetic Induction system in time domain solved using 
the technique of next discrete point approximation based on the circuit components 
and the input voltage to the system. 

Moreover, the following are claimed to be the secondary contributions (contribution 2-4 are 
obtained by analysis of contribution 1): 

2. A phenomenon unreported in the literature, obtained by analysis of the presented 
equation in contribution 1; as such that there exist un-symmetrically at high coupling 
coefficient, as such that the higher resonance frequency, , and the lower resonance 
frequency,  are not centered at the natural frequency of the system, instead as the 
coupling coefficient increases, the difference of = –  increases exponentially 
(as supposed to linear increment) 

3. The maximization of efficiency obtained by analysis of the presented equation in 
contribution 1; as such that efficiency is maximized at the condition of optimal surd 
of self-inductance to capacitance ratio and the condition of optimal load for the 
system under extreme low coupling coefficient k, where 0 < k < 0.01. 

4. A phenomenon unreported in the literature, obtained by analysis of the presented 
equation in contribution 1; as such in contrast to the literature which only reports a 
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single optimal load condition, it was shown that in over-coupled mode there exist 
more than one load and frequency conditions that give peak power delivery and 
efficiency. 

5. The equation for magnetic field calculation is obtained by applying the Biot-Savart 
equation for finite element calculation to determine the mutual inductance and 
magnetic field around the system’s coil. As such the result of the presented equation 
gives better precision compared to the well-known Grover’s Method.  

1.7 Thesis Layout 

This thesis is structured into 5 chapters. Chapter One introduces the Wireless Energy Transfer 
via Resonance of Magnetic Induction, outline the problems, the research objectives and 
contributions. Chapter Two encompasses the review of the literature pertaining to the field of 
wireless energy transfer, and the objective of this section is to identify the gaps in the 
literature, hence justifying the relevancy of this thesis. Chapter Three discusses the 
methodology used to achieve the stated research objective, in such that the derivation of the 
equation (as in contribution 1) is presented, as well as the derivation of equations for 
magnetic field calculation, obtained by applying Biot –Savart Equation (as in contribution 5), 
also presented are the programming flowcharts for analysis of the optimal conditions of the 
system (as in contribution 2-4). Chapter Four presents the result and discussion in which the 
result obtained from the equation based simulation is compared to the experimental result, 
this chapter discusses the research findings and addresses the issues identified in Chapter 
Two. Finally Chapter Five gives the summary of the findings, and draws the conclusion. 
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